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Abstract

High-end lenses, although offering high-quality images,

suffer from both insufficient affordability and bulky design,

which hamper their applications in low-budget scenarios or

on low-payload platforms. A flexible scheme is to tackle the

optical aberration of low-end lenses computationally. How-

ever, it is highly demanded but quite challenging to build

a general model capable of handling non-stationary aber-

rations and covering diverse lenses, especially in a blind

manner. To address this issue, we propose a universal solu-

tion by extensively utilizing the physical properties of camera

lenses: (i) reducing the complexity of lens aberrations, i.e.,

lens-specific non-stationary blur, by warping annual-ring-

shaped sub-images into rectangular stripes to transform

non-uniform degenerations into a uniform one, (ii) building

a low-dimensional non-negative orthogonal representation

of lens blur kernels to cover diverse lenses; (iii) designing

a decoupling network to decompose the input low-quality

image into several components degenerated by above kernel

bases, and applying corresponding pre-trained deconvolu-

tion networks to reverse the degeneration. Benefiting from

the proper incorporation of lenses’ physical properties and

unique network design, the proposed method achieves su-

perb imaging quality, wide applicability for various lenses,

high running efficiency, and is totally free of kernel calibra-

tion. These advantages bring great potential for scenarios

requiring lightweight high-quality photography.

1. Introduction

High-quality photography is of crucial importance for both

high-fidelity visual recording (e.g., filmmaking, sports video

capturing) and sophisticated computer vision tasks (e.g.,

surveillance, auto-piloting). High-end camera systems often

employ compound lenses comprising approximately ten or

more components constructed from diverse materials to com-

pensate for geometric and photometric aberrations. Such

complicated designs are proven to be effective in achiev-

ing nice image quality, but come with inherent drawbacks,

including high costs, bulkiness, and fragility, making them

unsuitable for scenarios with low payload capacity or limited

budgets. Consequently, the demand for high-quality photog-

raphy using lightweight lenses has significantly intensified.

Considering the optical aberration in image formation

and the afterward processing jointly, the workload in opti-

cal design can be shifted to the later stage [23, 28], where

advanced reconstruction algorithms play a crucial role. One

can also utilize the physical properties in the imaging setup

to facilitate reconstruction, and researchers have made some

primary efforts in this direction [32, 45].

However, grand challenges lie in the variability of optical

aberrations across the field of view and diverse lenses. On

the one hand, the quality degeneration of a simple lens is

intrinsically a convolution with non-uniform blur kernels,

and the typical compensation algorithms [43] approximate

the globally non-uniform deconvolution with patch-wise

uniform deconvolutions, leading to a trade-off between pre-

cision and computational efficiency. This trade-off comes up

with high inflexibility when adopting data-driven approaches

[14, 41], which require learning a large number of models

to achieve high-performance results. On the other hand, the

degradation of different lenses varies significantly, so lens-

specific algorithm development or parameter optimizations

are required for high reconstruction performance. Further-

more, the calibration of the PSF kernels of camera lenses

is quite expertise-demanding[27, 46], and blind compensa-

tion is more favorable for users. Overall, computational

compensation for lens aberrations holds great promise for

achieving lightweight high-quality imaging. However, there

is a pressing demand for a general approach to handle spa-

tially varying aberrations of diverse lenses in a blind manner.

In this paper, we propose a physics-informed end-to-end

solution that (i) capitalizes the characteristics of lens aber-
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Figure 1. An illustrative example of our lens-aberration compensation approach. (a) A camera equipped with a simple lens of a large field of

view but severe optical aberration (WXSJ-H65HD) and a small-sized unmanned aerial vehicle (UAV) carrying the camera for data capture.

(b) The input degenerated image (upper) and our reconstruction result (lower). (c) The zoomed-in comparison on the highlighted region

(white box) in (b), where the original recording is shown in the bottom left corner and the reconstructed result in the top right corner.

ration to construct a low-dimensional representation of non-

uniform blur kernels of general camera lenses, and (ii) de-

signs a deep neural network resolving the degeneration com-

ponents in the low-quality input and ensembling a set of pre-

trained compensators to reverse the degeneration robustly.

Specifically, we represent an arbitrary local point spread

function (PSF) with a set of negative orthogonal bases, pre-

train their corresponding deconvolution modules, and then

retrieve their degeneration from the low-quality image cap-

tured by a low-end lens and apply the pre-trained inversion

models accordingly. The proposed approach demonstrates

high performance and holds high potential in lightweight

photography on low-payload platforms, as shown by the im-

pressive results captured with a small drone equipped with a

compact surveillance camera in Fig. 1.

In summary, we target for general, blind, and end-to-end lens

aberration correction, and make the following contributions:

1) Proposes a unified framework for lens aberration com-

pensation with high flexibility to diverse aberrations pro-

duced by the wide range of camera lenses.

2) Builds a general low-dimensional model of lens aberra-

tions based on Orthogonal Non-negative Matrix Factor-

ization, utilizing the physical properties of optical lenses.

3) Designs an end-to-end network to divide and conquer the

optical aberrations in the above low-dimensional space,

enabling fast and blind inversion of diverse lens degener-

ation and ultimately lightweight high-quality imaging.

4) Demonstrates performance comparable to state-of-the-art

non-blind lens-specific algorithms, validating its great po-

tential in budget-constrained or low-capacity platforms.

2. Related Work

Lens aberration modeling. Generally, imaging lenses are

physically rotational symmetric around the optical center,

imparting rotation symmetry of the lens aberration [25, 37].

Ignoring the fabrication imperfections, almost all types of

lens aberrations, such as spherical aberration, coma aber-

ration, and chromatic aberration [1, 9], form a rotational

symmetric pattern.

Utilizing these unique features of lens aberration, re-

searchers have proposed some methods to simplify the de-

generation by diverse lenses. For example, Rahbar et al. [29]

adopt the Zernike model [24] to describe optical aberrations

and can estimate the Zernike coefficients of a single chan-

nel through bicoherence and tricoherence estimation tech-

niques, while Schuler et al. [32] represent the non-uniform

aberrations with a set of orthonormal Efficient Filter Flow,

which is applicable for most cases without large spherical

aberration. Differently, Yue et al. [45] leverage the global

rotational symmetry properties of regular lenses to transform

non-uniform aberrations into uniform rings using radial split-

ting and warping techniques. This method capitalizes on the

inherent physical properties of the imaging lens and largely

simplifies the aberration model, offering inspiration for our

approach to explore the unique structures of lens aberrations.

However, their implementations use conventional optimiza-

tion by alternatively kernel estimation and deblurring, which

is time-consuming and the strong consumption of PSF unifor-

mity within a stretched annular ring harms the performance

sightly, which limits the applications demanding real-time

and high-quality compensation. In contrast, we design a

framework consisting of well-organized sub-networks to

address all these issues decently.
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Optical aberration removal. Lens aberration exists

widely in optical imaging systems, and computational cor-

rection is an essential way to raise imaging quality without

increasing hardware budget. One common way to model

lens aberration is by convolving the image with spatially

varying PSFs and compensation is naturally conducted via

deconvolution [38, 44]. Existing correction methods can be

broadly categorized into non-blind and blind ones.

Non-blind correction assumes known PSFs and algo-

rithms are extensively studied [4, 22]. Researchers have

proposed different algorithms to estimate kernel PSFs via,

e.g., using a combination of defocused and focused images

[2], a set of binary random patterns [10], aggregating degen-

erations in informative nature image patches [11], analyzing

the spectral characteristics of the lens system [3, 19, 34].

Further, to cover PSFs of different camera lenses, Shih et

al. [33] utilize interpolation methods by fitting a spatial

Gaussian model. More recently, Li et al. [20] propose a

data-driven deep learning approach explicitly taking the PSF

as input and introducing lens-specific priors for high-quality

compensation. In sum, non-blind lens aberration compen-

sation techniques have shown promising performance, but

they require expertise demanding PSF calibration or robust

estimation, which are not friendly for non-expert users and

require lens-specific model training.

Blind methods have gained significant attention due to

their convenience for un-trained users and high flexibility to

diverse lenses. The typical strategy is to estimate PSFs and

conduct compensation sequentially. Among them Rahbar et

al. [29] introduce Zernike moments, and Tang & Kutulakos

[35] employ the Seidel model to simplify the lens aberration

model; while Delbracio et al. [5] propose a robust algorithm

based on empirical observations about the distribution of the

gradient in clear natural images. Recently, some researchers

have adopted the data-driven scheme and developed deep

neural networks to compensate for the aberrations, but often

focus on specific types of aberrations to ensure good con-

vergence, such as radial lens distortion [31] and chromatic

aberrations [7].

In light of these developments, the blind compensation

techniques (either based on conventional optimization or

deep neural networks) cannot achieve performance com-

parable to their non-blind counterpart. Besides, existing

methods are incapable of handling diverse lenses and var-

ious types of aberrations flexibly [4, 8]. In contrast, the

proposed work leverages the physical properties of camera

lenses and casts the complex aberrations of diverse lenses

into a unified low-dimensional space, in which we divide and

conquer the degeneration via incorporating geometric priors

and a small number of pre-trained modules. Benefiting from

the proper use of lenses’ physical properties and elegant

network design, we can achieve performance comparable

to non-blind techniques as well. Such a general end-to-end

blind solution with superb performance holds great potential

for high-quality lightweight imaging systems on portable

devices or low-capacity mobile platforms.

Non-uniform deconvolution. Mathematically lens aber-

ration compensation can be described as a non-uniform de-

convolution process and shares the same formulation with

other tasks such as camera shake, defocus, object motion,

etc. Various techniques and approaches have been proposed

to address the technical challenges posed by non-uniform

blurring [39, 47]. There are three main ways to address the

non-uniformity. The most intuitive and widely used way is to

assume patch-wise uniform PSFs and conduct deconvolution

patch by patch [36, 42]. The deconvolution can be imple-

mented via conventional optimization previously and deep

neural networks recently, and usually in a non-blind manner.

There are a bunch of algorithms, and we do not list them

here. The second solution is to transform the various PSFs

into a low dimensional space and remove the blur along each

dimension [7, 17, 32]. The third way is to adopt data-driven

techniques and fed training data with varying PSFs for high

generalization ability [48]. One can also make extensive

use of the structure of the PSF patterns to circumvent the

high complexity by introducing physical constraints, e.g.,

transform the spatially varying aberrations in an annular ring

into uniform via warping [45], and decompose the spatially

varying defocus blur into several uniform ones according to

the scene depth [18, 49]. Differently, our approach focuses

on lens aberration which is of different features from other

degenerations and can utilize the unique properties of lenses

for a better design, in a similar way to [45]. In addition, we

are dedicated to an end-to-end solution working for diverse

lenses without model training.

3. Physics-inspired Low Rank Lens Aberration

Model

There exist various lens aberrations, such as spherical aber-

ration and astigmatism, resulting in various non-uniform

quality degenerations. In addition, the aberration models of

diverse lenses differ a lot. To provide a universal solution

for different lenses, it is of crucial importance to reduce the

dimension of the PSFs and provide a unified representation,

based on which one can design a low-rank model to address

the aberrations in a divide-and-conquer manner.

Considering the rotational-symmetry of optical lenses

[15, 16, 40], we divide the lens’s field of view into several

concentric rings and warp them into rectangular stripes, each

of which is of approximately uniform PSFs. This operation

can largely decrease the dimension of the lens aberrations

[13, 21]. Further, we crop these stripes into patches and

apply ONMF to find a set of orthogonal and nonnegative

bases to cover the space of the lens PSFs. If learned from a

large set of lenses, the bases can represent an arbitrary PSF

with high accuracy. The orthogonality can avoid ambiguity
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Figure 2. Illustration of the ONMF-based low-rank lens aberration

model. (a) PSF dataset of 20 low-end lenses simulated by Zemax.

(b) The PSF lattice consisting of 1840 PSF kernels, generated by

dividing the images by each lens into 5 concentric rings, warping

into stripes, and further cropping into 13×13-pixel patches. (c)

9 top PSF bases obtained by applying Orthogonal Nonnegative

Matrix Factorization onto (b).

during decomposing the complex aberrations and the non-

negativity facilitates compensating aberrations in the same

way as handling conventional PSFs.

To this end, we first collect 20 representative low-

end lenses from ZEBASE database and construct a high-

dimensional matrix encompassing all their PSFs after annu-

lar division (5 rings), ring-to-rectangle warping and cropping.

The matrix is then factorized using the ONMF model [30]

and yield a set of principal bases. The workflow detailing

this procedure as visualized in Fig. 2. So far, we have arrived

at a low dimensional representation of the lens aberrations,

which can cover the image degeneration of diverse lenses.

4. Universal Framework for Lens Aberration

Correction

The above idea of building a low-rank model to compen-

sate the lens aberration in a divide-and-conquer manner is

non-trivial for several reasons: the decomposition of aberra-

tions in a blurry input is highly imposed; the deconvolutions

need to be conducted on the components which are of differ-

ent intensity ranges with general natural images; the fusion

should also tolerate the imperfections in both decomposition

and deconvolution. To overcome these hurdles, we propose

to design a jointly trained low-rank deep network that en-

ables flexible optical aberration correction. Specifically, our

network comprises three main modules trained in an end-

to-end manner. The first module conducts ONMF-based

decomposition, followed by several identical adaptive de-

convolution modules. Finally, we incorporate a synthetic

network module to further enhance the correction result.

Fig. 3 summarizes the workflow of the whole network and

reports the architecture of the key modules.

4.1. Decomposing Aberrations Attributed to PSF Bases

As aforementioned, after applying matrix decomposition to

the PSF library, we get a basis set {Bi}, which can compose

an arbitrary PSF k with corresponding coefficients {αi}, i.e.,

k =
∑

i

αi ·Bi. (1)

Hence, a recorded degraded patch Y can be represented as

Y = X⊗ (
∑

i

αi ·Bi) + n =
∑

i

(αi ·X)⊗Bi + n (2)

where X is the latent sharp image, n is the noise and ⊗
denotes 2D convolution.

As Fig. 3 shows, suppose we can decompose the blurry

Y into components {Yi = (αi ·X) ⊗ Bi}, we can pre-

train deconvolution models to compensate the aberrations

caused by {Bi} and estimate X by simply estimating the

scaling factor (αi). The decomposition is implemented with

a deep neural network built on the U-net structure. Here we

replace the plain convolution in original U-net with residual

blocks for better convergence. Notice that the network is

fully convolutional and can be applied to images with an

arbitrary size. In our experiment, we divide the acquired

image into equidistant annual rings with different widths

based on the lens’s physical properties.

In order to ensure the decomposition performance of the

network, we define the following loss function

Ldecom = ∥Y −
∑

i

Yi∥2 +
∑

i

(

Yi − Ỹi

)

(3)

with Yi and Ỹi denoting the decomposed blurry components

and the generated version by Zemax software, equivalent to

X ⊗ (αi ·Bi). Here the first term forces the summation

of the decomposed components consistent with the input,

and the second term ensures that each retrieved component

is equal to the convolution of the sharp image X with the

corresponding PSF basis.

4.2. Adaptive Feature-Domain Wiener Deconvolution

The ONMF-based decomposition module can extract the

blurry components caused by the corresponding PSF bases,

so we design matching compensation modules and embed

them into our joint framework. However, both the range

and pattern of the intensities in the decomposed components

differ from natural images, and deconvolving these compo-

nents in the spatial domain is prone to ringing artifacts and

over-smoothness. A recent study [6] demonstrates that high-

quality image reconstruction can be achieved by performing
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Figure 3. The framework of the proposed approach. The whole pipeline comprises preprocessing to build the low-rank aberration model

and a divide-and-conquer compensation. The preprocessing involves annular partitioning of images and corresponding lens PSFs, ring-to-

rectangle warping, and learning a low-dimensional representation of the PSFs. The compensation consists of three primary modules: (i)

Decomposition, a neural network based on Orthogonal Non-Negative Matrix Factorization (ONMF), decomposing the blurry image into

components corresponding to the representation bases of lens aberration; (ii) Deconvolution, implemented as a cascaded encoder-decoder

network to map the decomposed components into the feature domain and conducts pre-trained Wiener deconvolution sequentially; (iii)

Fusion, which aggregates the multiple scaled versions of the latent sharp image from the previous deconvolution modules to get the final

output. The whole network is trained in an end-to-end manner.

deconvolution in the feature domain. Thus, we propose an

adaptive feature-domain Wiener deconvolution module to

recover the lost high frequencies better.

Specifically, for a specific patch Xi = αiX, we recon-

struct it from the i-th blurry decomposed component Yi

X
∗

i
= argmin ∥Yi −Xi ⊗Bi∥ , (4)

where Xi and Yi respectively represent the sharp and blurry

image components matching the i-th PSF basis. In imple-

mentation, we build a feature-based Wiener adaptive decon-

volution network. We denote fi as a set of learnable linear

filters and convolve Yi with them to extract useful features

and obtain the relationship among the blurry input, PSF, and

the high-quality output in the feature domain. According to

the properties of convolution, Eq. 2 turns into

FiYi = Fi (Xi ⊗Bi) + Fin, (5)

where multiplying with Fi is equivalent to convolving with

fi. Correspondingly, the above optimization in Eq. 4 is

equivalent to finding a set of feature-based Wiener decon-

volution operators Gi (which can be obtained based on the

conclusion in [6]) to reverse the aberration by Bi

X
∗

i
= argmin ∥GiFiYi − FiXi∥ . (6)

The compensation is implemented as a deep neural net-

work with the network structure and learned in a data-driven

manner. During training the loss function is designed in an

intuitive manner:

Ldeconv = ∥FiXi −GiFiYi∥2 . (7)

The network is designed to share the parameters across all

scales except for the first encoder block at the first cascade,

which helps achieve fast and high-quality deconvolution.

4.3. Attention-based Fusion

According to Eq. 2, each deconvolution model can provide

an estimation of the latent high-quality image, multiplied

by a scaling factor. However, the potential inaccuracy in

decomposition and artifacts in deconvolution would harm

the quality of the final output. To overcome this challenge,

we propose an effective strategy to streamline the reconstruc-

tion process. Specifically, we decompose more components

from the blurry input and secondly apply the corresponding

deconvolution to obtain multiple aberration-compensated

versions, then fuse them together via a weight-trainable fu-

sion network to raise robustness.

The above strategy introduces a substantial increase in

running time. To accelerate the training of the deconvolution

modules, we adopt a coarse-to-fine strategy, i.e., training a

base model and subsequently fine-tuning it, which is largely

faster than training all these basis-specific networks from
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scratch. Moreover, our investigation reveals that the errors

in the decomposition module can harm the successive de-

convolution. Consequently, we introduce the decomposition

confidence to serve as a valuable indicator of the decomposi-

tion accuracy/reliability of the decomposition process, and

use it to guide the fusion.

5. Experiments

In this section, after describing the details of model train-

ing in Sec. 5.1, we first analyze the advantages of specific

designs and key parameter settings in our approach (Subsec-

tion 5.2). Then, we demonstrate our superior performance

against the state-of-the-art (SOTA) algorithms on synthetic

(Subsection 5.3) and real data (Subsection 5.4).

5.1. Implementation Details

For model training, we gather 300 images from the Flickr2K

dataset for model training, ensuring wide applicability for

diverse natural scenes. Specifically, we select 20 common

commercial lenses and simulate their spatially varying PSF

using Zemax software. Then we simulate the lens aberra-

tion via convolving 100 high-definition (2K) images from

Flickr2K with the generated PSF and apply the successive

operations to train the model, including annular decomposi-

tion, ring-to-rectangle warping, patch cropping, etc. In total,

we actually obtained the sharp-blurry pair and PSF of 9200

(100 × 92) patches.

During model training, we adopt the Adam optimizer

with default parameters. The learning rate is initialized as

10−4, which is halved every 100 epochs. PyTorch code and

trained models are available on our project page.

5.2. Influences of the Key Parameters/Settings

Partitioning strategies. By capitalizing the rotational

symmetry of camera lenses, we employ annular partition-

ing to divide the image into a sequence of concentric rings,

where patches in each ring share a highly similar PSF after

warping into a stripe. This strategy substantially reduces

the spatial variance among PSFs across the field of view,

consequently reducing the required number of bases for ac-

curate PSF representation. The illustration and performance

of the proposed partitioning method are depicted in Fig. 4(a),

whereas Fig. 4(b) shows the counterpart of conventional grid

partitioning. From the middle row, one can notice the highly

consistent PSFs in the same annular ring in (a), in contrast

to the large PSF difference among the patches in (b).

We also compare the final performance of two partition-

ing strategies on the synthetic dataset. Remarkably, when

utilizing an equal number of bases (9 bases), the annular

splitting reaches an impressive PSF representation accuracy

of 0.93 and performs 30.16dB in the final reconstruction. In

contrast, the conventional grid splitting yields a largely lower

accuracy of 0.69 and the reconstruction achieves 27.77dB.

(a) (b)

Figure 4. Comparison between the annular partitioning in our

model (a) and conventional grid partitioning (b). Top row: the illus-

tration of partitioning. Middle row: the PSFs within the highlighted

regions in the top row, with the left one stretched to a rectangle.

Bottom row: the aberration compensation results with the same

number of bases (9 in our experiment).

Visually, we show an example in the 3rd row of Fig. 4, which

shows that annular partitioning exhibits noticeable advanta-

geous enhancement.

The number of annular rings. From the previous exper-

iment, we came to the conclusion that annular partitioning

is a better option. Further, we study the proper setting of

the number of concentric rings, which will directly affect

the amount of calculation and the precision of PSF repre-

sentation. Although increasing the number of split rings

can handle the radical difference of lens aberration better,

it also brings higher computational complexity. Hence, we

traverse several levels of radical division, i.e., the number of

annular rings to find a good balance between precision and

efficiency. The results are shown in Table 1, which shows

that for usual commercial lenses, the performance improve-

ment becomes marginal when the number grows beyond five.

Therefore, we compromised and chose to split into 5 rings

in our experiments.

Table 1. The performance at varying numbers of rings.

# of Rings Patch Size (pixels) Data Volume PSNR (dB) SSIM

3 214×214 75 29.12 0.914

5 128×128 92 30.96 0.952

7 92 × 92 132 30.99 0.953

9 72 × 72 160 30.91 0.950

The number of bases. We applied ONMF to obtain a low

dimensional representation of the lens aberration, i.e., PSF.

Intuitively, more bases provide a higher PSF representation

accuracy that helps the reconstruction but tends to increase

the ill-posedness of the decomposition network and the num-
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ber of required deconvolution modules, harming the final

performance as well as the running efficiency on the contrary.

Therefore, pursuing the optimal number of bases is of crucial

importance. As Tab. 2 shows, we test the performance with

different numbers of bases and obtain a good balance at 9

bases, with high quality and low computational complexity.

Table 2. The performances using different numbers of bases.

# of bases 5 7 9 11 13

SSIM 0.901 0.927 0.952 0.955 0.955

PSNR (dB) 28.14 29.12 30.96 31.01 31.00

Training time ˜9hrs ˜11hrs ˜12hrs ˜16hrs ˜18hrs

The applicability to various lenses. After determining

the optimal number of bases, we test on 5 low-end com-

mercial lenses (not included in the lens dataset) to verify

the generalization ability of our model. By calculating the

representation accuracy of the new lenses and the final lens

correction result in Fig. 5, we arrive at two conclusions: the

reconstruction quality is directly proportional to the accuracy

of PSF representation; our approach is widely applicable for

diverse lenses.

(a)

(b)

L
e

n
s
_

#
5

L
e

n
s
_

#
1

PSF Sample Our Compensation Results

Figure 5. Our performance on diverse lenses. (a) The representation

precision (horizontal axis) and their performance (vertical axis) on

5 test lenses, in terms of PSNR. Here the scattered box plot is drawn

from the compensation results of 20 test images synthesized from

the Flickr2K dataset. (b) PSF (left column) and our compensation

result (right column, with the bottom-left and top-right insets being

input and output respectively) of two lenses with the best and worst

performance in (a).

Balancing both effectiveness and efficiency, we empir-

ically divide the original low-quality images (1280×1280

pixels) into 5 concentric rings and select 9 bases (preserv-

ing an impressive 96.6% of the PSF variation in our lens

database) in the final implementations of our model, based

on the above quantitative experiment results.

5.3. Performance Comparison

We compare our approach with SOTA blind (DeblurGANv2

[17], MPRNet [26]) and non-blind (DPIR [12], DWDN [6])

deblurring methods, including both optimization-based and

CNN-based algorithms. The results are shown in Tab. 3 and

Fig. 6, from which one can observe the following trends:

(i) Blind deblurring algorithms generally exhibit good per-

formance in addressing motion blur problems, but in terms

of lens aberration correction, our approach performs better

than SOTAs and yields notably clearer images with finer

details and fewer artifacts. (ii) By employing our low-rank

PSF learning model, the PSF can be efficiently character-

ized, facilitating blind deconvolution to attain performance

on par with or even superior non-blind algorithms. Overall,

we achieve blind lens aberration correction, surpassing the

SOTA blind deblurring methods, and perform on par with

non-blind approaches.

Table 3. Quantitative performance comparison with SOTAs

DeblurGANv2 MPRNet Eboli’s DPIR DWDN Ours

Blind ? ✓ ✓ ✓ × × ✓

PSNR (dB) 23.04 28.67 29.42 31.86 31.78 30.96

SSIM 0.726 0.927 0.934 0.962 0.960 0.952

5.4. Real experiments
To test the performance on real data, we use several low-

end compact commercial cameras composed of a simple

lens to capture low-quality images and computationally raise

their visual quality with our model. Besides the results in

Fig. 1, we show two more examples in Fig. 7, with the

photo of the cameras in the left column, blurry input in the

2nd column, and the final reconstructed high-quality outputs

in the rightmost column. We also show the side-by-side

zoomed-in comparison of highlighted regions in the 3rd

column for better visualization. One can see that the details

in both the center and the periphery are recovered decently.

Also, the consistently improved quality validates the wide

applicability of the proposed approach to various lenses.

6. Conclusion

We have reported a versatile scheme capable of compen-

sating lens aberrations of various lenses in an end-to-end

manner and without model retraining or refinement. The

universality of our approach stems from two key designs:

Firstly, we incorporate the key physical properties inher-

ent in camera lenses, such as rotational symmetry and low-

dimensional structure after ring-to-rectangle warping; (ii)

we integrate a deep neural network to reverse the aberration

in a divide-and-conquer manner, i.e., decompose the low-

quality input into basic components corresponding to the

low-dimensional compositions of the aberration model, and
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(b) Our output

(a) Blurry input

(c) Blurry patches (d) DeblurGANv2 (e) MPRNet (f) DPIR (g) DWDN (h) Ours (i) Ground truth

Figure 6. Performance comparison with SOTA methods. (a) The input blurry image. (b) The result after aberration correction by our model.

(c-i) The comparison among the results produced by different SOTA algorithms (d-h), in contrast to the blurry input (c) and ground-truth

sharp version (i), with PSNR and SSIM scores presented in Tab. 3. Here we compare three ROIs, which are cropped from different locations

to demonstrate the performance on non-uniform lens aberrations. Note that (d-h) are blind compensation results and (f)(g) are non-blind.

(d) Output(b) Input (c) ROI performance(a) Experimental lenses

Figure 7. Results on real data captured by two compact cameras with a low-end lens. (a) The photo of two lenses, with the smaller one being

only around 1cm, which is highly portable but exhibits significant aberrations. (b)(d) Raw images captured using the cameras in (a) and the

results after compensation. (c) The zoomed-in view of the highlighted regions in (b) and (d), distinctly showcases the performance at both

regions closer to the center (red boxes) and toward the corners (yellow boxes) of the sensor‘s field of view.

then adopt pre-trained compensation modules to reconstruct

the high-quality image with high robustness. The proposed

approach offers high generalization ability to diverse lenses

and requires no expertise-demanding calibration. Moreover,

we achieve performance comparable to existing methods

with careful calibration and lens-specific model training.

So far, our experiments assume sufficient exposure and

high pixel count, but we acknowledge the potential for future

enhancements, such as accounting for more realistic noise

models and addressing other degradations like downsam-

pling. Looking ahead, we envision further advancements

of our model, focusing on the development of a lightweight

network and on-chip implementation. As computational

aberration compensation continues to progress, our method

serves as a promising step towards enabling practical and

cost-effective optical aberration correction for a wide range

of applications.
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