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Figure 1. We introduce a Bayesian Differentiable Physics (BPD) model for digitalizing real cloths by inferring their physical properties
from the standard Cusick drape data (a-1, b-1, c-1 left). The digitalized cloths exhibit various drapabilities, faithfully reflecting their
diverse mechanical characteristics and materials (a-1, b-1, c-1 middle and right). Further, our model enables the generalization of the
learned mechanical characteristics and materials to garments (a-2, b-2, c-2).

Abstract

We propose a new method for cloth digitalization. De-
viating from existing methods which learn from data cap-
tured under relatively casual settings, we propose to learn
from data captured in strictly tested measuring protocols,
and find plausible physical parameters of the cloths. How-
ever, such data is currently absent, so we first propose a
new dataset with accurate cloth measurements. Further, the
data size is considerably smaller than the ones in current
deep learning, due to the nature of the data capture pro-
cess. To learn from small data, we propose a new Bayesian
differentiable cloth model to estimate the complex material
heterogeneity of real cloths. It can provide highly accurate
digitalization from very limited data samples. Through ex-
haustive evaluation and comparison, we show our method
is accurate in cloth digitalization, efficient in learning from

*corresponding author, he wang@ucl.ac.uk

limited data samples, and general in capturing material
variations. Code and data are available1

1. Introduction
In the emergence of the Metaverse, being able to build dig-
ital replicas of specific real-world objects becomes highly
desirable. Despite many efforts to digitalize relatively sim-
ple objects such as rigid bodies [69], human bodies [31],
challenges still remain for objects with complex behaviors
such as cloth, fluid, and gases [48, 66, 76]. One particular
challenge is to digitalize cloths, which can greatly benefit
multiple application domains, e.g. customized fashion de-
sign, computer animation, textile manufacturing, etc.

The key to cloth digitalization is a model that can cap-
ture the complex physical behaviors of a given cloth (not

1https : / / github . com / realcrane / Bayesian -
Differentiable-Physics-for-Cloth-Digitalization
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cloths in general). Broadly speaking, existing research pro-
vides several potential avenues. Physics-based approaches
employ physics models that explicitly represent the ma-
terials of cloths. Replicating a specific cloth then comes
down to hand-tuning the material parameters [15] or solv-
ing an inverse problem [50, 74]. In parallel, in computer vi-
sion, data-driven approaches employ deep learning models
to learn the physical behaviors from data, without explicit
physics knowledge [42]. While the former requires labori-
ous hand-tuning and slow optimization, which is still diffi-
cult to replicate a given cloth [7], the latter requires large
amounts of data and still suffers from low accuracy when
it comes to mimicking specific cloth samples [30, 49]. Re-
cently, a combination of physics and deep learning, i.e. dif-
ferentiable physics, provides a new direction [28, 46, 50],
but the ability to replicate the exact physical behaviors of a
given cloth is still under-explored.

We argue that the foremost challenge in digitalizing spe-
cific cloth samples is the measurement accuracy in data.
Cloth materials and dynamics are subtle, calling for fine-
controlled data capture, where there is a notable difference
between current deep learning and the textile standards.
Compared with textile where variables are strictly con-
trolled, e.g. temperature, air moisture, current deep learning
learns from the data captured in far less controlled settings,
e.g. videos [10, 74]. Consequently the learned models are
merely sufficient for general motion prediction/simulation
[56, 78], and are far from being accurate for detailed simu-
lation, manufacturing, design [23, 26, 53]. We fill this gap
by employing Cusick drape testing under the British Stan-
dard [1] (Fig. 2). At the high level, Cusick drape testing
captures the cloth ‘drapability’ in images and uses them
to characterize the material. It is a vision-based approach
which is machine learning friendly and effective in describ-
ing the cloth physical properties [16, 18–22, 37, 38].

However, simply applying or adapting the existing meth-
ods [28, 47, 50, 64] on Cusick drape data is difficult. First,
while the latest differentiable physics methods often assume
cloths as homogeneous materials [28, 46, 50, 70], cloths are
heterogeneous materials: the mechanical properties in dif-
ferent parts of the same sample are different. In addition,
there exists dynamics stochasticity in cloth draping [60].
A deterministic and homogeneous model leads to averaged
behaviors hence inaccurate digitalizations. Next, black-box
deep learning methods cannot be used either, due to that
they need a large amount of data [64]. Collecting such data
is prohibitively time-consuming and labor-intensive for ac-
curate tests such as Cusick. This is why there are few public
datasets of Cusick drape, compared with hours of videos at
the disposal for deep learning. So we collect our own data,
but the data size is not even remotely close to videos [62].
Finally, a challenge in learning from Cusick drape is that a
standard tester (i.e. Cusick drape meter) only provides one

drape image (Fig. 2), i.e. no 3D geometry or motion, ruling
out the methods [62, 64] that require dynamics data.

To address the aforementioned data scarcity, dynamics
stochasticity and material heterogeneity, we propose a new
Bayesian learning scheme. Starting from the joint prob-
ability of a Cusick drape image and the initial state, we
model the stochastic draping motion as a series of proba-
bilistic state transitions, with the learnable physical param-
eters as latent variables. Due to data scarcity (i.e. one im-
age per drape), inferring the latent variables is a formidable
task. Therefore, we propose a new differentiable heteroge-
neous cloth model to govern the dynamics of the draping,
and incorporate randomnesses in the material parameters to
account for the draping stochasticity. Owning to its high
sample efficiency, our model can learn from extremely lim-
ited data (i.e. merely one image) of a draping sample. Fur-
thermore, to account for the within-type material variations,
we impose learnable posterior over the material parameters,
leading to a new Bayesian differentiable cloth model, which
can learn distributions of plausible physical parameters. Not
only does it explicitly model the draping stochasticity, it
also enables us to transfer the learned material to arbitrary
geometries such as garments.

We show that our method is accurate in replicating
highly plausible cloth mechanical behaviors, efficient in
training with limited data, and general in capturing mate-
rial variations. Further, the digitalized cloths can be used to
simulate garments made from different materials displaying
distinguishable mechanical characteristics. Since there is no
existing deep learning method designed for similar tasks,
we compare our method with possible alternative solutions
including different cloth models and optimization methods.
Formally, our contributions include: (1) a new method for
cloth digitalization based on limited Cusick drape data, (2)
a new Bayesian differentiable cloth model to enable accu-
rate digitalization, and (3) a new dataset collected from the
Cusick drape testing.

2. Related Work
Cloth Digitialization aims to create digital replicas of
specific cloth samples. Broadly speaking, there are three
approaches: supervised learning, self-supervised learning,
and physical parameter estimation. Supervised learning
mimicks cloth dynamics by learning from cloth [30, 59],
which requires a huge amount of training data and often
suffers from low generalizability in unseen environments or
materials [73]. This is because this type of methods encodes
little physics and entirely relies on data. By contrast, self-
supervised learning explicitly considers cloth physics and
does not rely on data [5, 65]. However, this method usu-
ally employs simplified physics models and therefore suf-
fers from issues such as over-smoothing and penetrations
that are difficult to solve [6]. Also, both approaches are de-
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(a) Tester (b) Initial State (c) Drape State (d) Capturing (e) Raw Photo (f) Silhouette

Figure 2. Cusick drape testing. The Tester, i.e. Cusick drape meter, has an inner support panel (blue), an outer support panel (red) and a
frosted glass lid (green). A round cloth sample is first laid flat on the support panels (light blue in Initial State). Then the outer support
panel is lowered to allow the cloth to naturally drape (Drape State). Next, the glass lid is closed so that the light source at the bottom can
project the cloth to the lid which is recorded by a camera at the top (Capturing). Finally, the cloth Silhouette is extracted from the Raw
Photo. The whole drape meter is in a black chamber so the testing process is not observable. Due to patent restrictions, the images are
rendered, not the real device.

signed to capture general behaviors of cloths, rather than
replicating specific cloth samples.

Physical parameter estimation aims to infer the cloth
simulation parameters so that it can reproduce the dynam-
ics of real cloths. Compared with the aforementioned ap-
proaches, this method is the closest to building the exact
digital replicas of specific cloth samples. Both model-free
and model-based methods are proposed in this approach.
Model-free methods learn a mapping function between the
observed cloths and the physical parameters without ex-
plicitly modeling any physics [10, 39, 78]. Model-based
methods employ physics models and optimize the simu-
lation parameters to minimize the difference between the
simulation and the observations. While model-free meth-
ods are simple to implement, they are data demanding
and collecting real cloth data is usually prohibitively time-
consuming. By contrast, model-based methods have out-
standing data efficiency [17, 55, 74]. Recently, one line of
model-based methods called differentiable cloth simulation
has demonstrated high learning accuracy and convergence
speed [28, 46, 50]. These methods leverage fully differen-
tiable cloth simulators and gradient-based optimization to
estimate the parameters. However, they need to learn from
3D geometries which are usually difficult to accurately cap-
ture. [36] uses a differentiable renderer [41, 51] so that it
can learn from 2D images. However, the digitalized cloths
are still significantly different from the real ones.

Our method falls into the category of differentiable cloth
models. However, we argue that one common issue in ex-
isting research is the data accuracy. Cloth mechanical be-
haviors are affected by the environment, e.g. temperature
and air moisture [8]. Therefore, the casual data collection
setups employed in existing research do not actively con-
trol these factors. Further, since fabric testing has widely
recognized standards [17], we argue standard apparatuses
and protocols should be used. In addition to the data accu-
racy, we argue that the current differentiable cloth models

are overly simplified. To be able to digitalize specific cloth
samples, the physics model should explicitly consider ma-
terial heterogeneity and behavioral stochasticity, due to the
wide range of materials used in fabrics [27, 63].

To resolve these problems, we introduce a new accu-
rate drape dataset which is collected following widely ac-
knowledged standards [20–22]. Moreover, we propose a
novel Bayesian differentiable cloth simulator that can more
accurately digitalize real cloth behaviors by modeling the
material heterogeneity and dynamics stochasticity through
Bayesian inference with outstanding data efficiency.

Physics-based Deep Learning. Our research can be seen
as a part of recent attempts to leverage deep learning
to solve differential equations, which has spiked research
interests to address issues such as noise modeling, fi-
nite element mesh generation and high dimensionality [4,
40, 52, 54]. Deep Neural Networks (DNNs) can learn
to generate Finite Element meshes for steady state prob-
lems [81, 82]. Also, they can be part of Partial Dif-
ferential Equations (PDEs) for purposes such as reduced-
order modeling [32, 67], noise estimation [77] and differ-
entiable simulation [28, 34, 79, 80]. Further, DNNs can
replace PDEs completely in physics-informed neural net-
works (PINNs) [61, 68] where the process of solving PDEs
is replaced by inference on trained DNNs. Different from
existing work, we propose a Bayesian differentiable physics
model for fabrics to explicitly digitalize their stochastic me-
chanical properties.

3. Methodology

3.1. Cusick Drape Test

Our Cusick drape meter comes with a chamber within
which there are two support panels and one frosted glass
lid (Fig. 2a). During testing, we first cut a cloth sample
into a round shape (Fig. 3(a)) and pin its center to the cen-
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30cm

(a)

(b)

Figure 3. (a) A circular (diameter=30cm) cloth sample for Cusick
drape test. (b) Cloth sample mesh has 2699 vertices, 7924 edges
(7754 bending edges), and 5226 faces. A bending edge (high-
lighted in orange) is shared between two adjacent triangles, so the
edges highlighted in blue (the boundary) are not bending edges.

ter of the blue panel in Fig. 2a (diameter is 18cm), shown
in Fig. 2b. Then we lower the transparent panel (the red
panel in Fig. 2a) and let the cloth naturally drape until the
transparent panel does not contact with the cloth (Fig. 2c).
Finally, an image I ∈ {pix ∈ Z : 0 ≤ pix ≤ 255}L×L

(Fig. 2e) is taken by a DSLR camera from the top (Fig. 2d).
To minimize possible external perturbations such light in-
terference, the chamber is closed when capturing.

3.2. A Bayesian Model for Cusick Drape

We discretize a cloth sample into a triangular mesh with v
vertices (Fig. 3(b)). Then we define the sample’s state as
St = {xt, ẋt} where xt ∈ R3v and ẋt ∈ R3v are the ver-
tex position and velocity respectively at time t. Therefore,
a draping motion with discretized time is S0:n = {St : t ∈
Z+; t ≤ n}, with a time step size h. Since we only ob-
serve the final image I and the initial state S0, their joint
probability p(I,S0) =∫

· · ·
∫
p(I|Sn, τ)

n−1∏
i=0

p(Si+1|Si, τ)p(τ)dS1:ndτ (1)

where we introduce two sets of latent variables, τ and S1:n.
τ is the physical parameters. S1:n is the intermediate states
of the draping motion which we cannot directly observe.
Since the draping is a physical process, it is reasonable to
assume St is only affected by St−1 and τ (Markov assump-
tion). Additionally, the captured image I is only decided by
the final state Sn.

Eq. (1) is not easy to estimate due to two challenges.
First, unlike the prior works which depend on dense ob-
servations on the intermediate state transitions [78] to esti-
mate p(Si+1|Si, τ), Cusick drape testing does not capture
the cloth sample’s motion. Also, we do not observe the full
Sn, but only its (simplified) 2D representation I.

To this end, we assume two deterministic mappings can
be established for p(Si+1|Si, τ) and p(I|Sn, τ). The de-
terminism assumptions are reasonable as p(Si+1|Si, τ) can

be seen as a quasi-deterministic physical process, subject
to minor system stochasticity which is largely mitigated by
the rigorous control of Cusick settings. p(I|Sn, τ) can be
seen as a rendering process studied in computer graphics.
Here we are mainly interested in the silhouette, following
the practice in textile in Cusick drape analysis [16]. There-
fore, we replace p(Si+1|Si, τ) with a state transition func-
tion Si+1 = s(Si, τ) where s is a deterministic function
then p(Si+1|Si, τ) = p(s(Si, τ)|Si, τ) = 1. Similarly,
p(I|Sn, τ) = p(r(Sn)|Sn, τ) = 1 where r is a rendering
function. Therefore, Eq. (1) is transformed to:

p(I,S0) =

∫
p(r(s . . . s︸ ︷︷ ︸

n

(S0, τ)))p(τ)dτ (2)

Given an initial state S0 and the observations D =
{I1, I2, . . . }, we maximize p(I,S0) which is equiva-
lent to finding the posterior distribution of cloth mate-
rial parameters: p(τ |D) ∝ p(D|τ)p(τ) = p(D|r ◦ s ◦
s . . . s(S0, τ))p(τ) = p(D|Î)p(τ) where the composite
function Î = r ◦ s ◦ s . . . s(S0, τ) is deterministic. Overall,
the corresponding Probabilistic Graphical Model (PGM) is
illustrated in Fig. 4 a.

3.3. Model Specification

To infer p(τ |D), we need to instantiate s and r. For r, we
use differentiable renderer DIR-B [14]. Given a final draped
state Sn which is a 3D mesh, and the virtual camera pose,
DIR-B converts it to a 2D image. We set up the virtual
camera pose (relative to the cloth drape) according to the
real camera in our Cusick drape meter, so that the images
captured in the Cusick drape test can be directly used as
training data. Additionally, we only use drape silhouettes
and ignore other information such as textures. This is be-
cause it is less reliable during capture and irrelevant to cloth
drapability [20–22].

3.3.1 A Bayesian Differentiable Cloth Model

The instantiation of s is more complex than r. We pro-
pose to use a differentiable cloth model for s so that we
can use back-propagation for learning. Unlike the previous
differentiable models, we also want to account for the ma-
terial heterogeneity, and dynamics stochasticity. Therefore,
we build a stochastic heterogeneous model, where we coin
the term Bayesian differentiable cloth model. We give the
key equations below and leave the details in the supplemen-
tary material (SM). By using implicit Euler method [3], the
physical governing equation is defined as:(

M− h
∂f

∂ẋ
− h2

∂f

∂x

)
∆ẋ = h

(
Ft−1 + h

∂f

∂x
ẋt−1

)
(3)

where M is the general mass matrix, function f takes as
input the vertex position x and velocity ẋ to compute the

11844



Figure 4. (a) The Probabilistic Graphical Model (PGM) of our Bayesian Differentiable Simulator. (b) Model overview. The physical
parameters (stretching stiffness, bending stiffness) are first drawn from their learnable posteriors. Then the parameters and the cloth initial
state are fed to a differentiable cloth simulator to run and predict cloth’s final state Sn = {xn, ẋn}. The cloth in the final state is passed
to a differentiable renderer. The rendered cloth silhouette is compared with the ground truth to compute the loss for back-propagation to
update the parameters in the posteriors.

resultant force F: Ft−1 = f(xt−1, ẋt−1) where Ft−1 is
the resultant force at time t − 1. The resultant force con-
sists of all the internal and external forces: F = Fgravity +
Fhandle+Fstretch+Fbend. Fgravity is simply gravity and
Fhandle is the force for pinning and supporting a cloth sam-
ple, e.g. simulating the inner support panel (Fig. 2a).

Deviating from previous methods [28, 50], we model a
material variation across the mesh which is discretized by fi-
nite elements. This allows us to localize the learning to each
element, i.e. making the learning of Fstretch and Fbend de-
pendent on local deformation. The stretching force [72] on
face j is:

F
(j)
stretch = −A(j)

 ∑
m∈(uu,vv,uv)

σ(j)
m

(
∂ε

(j)
m

∂xi

) (4)

where A(j) is the rest area of the mesh face j, ε(j) de-
notes the stretching strain, and the stretching stress σ(j)

m =

C(j)ε
(j)
m where the stretching stiffness C(j) ∈ R6×4. The

subscripts uu, vv, and uv denote strain/stress along cloth
warp/wale, weft/course and diagonal direction respectively.
Further, the bending force on a bending edge w (Fig. 3) is
defined as:

F
(w)
bend = B(w) |e(w)|

ψ
(w)
1 + ψ

(w)
2

sin(
γ(w)

2
− γ̄(w)

2
)ui (5)

where B(w) ∈ R3×5 is the bending stiffness, |e(w)| is the
rest length of the bending edge, ψ(w)

1 and ψ
(w)
2 are the

height of the two triangular faces sharing the edge w. γ(w)

and γ̄(w) are the current and the rest dihedral angles be-
tween two faces [71]. Refer to [11] for the u’s. Overall,
the learnable parameters τ = {C,B} is high dimensional
(elaborated in the SM).

Now we replace the deterministic mapping s in Eq. (2)
by solving Eq. (3) forward in time, so that Eq. (2) considers
physical parameter variation. The prior p(τ) (Eq. (2)) is

used as a belief of the parameter distribution and a posterior
p(τ |D) is learned through inference.

3.4. Model Inference

Directly estimating p(τ |D) is computationally intractable.
We adopt variational inference [33] to seek an variational
distribution qθ(τ) parameterized by θ, to approximate the
true posterior p(τ |D) by minimizing the Kullback-Leibler
divergence between them:

θ = argmin
θ

DKL(qθ(τ)∥p(τ |D))

= argmin
θ

Eqθ(τ)

[
log qθ(τ)− log

(
p(D|τ)p(τ)

p(D)

)]
= argmin

θ
Eqθ(τ)[log qθ(τ)− log p(D|τ)p(τ)] + log p(D)︸ ︷︷ ︸

const
≡ argmin

θ
Eqθ(τ)[log qθ(τ)− log p(D|τ)p(τ)]︸ ︷︷ ︸

L(θ|D,τ)

(6)

Calculating L(θ|D, τ), the negative evidence lower bound,
is computationally prohibitive. So we approximate it by
Monte Carlo sampling:

L(θ|D, τ) ≈
m∑
i=1

(
log qθ(τi)− log p(D|τi)p(τi)︸ ︷︷ ︸

l(θ,τ)

)
(7)

where τi denotes the ith Monte Carlo sample from the
variational posterior distribution qθ(τ). Moreover, we as-
sume that the cloth physical parameters are distributed as
a Gaussian τ ∼ N (µ,Σ) where Σ is a diagonal matrix.
To enable stochastic gradient back-propagation, we adopt
the re-parameterization trick [9, 44] to sample physical pa-
rameters τ = t(ϵ, θ) by shifting a stochastic parameter-
free noise ϵ ∼ N (0, I) through the deterministic function
t(ϵ, θ) = µ + log (1 + exp(η)) ⊙ ϵ where variational pa-
rameters θ = {µ, η}. Consequently, the variational distri-
bution qθ is sought within the Gaussian family and the prior
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p(τ) is an isotropic Gaussian distribution with fixed param-
eters. Additionally, the output distribution is also a Gaus-
sian N (µI , σ

2) whose mean depends on predicted image Î,
i.e. µI = Î. The variance, σ2, is fixed and used to control
the tolerance to residual error. Therefore, the negative log
likelihood − log p(D|τ) is:

−
L∑

i=1

L∑
j=1

log

[(
1

2πσ2

) 1
2

e−
1

2σ2 (Iij−Îij)
2

]
(8)

which is essentially proportional to the Mean Squared Error
(MSE). In back-propagation, the gradients of the variational
distribution parameters are calculated by[9]:

∂l(θ, τ)

∂µ
=
∂l(θ, τ)

∂τ
+
∂l(θ, τ)

∂µ
(9)

∂l(θ, τ)

∂η
=
∂l(θ, τ)

∂τ

ϵ

1 + e−η
+
∂l(θ, τ)

∂η
(10)

The training/inference algorithms are detailed in the SM.

3.5. Implementation

Our differentiable cloth simulator is implemented in Py-
torch’s C++ frontend [58]. We exploit vectorization and
CUDA GPU parallel computing for fast simulation and
learning (in the SM). We use Eigen’s sparse solver [29] to
solve the governing equations Eq. (3). To reduce the mem-
ory consumption, we use sparse matrices whenever possi-
ble. Moreover, we do in-place gradient update for every
time step for back-propagation, so our memory usage does
not increase with simulation steps [13]. We use the Kaolin
differentiable rendering package [35] for image rendering.

4. Data Collection
The Cusick drape data is collected following the BS EN
ISO 9073-9:2008 [1]. In every test, the warp/wale and
weft/course directions are aligned across samples to ensure
the same initial condition. In addition, we are able to recon-
struct the 3D meshes of cloth drapes thanks to our patented
drape meter. However, the 3D data are mainly for eval-
uation and the silhouette images are for learning. This is
because not every Cusick drape meter can reconstruct 3D
meshes out of cloth drapes. Being able to learn from the 2D
silhouette images only is crucial in making our method ap-
plicable in real-world settings. In addition, we also measure
the sample weight and calculate the average area density
ρ = (

∑i=1
i<13mi)/(12πR

2) wheremi denotes the measured
weight of cloth sample i and R = 0.15m. We also measure
the thickness and include them in our dataset (refer to SM).

5. Experiments
Due to the nature of limited data, we conduct our experi-
ments on small datasets. We use 5 representative types of

cloths (each with 12 samples) that exhibit visually distin-
guishable drapability. For convenience, we name cloths as
“material color”, e.g. Cotton Blue, Cotton Pink. To digi-
talize a cloth, we randomly select 1 out of 12 samples for
training to learn their parameter distributions. During learn-
ing, we run 100 steps (n = 100) for the forward simula-
tion, with time step size h = 0.05s and the total time lapse
is 5s. To qualitatively evaluate the digitalization, we sim-
ulate garments made from different digitalized cloths and
visually compare the simulated garments with their corre-
sponding real cloths. To evaluate the model (i.e. drape
fitting), we employ several metrics. For fitting capabil-
ity, we use mean squared error (MSE) between the fitted
and the ground truth drape images. We also use Haus-
dorff distance (H.Dis) between the simulated 3D mesh and
the ground-truth (GT) mesh. Further, we use radius-angle
graph (Fig. 8a) [43] which is widely adopted for describing
Cusick drape waves and comparing drape shapes. As gen-
eralization, we also test if our model learned on one sample
can predict the physics of unseen cloth samples of the same
type. https://youtu.be/ProN0y1bURY has more
visual results.

5.1. Cloth Digitalization for Garments

Our model can digitalize real cloths for garment simulation,
by sampling from the learned parameter distributions. We
show three representative cloths (Fig. 1 (a-1, b-1, c-1)) with
distinctive silhouette and 3D drape shapes due to their di-
versified drapability. Given a skirt geometry, we sample
from the learned parameter distributions for the stretching
and bending stiffness for each mesh triangle for simulation,
shown in Fig. 1 (a-2, b-2, c-2). Within each cloth, both
static (left) and dynamic (right) drapes are shown. Visually,
the drapability of the skirts are similar to their correspond-
ing cloths above. For instance, the Viscose White has a
small drape shape because it is heavy and soft (small bend-
ing stiffness). By contrast, the Wool Red has a much larger
drape shape because it is thick and stiff (large bending stiff-
ness). Correspondingly, the simulated Wool Red skirt looks
wider in the static and has larger folds in motions. Here,
being able to learn the possible distributions of physical pa-
rameters enables us to apply the learned material to gar-
ments with arbitrary geometries.

Apart from cross-material differences, our Bayesian Dif-
ferentiable Physics (BDP) can also capture the material het-
erogeneity and dynamics stochasticity within the same cloth
type. Fig. 5 left shows the simulated skirts made from the
same three cloths as in Fig. 1. Three sets of parameters are
sampled for each cloth type and we also show the silhouette
of the drape of the skirt in Fig. 5 right. Within each cloth
type, the material heterogeneity and dynamics stochasticity
can be observed in both the 3D drapes and the 2D silhou-
ette, while the overall distributions of them across types are
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Figure 5. Given the digitialized cloths, our BDP model can sim-
ulate the skirts made from these cloths and reflect cloth material
heterogeneity and draping stochasticity.

significantly different each other. This shows BDP captures
both the cross-material and within-type heterogeneity, and
dynamics stochasticity well.

5.2. Comparison

Alternative Cloth Models To our best knowledge, there
is no similar method designed for exactly the same setting
as ours. We therefore adopt [50] the closest methods as
baselines because their method can also digitalize cloth by
learning cloth physical parameters, albeit only taking sim-
ulation data as input. Since they only model homogeneous
material, we refer to their model as HOMO. Further, we
augment their model by making the cloth physical parame-
ter learning element-wise, to enable learning heterogeneous
materials. We call this model HETER for short. Both
HOMO and HETER are deterministic models. So we use
MSE as the loss function: L(τ) =

∑L
i=1

∑L
j=1(Îij−Iij)2,

for training. For comparison, we train HOMO and HETER
with the same data (1 for training and the rest 11 for testing)
as BDP. For BDP, we draw parameters from the learned pa-
rameter distributions for 1000 times and run Cusick drape
simulations. Then, we select the best result to calculate the
MSE and H. Dis.

As shown in Tab. 1 (and the corresponding rendered
cloths in Fig. 7), our BDP outperforms HOMO and HETER.
Visually, our method not only can accurately fit the training
sample (Fig. 6 (b)), but can also predict the testing sam-
ple (Fig. 6 (f)), demonstrating that our model can capture
cloth within-type variations. Unsurprisingly, HOMO and

Metrics HOMO HETER BDP

Avg MSE 5.72× 10−2 5.51× 10−2 3.84× 10−2

Avg H. Dis 3.40× 10−2 3.28× 10−2 2.17× 10−2

Table 1. MSE and H. Dis (meter) of HOMO, HETER and BDP.

Figure 6. (a), (b), (e), and (f) show that BDP can fit the train-
ing sample and generalize to the unseen testing samples. By con-
trast, the learned drape shapes by HOMO (c) and HETER (d) are
different from the testing sample. As such, only BDP can cap-
ture/reproduce cloth within-type variations and is superior in cloth
digitalization. Additionally, by modeling material heterogeneity,
HETER fit the training sample more accurately than HOMO.

Figure 7. The rendered drape shapes in Fig. 6.
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(a) An example of draping radius

(b) Clustered drape radius

Figure 8. (a): an drape radius-angle graph illustrates the varied
radius of an draped cloth sample’s boundary w.r.t. angle [43]. (b):
the ground truth from five real cloth samples (top) and the simu-
lated 1000 samples from our BDP (bottom) for the corresponding
samples. It demonstrates our trained BDP models can distinguish
different cloths and are not overly generalized.

HETER are deterministic models and can only learn from
and reproduce the training sample. Furthermore, compared
with HOMO, HETER fits the training sample better and
this demonstrates the importance of modeling cloth mate-
rial heterogeneity. However, HETER alone is inadequate
for cloth digitialization because the estimated physical pa-
rameters are tied to the sample geometry and it is difficult
to generalize it to garments. Although HOMO can theo-
retically generalize to garments, it can only simulate the
material specific to the training sample, not being able to
generalize to similar materials within the same cloth type.

Although BDP can learn within-type material variations
(Fig. 6), one question is whether it overly generalizes, i.e.
unable to distinguish different cloth types. To this end, we
use radius-variation [43] to demonstrate that BDP does not
overly generalize. In Fig. 8b, the top figure shows that the
five real cloth samples have distinctive drape shapes. The
bottom figure shows the drape shapes of samples from our
BDP which largely follow the same patterns as the ground
truth. For example, Wool Red is obviously stiffer than Vis-
cose White, as shown in the Ground Truth. Likewise, it is
also observed in our BDP’s simulation at the bottom. Refer
to the SM for more results.

Alternative Learning Methods While our method is
built on differentiable physics models for learning, i.e.

Metrics BDP REMBO HeSBO

Avg MSE 4.52× 10−2 6.03× 10−2 5.90× 10−2

Avg H. Dis 2.01× 10−2 4.25× 10−2 4.35× 10−2

Table 2. The average MSE and H. Dis of ours, REMBO, and
HeSBO optimizer. The results shows that our gradient-based opti-
mization achieves better results.

derivative-based optimization, the traditional methods
widely used in material science and physics are usually
based on derivative-free optimization. So we also compare
different learning strategies. Bayesian Optimization (BO)
is a representative derivative-free optimizer which usually
uses the Gaussian Process to approximate an unknown op-
timized objective function [12, 25]. However, the perfor-
mance of vanilla BO drops drastically when the number of
parameters is above 20 [24, 45]. There are over 200,000
parameters in the HETER cloth model. So we employ Ran-
dom Embedding Bayesian Optimization (REMBO) [75]
and Hashing-enhanced Subspace Bayesian Optimization
(HeSBO) [57] as baselines. We use BoTorch’s [2] REMBO
and HeSBO implementation and compare them with our
BDP. Given the same drape silhouette, we run our method
1000 epochs (gain the best optimization result within 200
epochs), and the REMOB and HeSBO for 500 trials. Tab. 2
shows that, our derivative-based method is better with fewer
optimization steps. More results can be found in the SM.

6. Conclusion and Future Work
We have proposed a new method for cloth digitalization
by estimating detailed cloths physical properties. To our
best knowledge, this is the first Bayesian differentiable cloth
model that can work seamlessly with standard Cusick drape
data. Our model has been proven to be highly accurate and
generalizable. Despite focused on cloth digitalization, we
believe BDP as a framework has the potential to generalize
to more generic digitalization tasks and itself is a method-
ological extension of current DP research in computer vi-
sion. Compared with black-box deep learning methods, our
limitation is that it requires prior knowledge of the underly-
ing physics and cannot simply plug and play on data. How-
ever, we argue that this is a reasonable trade-off when data
collection is expensive and slow. In future, we plan to model
more dynamics stochasticity, e.g. buckling, and also com-
pare our simulated garments with real ones by using accu-
rate motion capture and 3D reconstruction systems.
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