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Figure 1. PAIR Diffusion framework allows the appearance and structure editing of an image at the object level. Our framework is general
and can enable object-level editing capabilities in both (a) unconditional diffusion models and (b) foundational diffusion models. Using our
framework with a foundational diffusion model allows for comprehensive in-the-wild object-level editing capabilities.

properties of the different objects present in the image, i.e.
object-level image editing. In this work, we tackle the task
by perceiving the images as an amalgamation of various
objects and aim to control the properties of each object in
a fine-grained manner. Out of these properties, we identify
structure and appearance as the most intuitive to understand
and useful for editing purposes. We propose PAIR Diffusion,
a generic framework that enables a diffusion model to con-

Abstract

Generative image editing has recently witnessed ex-
tremely fast-paced growth. Some works use high-level condi-
tioning such as text, while others use low-level conditioning.
Nevertheless, most of them lack fine-grained control over the
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trol the structure and appearance properties of each object in
the image. We show that having control over the properties
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of each object in an image leads to comprehensive editing
capabilities. Our framework allows for various object-level
editing operations on real images such as reference image-
based appearance editing, free-form shape editing, adding
objects, and variations. Thanks to our design, we do not
require any inversion step. Additionally, we propose multi-
modal classifier-free guidance which enables editing images
using both reference images and text when using our ap-
proach with foundational diffusion models. We validate the
above claims by extensively evaluating our framework on
both unconditional and foundational diffusion models.

1. Introduction

Diffusion-based generative models have shown promising
results in synthesizing and manipulating images with great
fidelity, among which text-to-image models and their follow-
up works have great influence in both academia and industry.
When editing a real image a user generally desires to have
intuitive and precise control over different elements (i.e. the
objects) composing the image, and to manipulate them inde-
pendently. We can categorize existing image editing methods
based on the level of control they have over individual ob-
jects in an image. One line of work involves the use of text
prompts to manipulate images [2, 15, 24, 27]. These meth-
ods have limited capability for fine-grained control at the
object level, owing to the difficulty of describing the shape
and appearance of multiple objects simultaneously with text.
In the meantime, prompt engineering makes the manipula-
tion task tedious and time-consuming. Another line of work
uses low-level conditioning signals such as masks Hu et al.
[18], Patashnik et al. [34], Zeng et al. [58], sketches [50],
images [5, 47, 54] to edit the images. However, most of these
works either fall into the prompt engineering pitfall or fail to
independently manipulate multiple objects. Different from
previous works, we aim to independently control the proper-
ties of multiple objects composing an image i.e. object-level
editing. We show that we can formulate various image edit-
ing tasks under the object-level editing framework leading
to comprehensive editing capabilities.

To tackle the aforementioned task, we propose a novel
framework, dubbed Structure-and-Appearance Paired Dif-
fusion Models (PAIR Diffusion). Specifically, we perceive
an image as an amalgamation of diverse objects, each de-
scribed by various factors such as shape, category, texture,
illumination, and depth. Then we further identified two cru-
cial macro properties of an object: structure and appearance.
Structure oversees an object’s shape and category, while ap-
pearance contains details like texture, color, and illumination.
To accomplish this goal, PAIR Diffusion adopts an off-the-
shelf network to estimate panoptic segmentation maps as the
structure, and then extract appearance representation using
pre-trained image encoders. We use the extracted per-object

appearance and structure information to condition a diffu-
sion model and train it to generate images. In contrast to
previous text-guided image editing works [1, 2, 8, 39], we
consider an additional reference image to control the appear-
ance. Compared to text prompts that, although conveniently,
can only vaguely describe the appearance, images can pre-
cisely define the expected texture and make fine-grained
image editing easier. Having the ability to control the struc-
ture and appearance of an image at an object level gives us
comprehensive editing capabilities. Using our framework
we can achieve, localized free-form shape editing, appear-
ance editing, editing shape and appearance simultaneously,

adding objects in a controlled manner, and object-level im-

age variation (Fig. 1). Moreover, thanks to our design we do

not require any inversion step for editing real images.

The novelty of our work lies in the way we formulate
the image editing tasks that lead to a general approach to
enable comprehensive editing capabilities in various models.
We show the efficacy of our framework on unconditional
diffusion models and foundational text-to-image diffusion
models. Lastly, we propose multimodal classifier-free guid-
ance to reap the full benefits of the text-to-image diffusion
models. It enables PAIR Diffusion to control the final out-
put using both reference images and text in a controlled
manner hence getting the best of both worlds. Thanks to
our easy-to-extract representations we do not require spe-
cialized datasets for training and we show results on LSUN
and Celeb-HQ datasets for unconditional models, and use
the COCO dataset for foundational diffusion models. To
summarize our contributions are as follows:

* We propose PAIR Diffusion, a general framework to en-
able object-level editing in diffusion models. It allows
editing the structure and appearance of each object in the
image independently.

* The proposed design inherently supports various editing
tasks using a single model: localized free-form shape
editing, appearance editing, editing shape and appearance
simultaneously, adding objects in a controlled manner, and
object-level image variation.

 Additionally, we propose a multimodal classifier-free guid-
ance, enabling PAIR Diffusion to edit images using both
reference images and text in a controlled manner when
using the approach with foundational diffusion models.

2. Related Works

Diffusion Models. Diffusion probabilistic models [44] are a
class of deep generative models that synthesize data through
an iterative denoising process. Diffusion models utilize a for-
ward process that applies noise into data distribution and then
reverses the forward process to reconstruct the data itself.
Recently, they have gained popularity for the task of image
generation [17, 45]. Dhariwal etal. [9] introduced various
techniques such as architectural improvements and classifier
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guidance, that helped diffusion models beat GANSs in image
generation tasks for the first time. Followed by this, many
works started working on scaling the models [31, 37, 38, 40]
to billions of parameters, improving the inference speed [41]
and memory cost [38, 49]. LDM [38] is one the most pop-
ular models which reduced the compute cost by applying
the diffusion process to the low-resolution latent space and
scaled their model successfully for text-to-image generation
trained on webscale data. Other than image generation, they
have been applied to various fields such as multi-modal gen-
eration [52], text-to-3D [35, 43], language generation [23],
3D reconstruction [14], novel-view synthesis [51], music
generation [28], object detection [6], etc.

Generative Image Editing. Image generation models have
been widely used in image editing tasks since the inception
of GANSs [10, 13, 20, 22, 26], however, they were limited
to edit a restricted set of images. Recent developments
in the diffusion model has enabled image editing in the
wild. Earlier works [31, 37, 38] started using text prompts
to control the generated image. This led to various text-
based image editing works such as [12, 27, 29]. To make
localized edits works such as [15, 33, 48] use cross-attention
feature maps between text and image. InstructPix2Pix [2]
further enabled instruction-based image editing. However,
using only text can only provide coarse edits. Works such
as [1, 58] explored explicit spatial conditioning to control
the structure of generated images and used text to define
the appearance of local regions. Works such as [8, 24] rely
on input images and text descriptions to get the region of
interest for editing. However, most of the mentioned works
lack object-level editing capabilities and some still rely only
on text for describing the appearance. Recent works such as
[11, 30] have object-level editing capabilities, however, they
are based on the classifier guidance technique at inference
time which leads to limited precision. Further, they show
results only on stable diffusion and require inversion to edit
real images. Our framework is general and can be applied
to any diffusion model. We also enable multimodal control
of the appearances of objects in the image when using our
framework with stable diffusion.

3. PAIR Diffusion

In this work, we aim to develop an image-editing framework
that allows the editing of the properties of individual ob-
jects in the image. We perceive an image z € R3*H*W ag
composition of objects O = {01, 09, . .., 0, } Where o; rep-
resents the properties of i™ object in the image. As discussed
in Sec. 1, we focus on enabling control over the structure and
the appearance of each object. Thus, let o; = (s;, f;) where
s; represents the structure, f; represents the appearance. The
distribution that we aim to model can be written as:

p(%‘o,y) :p(gj‘{(sl fl)""ﬂ(STM fn)}ay) (1)

We use y to represent any form of conditioning signal al-
ready present in the generative model, e.g. text, and develop
our framework to enable new object-level editing capabili-
ties while preserving the original conditioning. The rest of
the method section is organized as follows. In Sec. 3.1, we
describe the method to obtain s; and f; for every object in a
given image. Next, in Sec. 3.2, we show that various image
editing tasks can be defined in the scope of the proposed
object-level formulation of images. Finally, in Sec. 3.3,
we describe the usage of the representations to augment
the generative models and inference techniques to achieve
object-level editing in practice.

3.1. Structure and Appearance Representation

Given an image x € R**f*W we want to extract the struc-

ture and appearance of each object present in the image.
Structure. The structure oversees the object’s shape and cat-
egory and is represented as s; = (¢;, m;) where ¢; represents
the category and m; € {0, 1} *W represents the shape. We
extract the structure information using a panoptic segmenta-
tion map, as it readily provides each object’s category and
shape information and is easy to compute. Given an off-the-
shelf segmentation network Eg(-), we obtain S = Eg(x),
with S € N¥XW which gives direct access to ¢;, m;.
Appearance. The appearance representation is designed to
capture the visual aspects of the object. To represent the ob-
ject faithfully, it needs to capture both the low-level features
like color, texture, etc., as well as the high-level features in
the case of complex objects. To capture such a wide range
of information, we choose a combination of convolution and
transformer-based image encoders [36], namely VGG [42]
and DINOv2 [32].We use initial layers of VGG to capture
low-level characteristics such as color, texture etc. [55, 57].
Conversely, DINOv2 has well-learned representations and
has shown promising results for various downstream com-
puter vision tasks. Hence, we use the middle layers of DI-
NOV2 to capture the high-level characteristics of the object.
To compute per-object appearance representations, we
first extract the feature maps from [ block of an encoder
Eq(:), ie. G = EL(x), G € RE*Mv with h x w the
spatial size and C' the number of channels. Then, we parse
object-level features, relying on m; to pool over the spatial
dimension and obtain the appearance vector g} € R®:

= S B o m,

’ M
In our framework, E¢(-) could be either DINOv2 or
VGG. We use g)! and gP! to respectively denote the ap-

pearance vectors obtained using the features of VGG and DI-
NOV2 extracted at the [""-block. The appearance information

2)
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Figure 2. Overview of PAIR Diffusion. An image is seen as a composition of objects each defined by different properties like structure
(shape and category), appearance, depth, etc. We focus on controlling structure and appearance. (a) During training, we extract structure and
appearance information and train a diffusion model in a conditional manner. (b) At inference, the framework supports multiple editing
operations by independently controlling the structure and appearance of any real image at the object level.

of 7" object is then given by a tuple f; = (giw1 , giDl2 , giDb)

where ls < l3. As a convention, we arrange the features
in f; in ascending order of abstraction, from low-level to
high-level representations.

3.2. Image Editing Formulation

The proposed object-level design allows the definition of var-
ious image editing tasks within a single framework. Consider
an image = with n objects O = {01, 09, ..., 0, }, with each
object o; described by the structure s; and the appearance
fi (see Sec. 3.1). Below we present the fundamental image
editing operations that can be obtained with our framework.
Importantly, they can be composed and applied to multiple
objects, enabling comprehensive editing capabilities.
Appearance Editing (s;, f;) — (s;, f/). It is achieved by
swapping appearance vector f; with an edited appearance
vector f;. Formally, f] = aq fi + a1 f{* with f* the appear-
ance vector of the 5™ object in the reference image.

Shape Editing (s;, f;) — (s}, fi). It is obtained by modi-
fying the structure (c;, m;) to (¢;, m}) i.e. the shape can be
explicitly changed by the user while maintaining the appear-
ance.

Object Addition O — O U {o,,11}. We can incorporate
an object into an image by specifying both its structure and
appearance. These attributes can be derived either entirely
from a reference image or the user can provide a sketch of
the structure alone, with the appearance being inferred from
a reference image.

Object Appearance Variation. We can also get object-level
appearance variations due to information loss in the pooling
operation to calculate appearance vectors and the stochastic
nature of the diffusion process.

Once we get object with edited properties O’ and con-
ditioning y we can sample a new image from the learned
distribution p(z|0’, y). Our object-level design can easily
incorporate various editing abilities and help us achieve a
comprehensive image editor. In the next section, we will de-
scribe a way to implement p(x|O, y) in practice, and present
inference methods to sample and control the edited image.

3.3. Architecture Design and Inference

In practice, Eq. (1) represents a conditional generative model;
building upon the recent success of diffusion models, we
leverage them to implement it. Next, we describe a method
to use the object-level representations outlined in Sec. 3.1
both in unconditional diffusion models and foundational
text-to-image (T2I) diffusion models. In this way, we can
transform any diffusion model into an object-level editor.

We start by representing structure and appearance in a
spatial format to conveniently use them for conditioning. We
represent the structure conditioning as S € N2*X#*W ywhere
the first channel contains the category, while the second
channel contains the shape information of each object. For
appearance conditioning, we first L2-normalize each vector
along channel dimension, splat them spatially using m;,
and combine them in a single tensor represented as G €
REXHXW "The process is repeated for the features extracted
through different encoders and at different layers, leading to
the tuple F = (GV1, GP2 GPB). Lastly, we channel-wise
concatenate S to every element of F' which results in our
final conditioning signals F, = (GY!, GPl2 GDls),

In the case of the foundational T2I diffusion model, we
choose Stable Diffusion (SD) [38] as our base model. To
condition it, we adopt ControlNet [59] because of its training
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and data efficiency in conditioning SD model. The control
module consists of encoder blocks and middle blocks that
are replicated from SD UNet architecture. Various works
show the tendency of the SD inner layers to focus more on
high-level features, whereas the outer layers to focus more
on low-level features [5, 24, 48]. Exploiting this finding,
we use GY'* as input to the control module and add GP'2,
G 1o the features after cross-attention in the first and sec-
ond encoder blocks of the control module respectively. For
the unconditional diffusion model, we use the unconditional
latent diffusion model (LDM) [38] as our base model. Per-
taining to the simplicity of the architecture and training of
these models we simply concatenate the features in F to
the input of LDM. The architecture is accordingly modified
to incorporate the increased number of input channels. For
further details please refer to Supp. Mat..

For training both the models we follow standard prac-
tice [38] and use the simplified training objective £ =
e — €a(zt, S, F,y,t)||3, where z; represents the noisy ver-
sion of x in latent space at timestep ¢, € is the noise used
to get z;, and €y is the trainable model. In the case of Sta-
ble Diffusion, y represents the text prompts, while it is not
present in the case of the unconditional diffusion model.
Multimodal Inference. Once we have a trained model, we
require an inference method that allows us to adjust the
strengths of different conditioning signals and control the
edited image accordingly. We consider the scenario where y
represents text, with the unconditional diffusion models be-
ing a special case where y is null. Specifically, the structure
S and appearance F' come from a reference image and the
information in y could be disjoint from F', we need a way
to capture both in the final image. A well-trained diffusion
model estimates the score function of the underlying data dis-
tribution [46], i.e. V,,p(2|0,y) = V., p(z|S, F,y), which
in our case can be expanded as

Vz, logp(z|S, F,y) =V, log p(z|5, F)
+V2, log p(zy) 3)
—V., log p(z:)
We use the concept of classifier-free guidance (CFG) [16] to
represent all score functions in the above equation using
a single model by dropping the conditioning with some

probability during training. Using the CFG formulation
we get the following update rule expanding Eq. (3):

€o(zt, S, F,y) = ea(2t, 6, 9, 0)
+ 55+ (€0 (21,9, 0, 9)) — €9 (21, 9, 9, P))
+sp - (€9 (24,9, F, ¢) — €9 (2¢, S, 0, 9))
+ 5y - (€0 (21,0, 0, y) — €a(21, b, 0, )
4)

For brevity, we did not include ¢ in the equation above. A
formal proof of the above equations is provided in Supp. Mat..

Intuitively, F' is more information-rich compared to y. For
this reason, during training the network learns to give negli-
gible importance to y in the presence of F', and we need to
use y independently of F' during inference to see its effect on
the final image. In Eq. (4) ss, sF, s, are guidance strengths
for each conditioning signal. It provides PAIR Diffusion
with an intuitive way to control and edit images using var-
ious conditions. For example, if a user wants to give more
importance to a text prompt compared to the appearance
from the reference image, it can set s, > sp and vice-versa.
For the unconditional diffusion models, we simply ignore
the term corresponding to s, in Eq. (4).

4. Experiments

In this section, we present qualitative and quantitative anal-
ysis that show the advantages of the PAIR diffusion frame-
work introduced in Sec. 3. We refer to UC-PAIR Diffusion
to denote our framework applied to unconditional diffusion
models and reserve the name PAIR Diffusion when applying
the framework to Stable Diffusion. Evaluating image editing
models is hard, moreover, few works have comprehensive
editing capabilities at the object level making a fair compari-
son even more challenging. For these reasons, we perform
two main sets of experiments. Firstly, we train UC-PAIR
Diffusion on widely used image-generation datasets such
as the bedroom and church partitions of the LSUN Dataset
[56], and the CelebA-HQ Dataset [21]. We conduct quan-
titative experiments on these datasets as they represent a
well-study benchmark, with a clear distinction between train-
ing and testing sets, making it easier and fairer to perform
evaluations. Secondly, we fine-tune PAIR Diffusion on the
COCO [25] dataset. We use this model to perform in-the-
wild editing and provide examples for the use cases described
in Sec. 3.2, showing the comprehensive editing capabilities
of our method. We refer the reader to the Supp. Mat. for the
details regarding model training and implementations, along
with additional results.

4.1. Editing Applications

In this section, we qualitatively validate that our model can
achieve comprehensive object-level editing capabilities in
practice. We primarily show results using PAIR Diffusion
and refer to the Supp. Mat. for results on smaller datasets.
We use different baselines according to the editing task. We
adapt Prompt-Free-Diffusion (PFD) Xu et al. [53] as a base-
line for localized appearance editing, by introducing masking
and using the cropped reference image as input. Moreover,
we adopt Paint-By-Example (PBE) Yang et al. [54] as a
baseline for adding objects and shape editing. For further
details regarding implementation please refer to Supp. Mat..
When we want the final output to be influenced by the text
prompt as well we set s, > s else we set s, < sp. For the
figures where there is no prompt provided below the image
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Figure 3. Qualitative results for appearance editing. We can drive the edit with reference images as well as with text prompts.

assume that prompt was auto-generated using the template:
‘A picture of {category}’, with the category inferred form the
edited object. When editing a local region we used a masked
sampling technique to only affect the selected region [38].
Appearance Editing. In Fig. 3, we report qualitative results
for appearance editing driven by reference images and text.
We observe that our multilevel appearance representation
and object-level design help us edit the appearance of both
simple objects such as the sky as well as complex objects like
cars. On the other hand, PFD [53] gives poor results when
editing the appearance of complex objects due to the missing
object-level design. Furthermore, using our multimodal
classifier free guidance, our model can seamlessly blend the
information from the text and the reference images to get the
final edited output whereas PFD [53] lacks this ability.
Add objects and Shape editing. We show the object addi-
tion and shape editing operations result together in Fig. 4.
With PAIR Diffusion we can add complex objects with many
details like a cake, as well as simpler objects like a lake.
When changing the structure of the cake from a circle to a
square, the model captures the sprinkles and dripping choco-
late on the cake while rendering it in the new shape. In all
the examples, we can see that the edges of the newly added
object blend smoothly with the underlying image. On the
other hand, PBE [54] completely fails to follow the desired
shape and faces issues with large objects like lakes.

Object Variations. We can also achieve image variations at
an object level as shown in Fig. 13 in Supp. Mat.. We note
that our model can capture various details of the original
object and still produce variations.

4.2. Quantitative Results

As described in Sec. 3, the backbone of our design is the
ability to control two major properties of the objects, the

E2EVE PAIR Diff.

Figure 5. Visual results for appearance control on LSUN bedroom.
We show the results obtained with relevant baselines for editing the
red area in the input image using the reference as a driver.

Table 1. Quantitative results for appearance control on the LSUN
Bedroom validation set.

Model FID () L1() SSIM (1)
Copy-Paste (CP)  21.37 0.0 0.87
Inpainting [38] 8.25 0.02 0.17
CP + Denoise 9.15 0.02 0.32
E2EVE [3] 13.59 0.05 0.34

PAIR Diffusion 12.81 0.02 0.51

appearance and the structure. The aim of the quantitative
evaluation is to verify that we can control the mentioned
properties and not to push the state-of-the-art results. We
start by evaluating our model on appearance control: the task
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Figure 4. Qualitative results for adding objects and shape editing.

Table 2. Quantitative results for Table 3. Quantitative results of
structure control on CelebA-HQ ablation study on appearance rep-

validation dataset. resentation
Model mloU SSIM Model L1 LPIPS
SEAN [62] 0.64 0.32 Myaa 0.1893 0.555
PAIR Diff. 0.67 0.52 Mpmwo  0.1953 0.549

Full 0.1891  0.545

consists of modifying a specific region of the input image
using a reference image to drive the edit. We compare our
method with the recent work of [3] (E2EVE), and follow
their evaluation procedure. In particular, different models
are compared based on: (i) Naturalness: we expect the edited
image to look realistic and rely on FID between input and
edited images to assess it, (ii) Locality: we expect the edit to
be limited to the specific region where the edit is performed
and use L1 distance to measure it, (iii) Faithfulness: we
expect the edited region and the target image to be similar
and we use SSIM to evaluate it. As discussed in E2ZEVE,
all the above-mentioned criteria should hold at the same
time, and the best-performing method is the one giving good
results in the three metrics at the same time. We compare
our method with four baselines: (1) Copy-Paste: the driver
image is simply copied in the edit region of the input image,
(2) Inpainting: we use LDM Rombach et al. [38] to inpaint
the target edit region, (3) Copy-Paste + Denoise: starting
form copy-paste edit, we invert the image with DDIM, and
denoise it with LDM, (4) E2EVE. In Tab. 1 we report the
quantitative results on the validation set of LSUN Bedroom
[56] and visual comparisons are shown in Fig. 5. The copy-
paste baseline provides an upper bound to the faithfulness
and locality but produces images that are unrealistic (high
FID score). Vice-versa, Inpainting and CP+Denoise produce
natural results (low FID score) but are not faithful to the

driver image (low SSIM score). Only our method performs
well w.r.t. all the aspects and outperforms E2EVE in all met-
rics showing that we can control the appearance of a region.
We refer the reader to Supp. Mat. for a detailed description
of the evaluation procedure and baseline implementation.
Secondly, we evaluate the structure-controlling ability
of our method. We adopt the validation set of CelebA-HQ
(5000 samples) and compare with SEAN [62]. We generate
images conditioning the model on the ground truth structure
maps from the validation set and then segment the generated
images with a pre-trained model [63]. We report the mIoU
score, calculated using the ground truth segmentation map
as the reference, as well as the SSIM score in Tab. 2. The
proposed method outperforms [62] in terms of both mIoU
and SSIM, demonstrating that our method can precisely
follow the guidance of structure and retain the appearance.

4.3. Ablation Study

Multimodal Classifier Free Guidance. We validate
the effectiveness of the proposed multimodal classifier-
free guidance. Instead of factorizing, which results in
Eq. (3), we directly expand the conditional score function
V., logp(z|S, F, y) and apply classifier free guidance for-
mulation on it and get the following equation:

€~9(Zt,S, Fa y) = ee(zt’d))(ba (rb)
+ S8 - (69 (Zta Sa ¢7¢) — €y (Zta ¢7 ¢7 ¢))
+ SF - (69 (Zt, Sa F7 ¢) — €9 (Zta Sv ¢a ¢))

+ Sy * (60 (zta Sv F7 y) — 69(Zt, Sa F7 ¢))
(5)
We highlight the difference between Eq. (4) and Eq. (5)
using the blue color . In Fig. 6, we compare the results
sampled from Eq. (4) (column (a)) and Eq. (5) (columns
(b)-(d)). We use the same seed to generate all the images,
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Figure 6. Ablation study for multimodal classifier-free guidance. We can see that if we use standard classifier-free guidance Eq. (5) the

model completely ignores the text when sampling the image.

further the values of sg, sF, s, are the same in columns (a)
and (b). For the first row we set sg =8, sp =3, s, =8 and
for second row it is sg = 6,sp = 4,s, = 8. The values
of s, for (b)-(d) are 8,15, 20 respectively. We can clearly
see that sampling results using Eq. (5) completely fail to
consider text prompt even after increasing the value of s,,.
This shows the effectiveness of the proposed classifier-free
guidance Eq. (4) for controlling the image in a multimodal
manner. Lastly, we conduct an ablation study on control
parameters of CFG, namely sg, sr, s, to better understand
the relationship between them. Please refer to Supp. Mat. for
discussion and the visual results in Fig. 7-Fig. 8.

Appearance representation. We ablate the importance of
using VGG and DINOV?2 for representing the appearance of
an object. We train two models, one using only VGG fea-
tures (Mvygg) and the second using only DINOvV2 features
(Mpino) to capture the appearance of an object. We train
both models using identical hyperparameters to our original
model. We assess the performance of each model using pair-
wise image similarity metrics on the COCO [4] validation
set. We use L1 as our low-level metric and LPIPS [60] as our
high-level metric and report the results Tab. 3. While Mygg
has a better L1 score compared to Mpno, the LPIPS score
indicates that Mpo outperforms Mygg. This experiment
confirms the intuition that VGG features are good at captur-
ing low-level details, while DINO features excel at capturing
high-level details in our framework. In our final design, we
found that combining both VGG and DINOV?2 features for
appearance vectors yielded the best L1 and LPIPS scores,
leveraging the strengths of both representations. Supporting
visuals illustrating this can be found in Fig. 9.

We define appearance as the visual characteristics of an
object (see Sec. 1), and do not aim to maintain the exact
identity of the object in the reference image. This is in
contrast with recent research on personalization [39]. How-
ever, this formulation allows us to employ reference images
in a versatile manner, contributing to our comprehensive

editing capabilities. We use reference images that depict
texture-only images (Fig. 1(a) second row), perform image
variations (Fig. 13), realistic edits (Fig. 3), style transfer
(Fig. 17) as well as semantically complex edits (Fig. 11).

5. Conclusion

In this paper, we show that we can build a comprehensive
image editor by interpreting images as the amalgamations of
various objects. We propose a generic framework, dubbed
PAIR Diffusion, that enables structure and appearance edit-
ing at the object-level in any diffusion model. Our framework
enables various object-level editing operations on real im-
ages without the need for inversion including appearance
editing, structure editing, adding objects, and object varia-
tions. All the operations can be obtained with a single model
trained once. Furthermore, we propose multimodal classifier-
free guidance which enables precise control in the editing
operations. We demonstrate its effectiveness with extensive
editing examples on real image across different domains.
Limitations and future work. Currently, the architecture
modifications present a simple formulation of the appear-
ance vectors and the structure conditioning. While offering
advantages by seamlessly integrating into existing Diffusion
Models with minimal modification, in the future we plan to
explore more sophisticated designs while maintaining the
core object-level formulation. We plan to extend the explicit
control over other aspects of the objects, such as the illumi-
nation, pose, etc., and improve the identity preservation of
the edited object. The proposed object-level formulation can
also help in devising standardizing metrics for image editing
tasks in a unified manner which is lacking in the field.
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