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Abstract

Sign Language Translation (SLT) is a challenging task
that aims to translate sign videos into spoken language. In-
spired by the strong translation capabilities of large lan-
guage models (LLMs) that are trained on extensive multi-
lingual text corpora, we aim to harness off-the-shelf LLMs
to handle SLT. In this paper, we regularize the sign videos
to embody linguistic characteristics of spoken language,
and propose a novel SignLLM framework to transform sign
videos into a language-like representation for improved
readability by off-the-shelf LLMs. SignLLM comprises two
key modules: (1) The Vector-Quantized Visual Sign module
converts sign videos into a sequence of discrete character-
level sign tokens, and (2) the Codebook Reconstruction
and Alignment module converts these character-level tokens
into word-level sign representations using an optimal trans-
port formulation. A sign-text alignment loss further bridges
the gap between sign and text tokens, enhancing semantic
compatibility. We achieve state-of-the-art gloss-free results
on two widely-used SLT benchmarks.

1. Introduction

Sign languages, which are visual signals expressed through
hand, body, and facial movements, serve as the primary
means of communication within the hearing-impaired com-
munity. In an effort to facilitate effective communication
with this community, much attention has been directed to-
wards developing techniques to tackle the Sign Language
Translation (SLT) task [10, 11, 69, 72, 73], where the goal
is to translate sign videos into spoken language. SLT is a
challenging task that requires cross-modality understanding
of visual and linguistic cues [69, 72, 73], and the challenge
is exacerbated by the limited availability of paired sign-text
data [11, 13, 68, 69, 72]. Despite the notable advancements
in terms of network architectures [10, 11, 37], visual sign
representations (e.g., with keypoint estimators [14, 74]),

† Equal contribution; ‡ Corresponding author

and training methods [22, 69, 72], how to effectively tackle
the challenging cross-modal SLT task with limited paired
sign-text data largely remains an open question.

On the other hand, large language models (LLMs) – re-
ferring to language models that have been trained on a large
web-scale text corpus – have recently received a lot of at-
tention. Since LLMs are trained over a very large cor-
pus across multiple languages with distinct syntax and lex-
icon, they possess rich semantic understanding and pow-
erful linguistic abilities [9, 15, 58]. At the same time,
LLMs have also demonstrated an impressive capability to
translate across multiple languages [9, 15], even showing a
strong potential for translating languages with limited data
[66, 76]. The foundation for this translation proficiency
lies in the shared linguistic properties of syntax, lexicon,
and morphology that many languages hold, which is par-
ticularly evident within language families [3]. Therefore,
when faced with a new language with limited data, LLMs
can draw upon the wealth of knowledge acquired from pre-
viously learned languages, leveraging any shared properties
of syntax, lexicon and morphology with previous languages
to effectively generate translations for new languages with
remarkable accuracy and fluency [66, 76].

Inspired by the impressive translation capabilities of
LLMs, we aim to harness off-the-shelf LLMs to handle
the challenging SLT task. However, training LLMs di-
rectly on the relatively small SLT dataset can potentially
lead to forgetting of their rich knowledge [12, 29] and a de-
cline in performance, thus we follow previous LLM-based
works [24, 43, 54] to keep the off-the-shelf LLM frozen,
which preserves the rich knowledge acquired during its pre-
training on a vast multilingual corpus. Consequently, our
focus shifts towards making the sign videos compatible and
readable for the off-the-shelf and frozen LLM to perform
SLT. Specifically, in this paper, we explore the following
question: Can we treat the sign video as a form of language,
and leverage an off-the-shelf and frozen LLM to translate
them? Notably, this is not a straightforward task because di-
rectly encoding features from sign videos with a pre-trained
feature extractor [28, 64] will result in a large gap between
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the sign video features and text tokens, making it difficult
for off-the-shelf LLMs to understand them.

Based on the observation that LLMs can effectively han-
dle new languages by leveraging shared commonalities with
previously learned languages, we aim to introduce designs
that transform our sign videos into a language-like format
which are readable and friendly to LLMs. Specifically, we
hypothesize that providing language-like representations of
sign videos to the LLM improves the LLM’s understand-
ing of the sign videos and facilitates greater exploitation of
shared properties with previously learned languages, thus
resulting in better SLT performance by the LLM. To obtain
language-like sign video representations, we draw inspira-
tion from linguistic studies and analyses on LLMs [30, 63]
and regularize the sign video to embody two fundamen-
tal language-like characteristics: Discrete Characteristics:
Spoken languages are inherently discrete, since each lan-
guage contains a finite set of words (and subwords) that
convey distinct concepts, allowing them to be naturally rep-
resented through a discrete vocabulary with distinct tokens
[8, 59]. Hierarchical Structure: Most spoken languages
exhibit three hierarchical semantic levels – the sentence,
word, and character levels [36, 52]. This hierarchical struc-
ture enables languages to express a wide range of words
with a limited set of characters, and convey diverse sen-
tences with a limited number of words.

In this paper, we present SignLLM, a novel framework
designed to regularize input sign videos to produce sign to-
ken representations with language-like characteristics that
are compatible and friendly to LLMs. Our proposed Sign-
LLM includes two key designs to impart discrete charac-
teristics and a hierarchical structure to the produced sign
tokens. Firstly, we introduce the Vector-Quantized Visual
Sign (VQ-Sign) module that facilitates the conversion of
sign videos into a sequence of discrete character-level sign
tokens. To achieve this, the VQ-Sign module consists of a
discrete character-level sign codebook which is optimized
through a self-supervised context prediction task. Next,
we introduce the Codebook Reconstruction and Alignment
(CRA) module that converts the character-level sign tokens
into word-level sign tokens, facilitated by an optimal trans-
port formulation. Moreover, we employ a sign-text align-
ment loss to further narrow the gap between the sign tokens
and text tokens. These designs enable SignLLM to produce
sign sentences that embody two key characteristics of spo-
ken languages: discrete characteristics and a hierarchical
structure, which enhances their compatibility with LLMs
and makes them more readily interpretable by LLMs.

After producing the language-like sign sentences, we
feed them into an off-the-shelf and frozen LLM along with a
text prompt that instructs the LLM to generate translations
in the desired language. We empirically observe that, by
employing our SignLLM’s designs to align sign videos with

languages, we can already leverage a frozen LLM to attain
state-of-the-art SLT performance. These findings suggest
that our proposed SignLLM framework is a promising first
step towards effectively harnessing LLMs for SLT. We hope
our initial explorations can inspire future work within the
community to leverage LLMs for SLT.

In summary, our main contributions are: (1) We pro-
pose a novel SignLLM framework that is the first to har-
ness the power of off-the-shelf and frozen LLMs for SLT.
(2) To make the input sign video compatible with LLMs,
our SignLLM framework incorporates two designs: a VQ-
Sign module to quantize the sign video into a sequence of
discrete character-level sign tokens and a CRA module that
transforms the character-level sign tokens to word-level sign
tokens. (3) Through our proposed designs, we achieve state-
of-the-art gloss-free results on two popular SLT datasets.

2. Related Work
Sign Language Translation (SLT) aims to transform sign
videos into natural language sentences. It is a challeng-
ing task that requires understanding of both visual and
linguistic cues [69, 72, 73], and the challenge is exacer-
bated by the limited availability of paired sign-text data
[11, 13, 68, 69, 72] which limits the performance of SLT
methods. To improve SLT performance, many previous
works [10, 11, 14, 22, 34, 35, 37, 56, 68, 69, 72, 74] aim
to enhance the visual sign representations and text decoding
capabilities of SLT methods. Some works propose deep ar-
chitectures based on RNNs [10, 35], GCNs [34], and Trans-
formers [11, 37, 62, 68]. Other approaches include intro-
ducing a keypoint estimator to enhance the visual sign rep-
resentation [14, 35, 56, 74], introducing pre-training tasks
[22, 72], or jointly modelling several SLT-related tasks [69].
Some works also introduce larger datasets (e.g., How2Sign
[20] and BOBSL [1]), which present a huge challenge with
their large sign and text vocabularies. Besides, some re-
cent works [67, 72] focus on the gloss-free setting – these
works do not use sign gloss annotations for training, which
reduces the cost of training SLT models, and our work also
falls into this category. In contrast to existing works, we
aim to harness the capabilities of off-the-shelf and frozen
LLMs to perform SLT, by regularizing the sign videos into
a language-like representation and prompting the LLM to
generate text of the desired language.

Large Language Models (LLMs) refer to language
models that have been trained extensively on a very large
web-scale text corpus. LLMs have shown impressive text
generation capabilities, attracting a lot of attention recently
[21, 49, 71]. In particular, since LLMs have been trained on
large amounts of text data, they demonstrate strong general-
ization capabilities across various text-based tasks, includ-
ing code generation [51], open-domain question answering
[75], and multilingual translation [9, 15]. Inspired by the re-
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Figure 1. An overview of our SignLLM framework. During inference (top): Given an input sign video X , we first pass it through
our VQ-Sign module to obtain a sequence of discrete character-level sign tokens Ẑ. Our VQ-Sign consists of a visual encoder Ev to
extract compact features and a character-level sign codebook Sc for quantization to obtain Ẑ. Next, we feed Ẑ into our CRA module,
which reorganizes Ẑ by replacing short sequences of character tokens with word-level tokens via the word-level codebook, e.g., character
sequence [s2, s3, s4] to word s2s3s4. This transforms the sign video data to a language-like sign sentence W , which is fed into the LLM
along with a text prompt which guides the LLM to generate translations in the desired language. During training (bottom): We optimize
VQ-Sign and its discrete sign codebook via a context prediction task, which seeks to recognize the future time steps based on the current
context information. Next, for our CRA module, we construct the optimal word-level codebook by considering two aspects: entropy and
size, which we address using optimal transport techniques. Then, we narrow the gap between the sign token space and LLM’s text token
space via minimizing the MMD loss, which improves the semantic compatibility between them.

cent advancements in LLMs, we explore harnessing LLMs
for translation of sign videos, by converting the sign videos
to a sequence of language-like sign tokens via our Sign-
LLM framework, and treating the sign tokens as a form of
language that can be translated by an LLM. To the best of
our knowledge, we are the first work to leverage an off-the-
shelf and frozen LLM to tackle SLT.

3. Method

In this section, we first introduce the overview of our Sign-
LLM in Sec. 3.1. Then, we describe two main components
of our SignLLM framework: the VQ-Sign and CRA mod-
ules in Sec. 3.2 and Sec. 3.3, respectively. Finally, we list
the training and inference details in Sec. 3.4.

3.1. SignLLM Overview

In order to effectively handle SLT, in this paper we draw in-
spiration from LLMs’ remarkable capabilities in generating
translations across multiple languages [9, 15]. In particular,
LLMs have been extensively trained on a large web-scale
multilingual text corpus and have learned diverse knowl-
edge regarding the properties of many languages, thus they
are able to draw on shared commonalities with previously
learned languages to effectively handle new languages with
limited data [66, 76].

Therefore, to leverage the strong translation capabilities

of LLMs to handle SLT, we introduce a novel SignLLM
framework. SignLLM converts the input sign video X into
a language-like sign sentence W that aligns with the lin-
guistic characteristics of spoken languages and is friendly
and compatible with LLMs. Then, to perform SLT, the
language-like sign sentence W can be fed into an off-the-
shelf and frozen LLM along with a text prompt that guides
the LLM to generate translations in the desired language.

Specifically, to produce sign sentences W that are
friendly and understandable by LLMs, we aim to regularize
our sign sentences W to embody two core linguistic charac-
teristics: Discrete Characteristics: Spoken languages are
naturally discrete and consist of distinct words or sub-words
with corresponding discrete tokens in a vocabulary [8, 59].
Hierarchical Structure: Most spoken languages exhibit
three hierarchical semantic levels – the sentence, word, and
character levels [36, 52], where words are composed from
characters and sentences are composed from various words.

To achieve the above, our SignLLM framework com-
prises of three parts, as shown in Fig. 1: (1) The VQ-Sign
module converts the input sign video X into a sequence
of discrete sign tokens Ẑ, aligning the sign representations
with text’s discrete characteristics. These sign tokens Ẑ are
character-level sign tokens that are retrieved from a learned
discrete character-level codebook. (2) The CRA module
maps meaningful compositions of character-level sign to-
kens Ẑ into word-level sign tokens that form a sign sentence
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W , further imparting a language-like hierarchical structure
to the video sign representations. Moreover, we also align
the sign token codebooks towards the text token space to
improve semantic compatibility. (3) An off-the-shelf LLM
takes the sign sentence W as input, along with an instruc-
tive text prompt that guides the LLM to generate the trans-
lation in the desired language. More details regarding the
text prompt are in the Supplementary. Next, we present our
VQ-Sign and CRA modules in detail.

3.2. Vector-Quantized Visual Sign Module

First, in order to produce a language-like representation, we
would like to impart discrete characteristics to the input
sign videos, aligning them more closely with spoken lan-
guage representations that are inherently discrete and con-
sist of distinct tokens in a vocabulary. However, achieving
this is not straightforward because sign videos are a con-
tinuous signal in a high-dimensional spatio-temporal space
which cannot be easily represented by a set of discrete to-
kens, and for which the vocabulary is not readily avail-
able. Hence, we introduce our Vector-Quantized Visual
Sign (VQ-Sign) module to quantize the sign video X into
a sequence of discrete sign tokens Ẑ via a sign codebook
Sc. As illustrated in Fig. 1, our VQ-Sign module involves a
series of steps, which we present in detail next.

In the first step, we extract a compact feature Z from the
high-dimensional input sign video X ∈ RN×H×W , where
N is the number of video frames, while H and W are the
height and width of the video frames respectively. To be
precise, the sign video X is first organized into a sequence
of short overlapping video clips, then each short video clip
is fed into a visual encoder Ev to extract a compact fea-
ture representation of dimensionality d. Overall, this step
transforms the original high-dimensional input sign video
X ∈ RN×H×W into a compact feature Z ∈ RN

n ×d, where
n represents the number of frames between the start of
neighboring clips. Notably, since Z is obtained by process-
ing N

n short clips, Z can also be seen as a sequence of N
n

clip-wise features, i.e., {zt}
N
n
t=1, where each zt ∈ Rd corre-

sponds to the feature of the t-th short clip.

In the next step, we transform the feature Z = {zt}
N
n
t=1

into a sequence of discrete tokens Ẑ using a codebook Sc.
Specifically, we discretize each clip’s feature zt into a dis-
crete token ẑt by finding the matching token sj from the
codebook Sc = {si}Mi=1, where the i-th token in the code-
book is denoted as si ∈ Rd and M is the number of to-
kens in the codebook. The matching token sj is the code-
book’s closest element to the feature zt in terms of Eu-
clidean distance, i.e., j = arg mini(∥zt − si∥22). After the
matching, each feature zt is replaced by ẑt = sj , which re-
sults in a discrete token sequence as shown in Fig. 1, e.g.,
[s2, s3, s4, sM , s5, s1]. Note that, we randomly initialize all

the tokens {si}Mi=1 in the sign codebook Sc at the start and
optimize them during training, as introduced next.

However, we face a challenge in learning the discrete
codebook Sc. In particular, although autoencoding [59] has
been a popular method for producing a codebook of discrete
units, the high complexity of sign videos makes autoencod-
ing (i.e., self-reconstruction of sign videos) challenging and
costly. Therefore, inspired from predictive coding [4], a
widely-used method in text and speech representation learn-
ing [6, 44, 46], we propose to learn discrete representations
of sign videos through a context prediction task. Context
prediction [46] is a self-supervised task that focuses on rec-
ognizing the future content in latent space based on the
current information, which can learn discrete representa-
tions while eliminating the need for reconstructing the high-
dimensional input video data. Furthermore, previous works
show that training with context prediction effectively cap-
tures the temporal dependencies and relationships between
elements in a sequence [5, 27], and the learned representa-
tions are often transferable to downstream tasks [6, 46].

Specifically, we employ a context prediction task where
we try to distinguish a future sample zτ+k based on the cur-
rent context representation cτ at various time steps τ . To fa-
cilitate this task, after we obtain the discrete token sequence
Ẑ, we further produce a context latent representation cτ us-
ing an auto-regressive model g that summarizes all the dis-
crete tokens before a certain time step τ (i.e., {ẑt}t≤τ ) to
produce context latent representations cτ = g({ẑt}t≤τ ).
Then, we optimize our module by minimizing the follow-
ing context prediction contrastive loss Lcp

k :

Lcp
k = −

N
n

−k∑
τ=1

(
log σ(z⊤τ+khτ ) + λ E

z̃∼pn

[log σ(−z̃⊤hτ )]
)

(1)

where hτ is obtained by applying a trainable linear layer to
cτ , σ(z⊤τ+khτ ) is the probability of zτ+k being the true sam-
ple among the negatives, z̃ are negative samples drawn from
a minibatch pn, and λ is a hyperparameter. We sum Lcp

k

over different step sizes k to obtain the context prediction
loss Lcp =

∑K
k=1 L

cp
k , where K is the maximum number of

future clips that we are interested in.
Following [18], in order to optimize the matching be-

tween ẑt and zt, we further add two losses to optimize the
matching distance between ẑt and zt, such that the overall
loss LV Q to optimize our VQ-Sign module is as follows:

LV Q = Lcp +

N/n∑
t=1

∥sg(zt)− ẑt∥2 + γ

N/n∑
t=1

∥zt − sg(ẑt)∥2, (2)

where sg(z) ≡ z is the stop-gradient operator and γ is
a hyperparameter. By optimizing LV Q, we can train our
VQ-Sign and the discrete codebook without the need for re-
constructing high-dimensional video clips, which makes the
codebook construction a viable and relatively cheap option.
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In summary, our VQ-Sign transforms sign videos into se-
quences of discrete sign tokens Ẑ, which are friendlier and
more understandable to LLMs. Notably, the produced dis-
crete tokens Ẑ can be likened to character-level tokens, in
the sense that each discrete token ẑt corresponds to a short
clip and may not contain much semantic meaning on its own
(similar to linguistic characters), but they can be combined
into a sequence to convey a clear semantic meaning (akin to
forming a word or sentence). Thus, inspired by this, we call
VQ-Sign’s codebook Sc the character-level codebook that
contains character-level sign tokens.

3.3. Codebook Reconstruction and Alignment

In the previous section, we quantize sign videos into dis-
crete character-level sign tokens, which aligns them closer
to language representations. In this section, our goal is to
impart a hierarchical structure to our sign video representa-
tions, which makes them align even closer to language rep-
resentations. Specifically, we aim to compose our character-
level sign tokens into word-level sign tokens to mirror the
observed hierarchical structure in spoken language, which
makes them even more compatible with LLMs.

Intuitively, considering a spoken language sentence, we
can represent it as a sequence of words, with each word
formed by one or multiple characters. For example, a sen-
tence ‘I love AI’ can be decomposed into a word sequence
[‘I’,‘love’,‘AI’], where the word ‘love’ is in turn formed by
the character sequence [‘l’,‘o’,‘v’,‘e’]. We observe that, al-
though each individual character may not contain much se-
mantic meaning on its own, they can be composed to form
words with clearer semantic meaning. In a similar fash-
ion, we also want to impart such hierarchical structure to
our character-level sign tokens by composing them to form
meaningful word-level sign tokens.

Hence, we aim to find an optimal transformation from
character-level sign tokens to word-level sign tokens for
enhanced readability and compatibility with LLMs. To
this end, we introduce the Codebook Reconstruction and
Alignment (CRA) module to transform the character-level
codebook Sc from VQ-Sign into a word-level codebook Sw
whose tokens convey richer and clearer semantic meaning.
Inspired by optimal transport methods [16, 61, 65], we ob-
serve that the above transformation can be formulated as
an optimal transport problem of transporting characters into
words, thus we introduce a codebook reconstruction algo-
rithm with an optimal transport formulation to find an opti-
mal transformation. Additionally, to further reduce the dis-
tribution gap between the sign tokens and the text tokens,
our CRA module also performs sign-text alignment, en-
hancing the semantic compatibility of the sign tokens with
LLMs. We introduce the details below.

To begin, the objective of our Codebook Reconstruc-
tion Algorithm is to create a word-level codebook Sw

based on VQ-Sign’s character-level codebook Sc. The chal-
lenge lies in determining which character-level sign tokens
should be assembled together to form word-level sign to-
kens, which is a complex problem. To address this com-
plexity, we adopt an approach based on two fundamental
principles. Firstly, in order to maximize the overall pre-
dictability of the word-level tokens and enhance the distinc-
tiveness of each token, we seek to minimize the entropy
of each word-level token within the vocabulary [42]. We
remark that, several approaches for establishing language-
based subword vocabularies [8, 55] can be seen as entropy-
minimizing approaches, employing different heuristics to
establish the vocabulary with the goal of minimizing en-
tropy [23]. On the other hand, considering the limited avail-
ability of sign video data, we incorporate codebook size as
another key factor in our word-level codebook construction,
since studies on languages with limited data [26, 53] have
also identified vocabulary size as a crucial aspect. Specif-
ically, too small a vocabulary can result in sub-optimal en-
tropy values, while an excessively large vocabulary size can
lead to issues such as parameter explosion and token spar-
sity which hinder understanding [2], and finding the right
balance between these effects becomes even more sensitive
for languages with limited data [19, 53].

Based on these principles, our objective is to determine
an optimal codebook size that maximizes the entropy reduc-
tion while taking into account the increase in codebook size.
In other words, we would like to find an optimal codebook
size that maximizes the gradient of the entropy reduction
with respect to the codebook size increase. To simplify the
optimal size searching problem, we define a fixed size in-
crement m and search through codebooks of various sizes
(where the difference between each codebook size is m to-
kens). Specifically, we define the r-th codebook (Swr ) as the
codebook with r × m tokens. Then, we seek to identify
the optimal set of word-level tokens, where each word-level
token is composed of character-level tokens. We approach
this by formulating the character compositions as an opti-
mal transport problem, where characters are transported to
words.

However, it can be challenging to identify specific char-
acter combinations that convey precise semantic infor-
mation, due to the temporal complexity of sign videos,
which often makes the character-level token sequences
Ẑ quite messy. For instance, some signers may exe-
cute the signing motions at a slower speed, which can
lead to consecutive short video clips being highly simi-
lar, resulting in consecutively-repeating character-level dis-
crete tokens. Thus, the character-level sequences between
different signers can differ significantly (e.g., [s1, s2] vs
[s1, s1, s1, s2, s2]) due to such duplication of character-level
tokens, even though they may contain the same semantic
information. At the same time, simply filtering out re-
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peated character-level tokens straightforwardly (e.g., set-
ting all [s1, s1, s1, s2, s2] to [s1, s2]) is sub-optimal, since
the speed of some signs can also convey some information
[31, 60], e.g., if a signer signs “ugly” quickly, it conveys
“very ugly” in American Sign Language.
Pre-processing of Repeated Characters. Therefore, to
alleviate the impact of the signer’s speed while keeping
the information regarding each sign’s speed, we first pre-
process the character-level sequences as follows: First, we
find all the repeated tokens in the character-level sequence
and compute the average number of repeated tokens (α)
in each sequence. Then, for each repeated sequence (e.g.,
[s1, s1, s1]), we keep the first character and remove the tail-
ing repetitive ones (e.g., [s1, s1, s1] to [s1]). At the same
time, if the character-level tokens repeat more than α times,
we insert a single character-level token s0 as a “slowing
down” sign, e.g., [s1, s1, s1] to [s1, s0] if α < 3. Crucially,
this allows us to reduce redundancy, while still representing
“quick” or “slow” signs that account for differences in the
signer’s speed. Overall, this pre-processing and reducing
of repeating characters makes the character-level sequence
less messy, facilitating the search for specific meaningful
character combinations.
Optimal Transport Formulation. Then, using the pre-
processed character-level sequences, we search for an op-
timal word-level codebook via an optimal transport formu-
lation [16, 61, 65]. Following our discussion above, we aim
to find an optimal word-level codebook (i.e., Swr ) with low
entropy and compact size. Specifically, to measure code-
book entropy, we follow [25, 42, 45] to define the entropy
of the r-th codebook Swr as:

HSwr = −
∑

wj∈Swr

P (wj) logP (wj), (3)

where P (wj) is the relative frequency of the jth token
wj from the word-level codebook Swr . Then, based on
VQ-Sign’s character-level codebook Sc, the entropy of the
word-level codebook Swr can be computed through the fol-
lowing (with proof in Supplementary):

HSwr =−
∑

wj∈Swr

∑
si∈Sc

P (wj , si) logP (wj , si)

−
∑

wj∈Swr

∑
si∈Sc

P (wj , si)(− logP (si|wj)),
(4)

where P (si|wj) is the probability of the character-level to-
ken si appearing in the word-level token wj .

Then, to formally define our objective function, we fol-
low existing works [16, 48, 65] to define a transport matrix
P that represents the assignments of characters to words,
and a distance matrix D that represents the cost of trans-
portation. We define the transport matrix P ∈ Rm×(r·m)

with the (j, i)-th element as P (wj , si), and define the dis-
tance matrix D ∈ Rm×(r·m) as a matrix whose (j, i)-th el-
ement is logP (si|wj). Note that, if wj contains si, we use

1
length(wj)

to estimate P (si|wj), and if wj does not contain
si, then it is deemed an infeasible assignment, and we set
the distance logP (si|wj) = ∞. We further define H(P ) as
−
∑

wj∈Swr

∑
si∈Sc P (wj , si) logP (wj , si), which is sim-

ply the entropy of the probability distribution P (wj , si).
Hence, based on Eq. 4, the objective function for mini-

mizing the entropy of Swr can be formulated as:

arg min
P∈Rm×(r·m)

H(P ) +
∑
j

∑
i

P (j, i)D(j, i). (5)

Specifically, following previous works [16, 48, 65], we im-
pose two constraints on the transport matrix P : the sum of
each row in P should equal to the probability of character
token si and the sum of each column in P should equal to
the probability of word token wj . Formally, we constrain
the transport matrix P with: |

∑
i P (i, j) − P (wj)| ≤ ϵ

and |
∑

j P (i, j) − P (si)| ≤ ϵ, where ϵ is a small positive
fixed hyperparameter.

Intuitively, this optimization process can be regarded as
an optimal transport problem to find the best way to trans-
port mass from Sc to Swr . To handle this optimal transport
problem, we leverage the Sinkhorn algorithm [16, 48, 65],
allowing us to effectively construct the candidate word-
level codebooks Swr with minimal entropy. Since our in-
crement m between each candidate codebook is fixed, we
can find the optimal codebook size that maximizes the gra-
dient of entropy reduction by simply computing and finding
the maximum the entropy difference between Swr and Swr−1.

After finding the optimal word-level codebook, we con-
struct the word-level sign tokens by composing all features
of the character-level tokens into the word-level tokens via
our autoregressive model g. Refer to Supplementary for
more details. Overall, with our codebook reconstruction al-
gorithm, we can construct an optimal word-level sign code-
book with low entropy yet also with relatively small size.

Sign-Text Alignment. Next, we further align the sign to-
kens with the text tokens used in LLMs in order to further
improve semantic compatibility between them. To achieve
this, we measure the distribution gap between sign tokens
and text tokens via Maximum Mean Discrepancy (MMD)
[57] and then optimize the sign tokens’ embeddings by min-
imizing MMD, which narrows down the distribution gap.
Specifically, we compute the gap between the sign embed-
ding space Fs and text embedding space Ft via MMD as:

LMMD(Fs,Ft) =

ns∑
i=1

ns∑
j=1

k(f(pi), f(pj))

n2
s

+

nt∑
i=1

nt∑
j=1

k(qi, qj)

n2
t

−
ns∑
i=1

nt∑
j=1

2 · k(f(pi), qj)
nsnt

,

(6)

where p and q are the tokens in Fs and Ft, f is a small pro-
jection module that projects Fs to Ft, ns and nt are the num-
bers of tokens in Fs and Ft, and k(·) represents the radial

18367



kernel [57] that measures the distance between two sam-
ples. We apply MMD loss to both the word-level and the
character-level tokens to narrow the overall sign-text gap.

3.4. Training and Inference

Inference. Given a sign video X , we first extract compact
features Z via the visual encoder Ev , and quantize Z to
Ẑ via VQ-Sign’s learned character-level codebook. Then,
we transform the sequence of discrete character-level tokens
Ẑ into word-level tokens via our CRA, which produces a
sign sentence W . Lastly, we project the sign sentence W to
LLM embedding space via the small projection module f ,
and then feed the sign sentence W into the LLM along with
a text prompt to instruct the LLM to perform the SLT task
and generate text in the desired language.
Training. Our SignLLM is optimized in two stages: pre-
training and fine-tuning. Specifically, the pre-training stage,
which does not require explicit SLT supervision, includes
two sub-stages: (i) We first pre-train VQ-Sign via the con-
text prediction task with LV Q in Eq. 2. (ii) Then, based on
the VQ-Sign’s learned character-level codebook, we con-
struct the word-level codebook with the codebook recon-
struction algorithm (Sec. 3.3) and apply the MMD loss
LMMD in Eq. 6 to align the sign codebooks (Sc and Sw)
and the text vocabulary of the desired language.

After the pre-training, we fine-tune SignLLM. To aid
LLMs in understanding the sign sentences as texts, we addi-
tionally maximize the similarity between the text tokens Y
generated by LLM and the ground truth tokens Ȳ as: Lsim

by minimizing the cross-entropy between them. We fine-
tune our SignLLM (with frozen LLM) via the loss Lft as
follows: Lft = LV Q + λ1LMMD + λ2Lsim, where λ1

and λ2 are hyperparameters. Note that we follow previous
gloss-free works [67, 72] to train our SignLLM framework,
eliminating the need for additional gloss data.

4. Experiments
4.1. Implementation Details

Our visual encoder Ev is constructed by appending two
Conv3D layers with a kernel size of (5, 3, 3) and a stride
of (2, 1, 1) to a ResNet18 [28] pre-trained on ImageNet
[17]. Each clip consists of 13 frames and the gap between
the neighboring clips (n) is 4. Besides, the auto-regressive
model g is implemented as a Convolutional Gated Recurrent
Layer with a kernel size of (1, 1). We set the total number
of discrete vectors M at 256 and each vector’s dimension
d at 1024 for our character-level codebook. In VQ-Sign’s
pre-training phase, we set γ = 0.25, initialize the learn-
ing rate at 0.01 and use the Adam algorithm, training the
model to predict the future three clips (K = 3) for 200
epochs. During codebook reconstruction, we set the incre-
ment m to 32. We employ the frozen LLaMA-7B-16bit [58]

as our LLM and project the codebook space to LLaMA’s
embedding space via f , which consists of two fc-layers with
ReLU. We set λ1 = 0.5, λ2 = 1, and initialize the learn-
ing rate at 0.001 to fine-tune our SignLLM over 20 epochs.
Please see Supplementary for more implementation details.

4.2. Datasets and Evaluation Metrics

Datasets. We follow previous works [13, 14, 34, 72–74]
to run experiments on the Phoenix-2014T [10] and CSL-
Daily [73] datasets for SLT, and evaluate on their dev and
test sets. Phoenix-2014T [10] is a German sign language
dataset with a vocabulary size of 2887 German words. The
training, dev, and test sets contain 7096, 519, and 642 sam-
ples. CSL-Daily [73] is a Chinese sign language dataset
with a vocabulary size of 2343 Chinese words. The training,
dev, and test sets contain 18401, 1077, and 1176 samples.
Evaluation Metrics. Following previous works [13, 14, 37,
67, 72–74], we adopt BLEU [47] and ROUGE-L [38] as the
evaluation metrics for SLT. BLEU-n evaluates the average
translation precision up to n-grams, and we follow previ-
ous works [13, 14, 72–74] to report results for BLEU-1 to
BLEU-4 (i.e., B1, B2, B3 and B4). ROUGE-L (or ROUGE)
computes the F1 score based on the longest common subse-
quence between the predicted and ground truth texts.

4.3. Main Results

Results on PHOENIX2014T dataset. Tab. 1 presents
a comparison of our approach with state-of-the-art gloss-
based and gloss-free methods for SLT. Our method consis-
tently improves upon all reported metrics as compared to
other gloss-free approaches.
Results on CSL-Daily dataset. We compare our method
with state-of-the-art approaches on the CSLDaily dataset in
Tab. 2. We outperform previous gloss-free works on all met-
rics, showing the efficacy of our approach.

4.4. Ablation Study

To further investigate the proposed method, we follow pre-
vious works [13, 33, 67, 69, 72] to conduct extensive ab-
lation experiments on the Phoenix-2014T dev and test sets.
Refer to Supplementary for more experiment results.
Impact of LLM. First, we evaluate the impact of lever-
aging LLMs for the SLT task. Specifically, we establish
three baselines: 1) Ours (w/o LLM) where we replace the
LLM with a trainable lightweight text generator (mBART
[40]). 2) Ours (w/ T5) where we replace our LLM with a
smaller LLM (T5 [50]). As shown in Tab. 3, our approach
(w/ LLaMA [58]) achieves a much better performance than
Ours (w/o LLM), showing the efficacy of leveraging a pow-
erful LLM. We also find that using a smaller and less pow-
erful LLM (T5) leads to worse performance, as expected.
Impact of SignLLM. Next, we explore the impact of Sign-
LLM by comparing against the following baselines: 1) En-
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Table 1. Results on Phoenix-2014T dataset [10].
Setting Method Dev Test

B1 B2 B3 B4 ROUGE B1 B2 B3 B4 ROUGE

Gloss-based SLRT [11] 47.26 34.40 27.05 22.38 - 46.61 33.73 26.19 21.32 -
ConSLT [22] - - - 21.11 47.74 - - - 21.59 47.69
STN-SLT [62] 49.12 36.29 28.34 23.23 - 48.61 35.97 28.37 23.65 -
STMC-T [74] 47.60 36.43 29.18 24.09 48.24 46.98 36.09 28.70 23.65 46.65
BN-TIN-Transf.+SignBT [73] 51.11 37.90 29.80 24.45 50.29 50.80 37.75 29.72 24.32 49.54
PET [33] - - - - - 49.54 37.19 29.30 24.02 49.97
MMTLB [13] 53.95 41.12 33.14 27.61 53.10 53.97 41.75 33.84 28.39 52.65
TS-SLT [14] 54.32 41.99 34.15 28.66 54.08 54.90 42.43 34.46 28.95 53.48
SLTUNET [69] - - - 27.87 52.23 52.92 41.76 33.99 28.47 52.11

Gloss-free NSLT [10] 28.10 16.81 11.82 9.12 31.00 27.10 15.61 10.82 8.35 29.70
NSLT+Bahdanau [7, 10] 31.87 19.11 13.16 9.94 31.80 32.24 19.03 12.83 9.58 31.80
NSLT+Luong [10, 41] 31.58 18.98 13.22 10.00 32.60 29.86 17.52 11.96 9.00 30.70
TSPNet [37] - - - - - 36.10 23.12 16.88 13.41 34.96
CSGCR [70] 35.85 24.77 18.65 15.08 38.96 36.71 25.40 18.86 15.18 38.85
GASLT [67] - - - - - 39.07 26.74 21.86 15.74 39.86
GFSLT-VLP [72] 44.08 33.56 26.74 22.12 43.72 43.71 33.18 26.11 21.44 42.49
Ours 46.88 36.59 29.91 25.25 47.23 45.21 34.78 28.05 23.40 44.49

Table 2. Results on CSL-Daily dataset [73]. * means that the result was reproduced by [72]
Setting Method Dev Test

B1 B2 B3 B4 ROUGE B1 B2 B3 B4 ROUGE

Gloss-based SLRT [11] 37.47 24.67 16.86 11.88 37.96 37.38 24.36 16.55 11.79 36.74
ConSLT [22] - - - 14.80 41.46 - - - 14.53 40.98
BN-TIN-Transf.+SignBT [73] 51.46 37.23 27.51 20.80 49.49 51.42 37.26 27.76 21.34 49.31
MMTLB [13] 53.81 40.84 31.29 24.42 53.38 53.31 40.41 30.87 23.92 53.25
TS-SLT [14] 55.21 42.31 32.71 25.76 55.10 55.44 42.59 32.87 25.79 55.72
SLTUNET [69] - - - 23.99 53.58 54.98 41.44 31.84 25.01 54.08

Gloss-free SLRT* [11] 21.03 9.97 5.96 4.04 20.51 20.00 9.11 4.93 3.03 19.67
NSLT+Luong [10, 41] 34.22 19.72 12.24 7.96 34.28 34.16 19.57 11.84 7.56 34.54
GASLT [67] - - - - - 19.90 9.94 5.98 4.07 20.35
GFSLT-VLP [72] 39.20 25.02 16.35 11.07 36.70 39.37 24.93 16.26 11.00 36.44
Ours 42.45 26.88 17.90 12.23 39.18 39.55 28.13 20.07 15.75 39.91

Table 3. Ablation study for impact of LLM
Method Dev Test

B1 B2 B3 B4 B1 B2 B3 B4
Ours (w/o LLM) 29.75 20.04 14.96 11.95 27.20 18.29 13.32 10.36
Ours (w/ T5) 44.20 34.55 27.15 22.90 44.03 34.12 27.23 22.51
Ours 46.88 36.59 29.91 25.25 45.21 34.78 28.05 23.40

Table 4. Ablation study for impact of SignLLM.
Method Dev Test

B1 B2 B3 B4 B1 B2 B3 B4
Encoder Only 26.95 17.04 12.11 9.41 25.63 16.10 11.20 8.42
Encoder + FT 39.29 29.29 22.55 18.18 39.92 29.14 22.54 18.17
Ours 46.88 36.59 29.91 25.25 45.21 34.78 28.05 23.40

Table 5. Ablation study for main components of SignLLM.
Method Dev Test

B1 B2 B3 B4 B1 B2 B3 B4
Ours (w/o VQ-Sign) 35.78 24.65 18.08 14.15 33.14 22.80 16.74 13.13
Ours (w/o Codebook Reconstruction) 40.45 30.40 24.07 19.79 40.25 30.05 23.63 19.47
Ours (w/o Sign-text Alignment) 29.05 19.33 13.72 10.40 28.67 19.22 13.73 10.63
Ours 46.88 36.59 29.91 25.25 45.21 34.78 28.05 23.40

coder Only where we directly feed the outputs of the visual
encoder Ev into the LLM, and keep the LLM frozen. 2)
Encoder + FT where we directly feed the outputs of the vi-
sual encoder Ev into the LLM, and follow LLaVA [39] to
fine-tune them to translate sign videos via LoRA [32]. We
report the results in Tab. 4, where we significantly outper-
form the baselines. This shows that SignLLM is effective in
harnessing off-the-shelf LLMs for the SLT task.
Impact of Main Components of SignLLM. We also verify
the impact of the key components of SignLLM by compar-
ing against the following baselines: 1) Ours (w/o VQ-Sign)
where we directly quantize the visual encoder Ev’s output
feature using k-means algorithm. The visual encoder Ev is
pre-trained via the similarity loss Lsim instead of our pro-
posed VQ-Sign’s loss LVQ. 2) Ours (w/o Codebook Re-
construction) where we feed the character-level sign tokens
Ẑ from VQ-Sign directly into the LLM, while applying the
sign-text alignment loss LMMD to the character-level sign
tokens. 3) Ours (w/o Sign-text Alignment) where we do
not apply the sign-text alignment loss LMMD. As shown in
Tab. 5, removing any of our main designs leads to a signifi-

am tag ist es überwiegend stark bewölkt oder neblig trüb
(During the day it is mostly cloudy or foggy)
am tag teils stark bewölkt oder neblig trüb teils freundlich regional kann sich die sonne auch längere zeit zeigen
(During the day, partly very cloudy or foggy, partly friendly. In regions, the sun can also appear for a long time)
am tag ist es meist stark bewölkt oder nebel
(During the day it is usually cloudy or foggy)

jetzt wünsche ich ihnen noch einen schönen abend
(Now I wish you a nice evening)
liebe zuschauer guten abend
(Dear viewers, good evening)
ich wünsche ihnen noch einen schönen abend
(I wish you a nice evening)

Ground Truth:

GFSLT-VLP:

Ours:

Ground Truth:

GFSLT-VLP:

Ours:

Figure 2. Visualization of translation results. Correct translations
are in blue while the wrong translations are in red.

cant performance drop, showing their efficacy.
Qualitative Results. We present two sample translations
generated by our SignLLM and the current state-of-the-art
(GFSLT-VLP [72]) in Fig. 2 for qualitative analysis. In the
first sample (top), our model produces a highly accurate
translation, whereas [72] inaccurately represents the seman-
tic information. In the second sample (bottom), our model
successfully preserves sentence semantics, while [72] in-
troduces a translation error, resulting in redundant and erro-
neous information. These examples qualitatively show our
SignLLM’s efficacy in producing accurate translations.

5. Conclusion

We present SignLLM, a novel framework to harness off-
the-shelf and frozen LLMs for SLT. SignLLM imparts
language-like characteristics to sign video representations
through the VQ-Sign and CRA modules, and a sign-text
alignment loss improves semantic compatibility. We empir-
ically observe that applying our SignLLM leads to state-of-
the-art gloss-free results on two popular SLT benchmarks.
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