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Abstract

Vision Transformers (ViTs) have emerged as a com-
pelling alternative to Convolutional Neural Networks
(CNNs) in the realm of computer vision, showcasing
tremendous potential. However, recent research has un-
veiled a susceptibility of ViTs to adversarial attacks, akin
to their CNN counterparts. Adversarial training and ran-
domization are two representative effective defenses for
CNNs. Some researchers have attempted to apply adver-
sarial training to ViTs and achieved comparable robustness
to CNNs, while it is not easy to directly apply randomization
to ViTs because of the architecture difference between CNNs
and ViTs. In this paper, we delve into the structural intrica-
cies of ViTs and propose a novel defense mechanism termed
Random entangled image Transformer (ReiT), which seam-
lessly integrates adversarial training and randomization to
bolster the adversarial robustness of ViTs. Recognizing the
challenge posed by the structural disparities between ViTs
and CNNs, we introduce a novel module, input-independent
random entangled self-attention (II-ReSA). This module op-
timizes random entangled tokens that lead to ”dissimilar”
self-attention outputs by leveraging model parameters and
the sampled random tokens, thereby synthesizing the self-
attention module outputs and random entangled tokens to
diminish adversarial similarity. ReiT incorporates two dis-
tinct random entangled tokens and employs dual random-
ization, offering an effective countermeasure against adver-
sarial examples while ensuring comprehensive deduction
guarantees. Through extensive experiments conducted on
various ViT variants and benchmarks, we substantiate the
superiority of our proposed method in enhancing the adver-
sarial robustness of Vision Transformers.

1. Introduction
Vision Transformers (ViTs) and their variants have achieved
state-of-the-art performance on various vision benchmarks
[19, 33, 45]. Nevertheless, similar to convolutional neu-

ral networks (CNNs) [23, 44], ViTs are also vulnerable to
maliciously elaborated adversarial samples [25, 27]. Even
minimal perturbations that are hardly noticeable to humans
can derail the predictions of high-performance ViTs. Re-
cent studies [4–6, 21, 36, 37] have manifested that ViTs are
not necessarily more robust than CNNs, often yielding sim-
ilar responses to adversarial samples. Consequently, robust
methods devised for CNNs can also be utilized to fortify
ViTs against adversarial attacks.

Adversarial training stands out as one of the most ef-
fective defences for CNNs, which is proposed to yield ro-
bust models through re-training CNN models via adversar-
ial samples, where Projected Gradient Descent (PGD) [35]
is one of the most representative methods that iteratively
generates the strongest first-order adversarial perturbations.
For ViTs, researchers leveraged and evaluated the robust
performance of adversarial training on ViTs [14, 15, 30, 38,
42, 48], showing that adversarial training can also effec-
tively enhance ViTs’ robustness. Beyond the training pro-
cedure, randomization is also introduced to further improve
adversarial robustness [2, 8, 13, 16, 34, 41, 51]. However,
these randomized defences mainly consider the robustness
of CNNs, which may not work by directly applying existing
methods on ViTs. For example, Dong et al. [16] random-
ized the normalization layer to reduce the adversarial trans-
ferability for CNNs, while it is not so suitable to apply this
randomized defence to ViTs because ViTs primarily use the
Layer Normalization [3] as the normalization layer to adapt
to inconsistent input lengths.

In this paper, a novel randomized robust framework on
ViT architectures is put forward to reinforce the adversar-
ial robustness of ViTs, dubbed as Random entangled image
Transformer (ReiT). Firstly, we deeply analyze the structure
of ViTs, especially the self-attention module, and revise the
vanilla self-attention module by concatenating a random to-
ken to the input token as well as defining a new attention op-
eration Local SoftMax (LSM) to compute the self-attention
output. In the training stage, we add different random to-
kens to input tokens for teaching models adapt to the ex-
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istence of random tokens. Additionally, we propose Input-
Independent Random entangled Self-Attention (II-ReSA) for
the inference stage, where we sample a random token r1 and
utilize backpropagation to calculate another random entan-
gled token r2 that leads to a “dissimilar” output. Note that
this procedure decouples from input tokens with only a little
additional computation cost. Then, the final random token
that is randomly sampled from the random entangled tokens
r1 and r2 will be concatenated to input tokens to thwart the
effectiveness of adversarial attacks. Theoretically and ex-
perimentally, we prove that our proposed II-ReSA module
reduces the similarity of the outputs by input tokens with r1
and r2, respectively, which depresses the transferability of
adversarial attacks on ViTs. Before ending this section, we
summarize the main contributions of this paper as below:

• We analyze the structure of the self-attention module and
propose a random version of the attention module to yield
the random self-attention output.

• We propose a novel adversarially robust framework, ran-
dom entangled image transformer, which contains input-
independent random entangled self-attention with a com-
prehensive theoretical guarantee to bolster the adversarial
robustness of ViTs.

• We perform extensive experiments to demonstrate the su-
periority of our proposed method on different benchmarks
and ViT variants under different adversarial attacks.

2. Related Work

2.1. Adversarial Attack

CNNs are known to be sensitive to certain elaborated per-
turbations, i.e., adversarial perturbations [23, 44]. Accord-
ingly, the adversarial attack becomes a hot research field,
where lots of relevant works are proposed, e.g., white-box
attacks [7, 9, 22, 23, 35, 39, 44] and black-box attacks
[1, 18, 26, 31, 32, 49, 52]. Hereof, we mainly discuss the
white-box ones that are most relevant to this work: Szegedy
et al. [44] presented the Fast Gradient Sign Method
(FGSM) attack that utilized the sign of the input gradients
to elaborate adversarial perturbations; MoosaviDezfooli et
al. [39] as well as Carlini and Wagner [7] and regarded the
solution of the generation of adversarial perturbations as an
optimization objective and solved such objective to gener-
ate minimal adversarial perturbations; Dong et al. [17] and
Madry et al. [35] extended the FGSM attack to iterative
ones to produce the strongest first-order adversarial attack
and proposed the Projected Gradient Descent (PGD) attack;
Croce et al. [9] proposed the powerful attack framework,
dubbed as AutoAttack, which integrates three white-box at-
tacks (Auto-PGD, targeted Auto-PGD and FAB [10]) and
one black-box attack (Square attack [1]).

2.2. Adversarial Robustness

Here, we only highlight two relevant robust defences: Ad-
versarial training [35] and Randomized defence. Adversar-
ial training is one of the most popular and effective meth-
ods to improve the adversarial robustness of CNNs. Later,
Zhang et al. [50] added a useful regularization term to
the optimization objective of training robust models that
helps improve the generalization (accuracy on clean inputs)
of the trained robust models; Wang et al. [47] proposed
the misclassification-aware regularizer to boost the perfor-
mance of adversarially trained models.

Randomized defence is also an effective CNN defence
method against adversarial examples via adding random-
ness on inputs, model parameters, model components or
training strategies. Cohen et al. [8] added Gaussian random
noise to the input for improving the adversarial robustness
of CNNs; Zhang and Liang [51] presented a randomized
defence method via randomized discretization of the input.
Araujo et al. [2] proposed a randomized defence method
by a random training strategy. Pinot et al. [41] proposed a
game theory-based random mixture adversarial training to
improve the adversarial robustness of CNNs. Dong et al.
[16] randomized the normalization layer to improve the ad-
versarial robustness of CNNs. However, these randomized
defences mainly aim at the robustness of CNNs, which may
not work by directly applying them to ViTs. In this work,
we propose a novel randomized defence method that con-
siders the special model structure of ViTs.

2.3. Vision Transformer

The popularity of multi-head self-attention (MSA) in nat-
ural language processing (NLP) [46] sheds new light on
computer vision, e.g., Dosovitskiy [19] presented the first
ViT model that regards images as sentences. Later, nu-
merous ViT variants sprouted up like mushrooms after the
rain: Touvron et al. [45] leveraged better training strategies
and token distillation to train ViT more efficiently, consum-
ing fewer computational resources and less training time;
d’Ascoli et al. [20] proposed the gated positional self-
attention to introduce soft convolutional inductive biases for
ViT; Liu et al. [33] proposed a shift window-based hierar-
chical Transformer, dubbed as Swin Transformer, incorpo-
rating the idea of convolution into ViT.

However, similar to CNNs, this MSA-based family of
models are susceptible to adversarial examples [25, 27].
Many researchers compared the adversarial robustness be-
tween ViTs and CNNs: Bai et al. [4] investigated the
robustness of ViTs under perturbation-based attacks and
patch-based attacks; Bhojanapalli et al. [6] studied the ro-
bustness of ViTs under input perturbations as well as model
perturbations; Mahmood et al. [36] mainly discussed the
adversarial transferability of ViTs; Paul and Chen [40] eval-
uated the robustness of ViTs on various datasets.
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Figure 1. Left: original self-attention module and random self-attention module. We feed the random self-attention module with input
tokens and random tokens and replace the SoftMax operation with the local SoftMax operation. In order to keep the output dimensions
consistent, we truncate the extra random output. Right: the forward and backward propagation processes of the proposed II-ReSA module
in the training and inference stages.

3. Random Entangled Self-Attention Elevates
Adversarial Robustness

Given a specific target ViT model h, data pairs (x, y) and
some loss function L, adversarial examples are defined as
perturbed inputs x̃ = x+ δ that misguide h via maximizing
the following perturbations:

δ = argmax
δ∈B(p,ϵ)

L(h(x + δ), y), (1)

where B(p, ϵ) = {δ : ∥δ∥p ≤ ϵ} is the ℓp ball with radius
ϵ. Considering a ViT parameter space H and a data space
(X ,Y), the objective of adversarial training is to minimize
the expected loss over the data distribution:

argmin
h∈H

E(x,y)∼(X ,Y)[L(h(x + δ), y)]. (2)

In this paper, we explore how to randomize the self-
attention module that can elevate the adversarial robust-
ness of ViTs. Specifically, we rethink the self-attention
module and design an input-independent randon entangled
self-attention module with thorough deduction guarantees
to reduce adversarial similarity, thus boosting adversarial
robustness.

3.1. Revisiting Self-Attention Module

Normally, a general transformer block [19, 46] contains
normalization, multi-head self-attention (MSA), and multi-
layer perception (MLP), as shown in the left subfigure of
Fig. 1. Given input token X ∈ Rd×n (d denotes the to-
ken number and n is the dimension of token vector), linear
projection parameters WQ ∈ Rn×m, WK ∈ Rn×m and
WV ∈ Rn×m (usually, m < n), the query, key and value
matrices are defined as

Q = XW
Q
, K = XW

K
, V = XW

V
. (3)

Thus, the output of the single-head self-attention module is
formulated as

Y = SoftMax

(
QKT

√
dk

)
V

= SoftMax

(
XWQ(XWK)T

√
dk

)
XW

V
,

(4)

where the superscript T denotes matrix transposition;
1/
√
dk represents the scaling factor. Note that the dimen-

sion of Y is Rd×m.

3.2. Random Self-Attention Module

We wonder if we can add some randomness to the output of
Eq. (4) to obstruct the generation of adversarial examples.
Given a random token r ∈ R1×n, the input token with the
random token Xr and the query matrix with the random
token Qr can be written as

Xr =
(
X
r
)
(d+1)×n

, Qr = XrW
Q =

(
XWQ

rWQ

)
(d+1)×m

. (5)

In the same way with Qr, we can obtain the expressions
of the key matrix Kr and the value matrix Vr. Thus, the
formula of QrK

T
r can be obtained as follows:

QrK
T
r =

(
XWQ

rWQ

)
·
(
XWK

rWK

)T

=

(
XWQ(XWK)T XWQ(rWK)T

rWQ(XWK)T rWQ(rWK)T

)
.

(6)

Here, the dimension of QrK
T
r is (d + 1) × (d + 1). If we

solve SoftMax for QrK
T
r directly, it requires considerable

computational effort, which may incur a heavy computa-
tional burden as the depth of the network increases. Worse
still, such global SoftMax operation has an adverse impact
on the self-attention calculation since the global randomiza-
tion will introduce excessive randomization of self-attention
that increases the difficulty of model parameter optimiza-
tion. To resolve the above two challenges, we propose a
novel self-attention weight operation Local SoftMax (LSM),
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which is given by

LSM

(
QrK

T
r√

dk

)

=

SoftMax
(

XWQ(XWK )T√
dk

)
XWQ(rWK)T

rWQ(XWK)T rWQ(rWK)T

 ,

(7)

where the matrix dimension is (d + 1) × (d + 1). Hereof,
we only compute the SoftMax output of the part with the
original input token, which is consistent with the original
self-attention. Thus, the random self-attention output is de-
fined as

Yr = LSM

(
QrK

T
r√

dk

)
Vr

=

SoftMax
(

XWQ(XWK )T√
dk

)
XWQ(rWK)T

rWQ(XWK)T rWQ(rWK)T

 ·
(
XWV

rWV

)

=

SoftMax
(

XWQ(XWK )T√
dk

)
XWV + XWQ(rWK)T rWV

rWQ(XWK)TXWV + rWQ(rWK)T rWV

 ,

(8)

where the dimension of Yr is (d + 1) × m; let
Y = SoftMax

(
XWQ(XWK)T√

dk

)
XWV , which is the out-

put of the conventional SoftMax operation; let R =
XWQ(rWK)T rWV , which denotes the additive ran-
dom output; let rout = rWQ(XWK)TXWV +
rWQ(rWK)T rWV , which represents the extra random
output. Note that rout will be truncated so as to keep the
dimensions of the input token and output self-attention re-
sult constant. Hence, the final output is Yout = Y + R,
which incorporates the self-attention output and the output
of random tokens (cf., the left subfigure in Fig. 1).

3.3. Input-Independent Random Entangled Self-
Attention Module

To further reinforce the robustness of ViTs, we improve the
random entangled self-attention module by introducing bi-
nary random noises. Suppose we have two random tokens,
r1 and r2, we can obtain two additive random noise out-
puts, R1 and R2, through Eq. (8). Our target is to minimize
the adversarial similarity of the outputs of two randomized
self-attention, i.e., Yout,1 = Y +R1 and Yout,2 = Y +R2,
which is equivalent to maximizing the difference function
D(·, ·) of the gradients w.r.t. X of Yout,1 and Yout,2:

maxD

(
∂(Y + R1)

∂X
,
∂(Y + R2)

∂X

)
. (9)

Here, we use cosine similarity [A·B/(∥A∥·∥B∥)] to repre-
sent the distance function D(·, ·). The goal of maximizing
the distance converts to minimize the cosine similarity of
the gradients w.r.t. X of Yout,1 and Yout,2. Besides, the de-
nominator of the cosine similarity formula (the product of
the modules of the two matrices/vectors) will not affect the
optimization. Thus, the cosine similarity can be degraded
into dot multiplication, which greatly reduces the compu-
tational cost. The degraded object function can be written

as
D

(
∂(Y + R1)

∂X
,
∂(Y + R2)

∂X

)
=

(
∂Y

∂X
+

∂R1

∂X

)
·
(

∂Y

∂X
+

∂R2

∂X

)
=

(
∂Y

∂X

)2

+
∂Y

∂X

∂R1

∂X
+

(
∂Y

∂X
+

∂R1

∂X

)
∂R2

∂X
.

(10)

Given a certain r1, we aim to find another random entan-
gled token r2 that leads to dissimilar outputs by maximiz-
ing Eq. (9) to derail the generation of effective adversarial
perturbations. Note that ∂Y/∂X is the partial derivative
w.r.t. X of Y , thus independent of random entangled to-
kens r1 and r2; ∂R1/∂X is the partial derivative w.r.t. X
of R1, thus independent of r2. Consequently, the objective
of Eq. (9) herein is equivalent to minimizing Eq. (10) w.r.t.
r2, which can be written as

min
r2

[(
∂Y

∂X

)2

+
∂Y

∂X

∂R1

∂X
+

(
∂Y

∂X
+

∂R1

∂X

)
∂R2

∂X

]
⇐⇒ min

r2

(
∂Y

∂X
+

∂R1

∂X

)
∂R2

∂X
.

(11)

According to Eq. (8) and Eq. (11), ∂Y/∂X is a function
of X; ∂R1/∂X and ∂R2/∂X are both not the function of
X . To decouple from X for more efficient optimization of
r2, we omit the item ∂Y/∂X . Therefore, Eq. (11) can be
approximated as

min
r2

∂R1

∂X

∂R2

∂X
. (12)

Here, the object function is denoted as f(r2). Thus, the
above optimization is independent of X , i.e., input token.
Note that one can optimize r2 only with self-attention lin-
ear projection parameters (WQ, WK , and WV ) and r1,
which is a local operation and entails very little computation
cost. Due to the fact that r2 is derived from r1, We refer to
these two random tokens as random entangled token pairs
or simply random entangled tokens. Because the proposed
self-attention is independent of the input token and involves
two random entangled tokens, we term it Input-Independent
Random entangled Self-Attention (II-ReSA). For the deduc-
tion details of optimizing r2 via Eq. (12), please refer to the
supplementary material.

4. Random Entangled Image Transformer
In this section, we mainly integrate the proposed II-ReSA
in Sec. 3 into adversarial training. Based on the thorough
analysis of reducing adversarial similarity of II-ReSA, we
put forward a new adversarially robust framework, denoted
as Random entangled image Transformer (ReiT), to boost
the adversarial robustness of ViTs.

During the training stage, we directly concatenate small
random tokens that follow a certain distribution (such as a
Gaussian distribution) to input tokens. This has two signif-
icant benefits: 1) adversarial training with additive random
noises enables the trained robust models to adapt to the ex-
istence of random tokens, thereby avoiding clean accuracy
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Algorithm 1: ReiT algorithm
Input : input token X , self-attention linear

projection parameters WQ ,WK and WV ,
random intensity s, random step size α,
random steps τ

Output: attention results Yout

1 Function ReiT train(s,X ,WQ,WK ,WV ):
2 Sample r from N (0, 1)
3 Obtain Xr = cat(X, s · r)
4 Compute Y and R via Eq. (8)
5 Compute Yout = Y +R
6 return Yout

7 End Function

8 Function ReiT test(s,α,τ ,X ,WQ,WK ,WV ):
9 Sample r1 from N (0, 1)

10 Sample r02 from N (0, 1) or let r02 = r1
11 Obtain Xr,1 = cat(X, s · r1)
12 Compute R1 via Eq. (8)
13 for t← 0 to τ − 1 do
14 Obtain Xr,2 = cat(X, s · rt2)
15 Compute Rt

2 via Eq. (8)
16 Compute similarity between R1 and Rt

2 via
Eq. (12)

17 Update rt+1
2 via Eq. (13)

18 end
19 Randomly Sample r from r1 and rτ2
20 Obtain Xr = cat(X, s · r)
21 Compute Y and R via Eq. (8)
22 Compute Yout = Y +R
23 return Yout

24 End Function

degradation; 2) such random tokens offer randomness that
compromises the effectiveness of the generated adversarial
perturbations.

In the test stage, we generate random tokens r1 from the
same distribution as that in the training stage and utilize r1
and self-attention linear projection parameters to optimize
the random entangled tokens r2 by minimizing the similar-
ity of the output of II-ReSA. Finally, we randomly sample
one from the random entangled tokens r1 and r2 to further
provide randomness for adversarial robustness. Such ran-
dom sampling can provide a large random space that ham-
pers adversarial perturbation searching. For instance, a ViT
model with 12 blocks and 8 heads in each block has the
random sampling space of (212)8 = 296.
Iterative optimization. To improve the effectiveness of
randomization, we propose to iteratively optimize r2 via the
gradient sign of Eq. (12), which is an effective and popu-
lar optimization method inspired by the idea of PGD [35].
Moreover, in order to stabilize the performance of robust
models, r2 is required to follow the same distribution as r1.

Therefore, we normalize r2 with the same mean and stan-
dard deviation as r1. Thus, the optimization function of r2
is formulated as

rt+1
2 = s · Norm

(
rt2 − α · Sign(∇f(rt2))

)
, (13)

where t = 0, 1, · · · , τ and τ is the total number of steps;
r02 can be set as r1 or another random token under the same
distribution as r1; ∇f(r2) is the gradient w.r.t. r2 of f(r2);
α denotes the step size; Norm(·) is the normalization func-
tion; s is the intensity of randomness. To put it in a nutshell,
Algorithm 1 and the right subfigure in Fig. 1 summarize our
proposed ReiT framework, where we only show the algo-
rithm for the randomized self-attention module in the train-
ing and inference stages. Other modules are the same as
vanilla architectures, and thus omitted.

5. Experiment
5.1. Experimental Setup

Datasets. Due to the time-consuming overhead of adver-
sarial training, small datasets are still popular for adversar-
ial study [11]. Hereof, we adopt benchmarks of CIFAR-10
and CIFAR-100 [29]. Both datasets consist of 50,000 train-
ing samples and 10,000 test samples, all of which are 32x32
pixels. CIFAR-10 comprises 10 categories, while CIFAR-
100 encompasses 100 categories. Besides, we also conduct
experiments on big datasets, e.g., ImageNet-1K (ImageNet)
[12] and ImageNette [24]. ImageNet is a dataset compris-
ing 1,000 categories with 1.2 million training examples and
50,000 test examples, all of which are 224x224 pixels in
size. ImageNette is a subset of 10 classes from ImageNet,
which contains about 13,000 training images and 500 test-
ing images.
Models. We consider three different kinds of ViT archi-
tectures in our experiments: vanilla ViT [19], DeiT [45],
and Swin Transformer (Swin) [33]. For CIFAR-10 and
CIFAR-100, the patch size for ViT and DeiT is set as 4.
Besides, the patch size and window size for Swin is set as
2 and 4, respectively. For ImageNet and ImageNette, the
patch size for ViT and DeiT is set as 16. The patch size and
window size for Swin are set as 4 and 7, respectively. Due
to the computational resource limit, we use the small and
tiny versions of ViTs to perform experiments, i.e., ViT-S,
ViT-T, DeiT-S, DeiT-T, Swin-S, and Swin-T.
Training settings. We follow previous works’ experi-
mental setting [38, 42, 48] and initialize the network with
pre-trained parameters provided by [43]. For CIFAR-10,
CIFAR-100 and ImageNette, we train robust models with
different training methods: standard (NAT), one-step fast
gradient sign method (FGSM) [23], multi-step projected
gradient descent (PGD) [35], and TRADES with β = 6 in
[50]. All models are trained for 40 epochs. In the adversar-
ial setting, we set the maximum perturbation to 8/255, the
step size to 2/255, and the step number for multi-step ad-
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Model Method CIFAR-10 CIFAR-100
NAT FGSM MIFGSM PGD DeepFool CW AA NAT FGSM MIFGSM PGD DeepFool CW AA

ViT-S

NAT 96.57 10.20 0.12 0.00 0.73 71.08 0.00 85.76 7.24 0.58 0.00 2.97 49.42 0.00
ReiT 96.27 13.99 0.17 0.00 14.05 83.90 0.32 84.02 8.80 0.69 0.00 27.00 74.13 1.45
FGSM 86.63 53.17 51.26 45.87 0.96 72.55 42.81 47.62 23.21 20.38 19.13 3.37 41.65 13.36
ReiT 86.21 56.17 54.19 46.43 25.55 76.69 45.16 57.67 28.30 26.33 24.13 20.54 57.80 26.56
PGD 86.59 54.99 53.38 51.51 0.92 76.66 47.65 59.17 31.59 30.27 28.78 1.87 54.13 21.24
ReiT 86.55 56.82 54.93 52.86 26.60 79.43 49.70 60.16 33.83 31.06 30.61 21.02 60.26 28.92
TRADES 83.04 55.88 55.52 54.35 1.14 79.86 50.47 63.32 34.48 33.18 31.56 1.35 57.70 26.90
ReiT 84.47 57.20 56.67 54.95 21.58 80.27 51.67 62.28 35.36 34.13 34.06 20.72 61.46 31.48

ViT-T

NAT 95.20 5.65 0.00 0.00 0.84 62.55 0.00 80.78 3.66 0.07 0.00 2.61 38.79 0.00
ReiT 94.55 5.79 0.21 0.00 21.50 78.99 0.50 79.61 4.28 0.14 0.00 28.78 68.49 2.01
FGSM 79.96 51.48 49.58 43.91 1.56 76.29 42.79 58.78 27.88 25.96 24.07 2.00 52.95 20.68
ReiT 79.27 52.32 50.13 45.57 26.11 78.27 47.66 58.25 28.67 25.99 24.87 18.51 55.06 24.46
PGD 78.34 52.59 50.27 46.37 1.83 74.40 43.16 57.74 28.36 27.11 25.47 1.60 52.67 21.03
ReiT 78.38 54.67 51.30 47.71 26.47 76.77 47.55 57.09 28.54 27.43 26.82 19.23 54.32 26.20
TRADES 79.30 53.57 51.39 50.49 1.43 75.78 46.20 56.81 30.07 29.39 28.86 2.06 51.46 23.68
ReiT 78.83 54.84 52.44 50.97 22.67 76.86 48.01 56.14 31.12 29.99 29.57 19.97 55.12 28.44

DeiT-S

NAT 96.21 4.07 0.04 0.00 0.50 72.32 0.00 84.32 4.02 0.01 0.00 2.31 47.83 0.00
ReiT 96.00 9.10 0.35 0.01 13.02 84.44 0.31 83.19 4.48 0.27 0.05 25.03 71.08 1.23
FGSM 85.78 52.52 50.36 45.09 1.68 81.83 43.42 58.38 29.58 28.07 26.36 1.74 53.41 21.98
ReiT 85.65 54.11 51.82 46.47 26.98 85.64 47.28 58.26 30.81 29.39 27.34 16.67 54.30 27.85
PGD 85.54 53.30 51.17 50.78 1.63 81.70 46.87 57.80 30.57 29.60 28.08 1.72 53.14 23.08
ReiT 84.44 55.06 52.23 52.58 27.67 84.52 50.69 56.55 31.67 30.40 29.88 18.79 56.45 28.22
TRADES 84.00 56.99 55.41 53.09 1.35 80.51 49.13 61.12 32.77 32.01 30.81 1.58 55.66 26.04
ReiT 83.44 57.32 55.81 53.84 19.53 82.59 55.03 60.58 34.33 33.71 31.81 20.99 57.46 30.31

DeiT-T

NAT 95.10 2.98 0.00 0.00 0.85 64.12 0.00 80.20 2.60 0.10 0.00 3.41 40.54 0.00
ReiT 94.70 3.47 0.02 0.00 19.22 79.58 0.42 79.37 2.74 0.12 0.00 26.29 67.53 1.65
FGSM 81.52 51.15 50.29 44.54 1.21 77.71 43.33 57.83 28.58 27.41 26.01 1.84 52.31 21.65
ReiT 81.02 52.11 50.45 45.53 25.80 80.92 48.51 56.87 29.72 28.29 27.47 18.95 55.03 26.60
PGD 82.03 52.55 50.89 49.33 1.04 78.42 45.54 50.82 29.75 28.33 26.83 0.51 45.58 21.95
ReiT 80.73 52.89 51.23 50.07 26.25 80.85 50.39 50.62 30.72 29.52 27.39 17.88 47.80 26.21
TRADES 80.41 53.76 52.42 51.24 1.12 76.70 47.28 57.15 30.51 28.85 28.23 1.68 51.88 23.18
ReiT 80.33 54.05 52.81 51.72 22.50 80.26 53.10 58.60 31.27 29.68 28.75 20.22 56.44 28.29

Swin-S

NAT 94.29 9.41 0.01 0.00 1.12 55.70 0.00 78.62 5.44 0.13 0.00 4.13 36.72 0.00
ReiT 93.83 13.11 0.02 0.00 21.27 74.19 0.79 78.05 5.60 0.13 0.01 28.48 66.16 1.90
FGSM 67.07 42.01 40.90 39.46 0.24 63.10 35.41 47.78 23.37 22.41 21.30 0.51 42.78 17.57
ReiT 71.18 44.41 42.81 41.33 24.38 71.06 44.03 47.61 23.76 22.67 21.79 17.66 47.60 23.72
PGD 70.73 44.06 43.14 42.03 0.32 66.35 37.64 44.28 22.81 22.33 21.73 0.63 40.33 17.66
ReiT 69.21 45.65 44.02 43.89 24.10 68.52 44.00 45.80 23.77 22.91 22.34 16.75 45.85 25.43
TRADES 72.04 47.24 46.19 45.11 0.55 71.82 41.21 55.39 27.58 26.96 26.28 0.61 49.85 21.76
ReiT 73.30 48.16 46.98 45.38 23.99 74.49 48.07 53.71 27.98 27.33 26.71 20.37 53.89 25.94

Swin-T

NAT 93.40 6.26 0.00 0.00 1.08 48.92 0.00 77.16 4.22 0.03 0.00 4.60 30.39 0.00
ReiT 93.24 7.01 0.00 0.00 20.92 70.93 0.71 76.03 4.13 0.06 0.00 28.78 63.18 2.18
FGSM 61.76 39.14 37.92 37.11 0.42 57.80 32.85 43.38 22.14 21.58 21.04 0.47 39.25 17.22
ReiT 69.01 43.35 41.73 40.16 25.44 68.68 38.67 46.21 22.89 21.90 21.20 17.97 46.25 21.04
PGD 60.23 41.76 38.51 38.28 0.53 49.77 35.72 41.08 20.65 20.21 19.92 0.45 37.07 18.59
ReiT 64.01 43.05 39.91 39.39 23.21 64.15 41.63 39.59 21.50 21.14 20.70 14.26 39.76 23.38
TRADES 70.91 43.89 43.14 42.42 0.69 66.80 38.03 50.82 24.75 24.33 23.83 0.51 45.58 19.01
ReiT 71.17 44.55 44.18 43.03 23.93 71.35 45.12 49.71 25.96 24.59 24.22 18.01 47.62 24.88

Table 1. Robust experimental results (%) of ReiT with different ViT variants under different adversarial training methods on CIFAR-10
and CIFAR-100 benchmark datasets. Here, ‘S’ denotes small and ‘T’ denotes tiny. The best results are stressed in BOLD.

versarial training to 10. We utilize the SGD optimizer with
a momentum of 0.9, a weight decay of 1e-4, and an initial
learning rate of 0.1. The learning rate follows a piecewise
decay schedule with a reduction factor of 0.1 at the 20th and
30th epochs. For ImageNet, we train robust models with
PGD and TRADES over 10 epochs, applying a maximum
perturbation of 4/255, a step size of 1/255, and 5 PGD steps.
We utilize the SGD optimizer with a momentum of 0.9, a
weight decay of 1e-4, and an initial learning rate of 0.01.

The learning rate undergoes piecewise decay, reducing by
a factor of 0.1 at the 5th and 8th epochs. Additionally, we
sample random tokens from the standard Gaussian distribu-
tion and set the randomness intensity of all models as 0.1
for our method. The ablation study of it will be discussed
in Sec. 5.3. All the random tokens are sampled/normalized
from/to the standard normal distribution.

Evaluation settings. For the test stage, we evaluate the
trained models under different adversarial attacks: natural
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ImageNette Method NAT FGSM MIFGSM PGD CW

ViT-T

NAT 95.40 5.00 0.20 0.00 59.40
ReiT 94.00 6.80 0.40 0.00 78.20
PGD 79.60 54.60 54.00 51.80 77.40
ReiT 78.80 56.30 55.00 53.60 78.10
TRADES 84.60 63.60 62.20 60.60 83.20
ReiT 84.00 64.40 63.70 62.30 83.60

DeiT-T

NAT 94.80 2.60 0.20 0.00 63.00
ReiT 94.60 4.80 0.20 0.00 78.40
PGD 88.80 68.00 65.60 63.80 88.40
ReiT 89.00 69.80 67.60 65.00 89.20
TRADES 88.80 68.80 67.60 66.00 86.60
ReiT 87.80 68.90 68.10 66.50 86.80

Swin-T

NAT 97.20 11.40 0.00 0.00 66.60
ReiT 97.00 12.20 0.20 0.00 75.40
PGD 30.00 27.20 27.20 27.60 29.60
ReiT 81.60 60.60 60.20 58.40 81.00
TRADES 81.40 60.60 60.00 59.00 80.00
ReiT 81.00 62.90 62.10 60.90 80.40

ImageNet Method NAT FGSM MIFGSM PGD CW

DeiT-T

PGD 49.63 23.40 22.73 21.68 42.65
ReiT 48.79 25.12 23.42 22.15 45.49
TRADES 50.17 23.37 22.82 22.90 42.65
ReiT 49.74 26.10 24.54 23.55 46.16

Table 2. Robust experimental results (%) of ReiT with different
ViT variants under different adversarial training methods on Im-
ageNette and ImageNet benchmark datasets. The best results are
stressed in BOLD.

(NAT), FGSM, MIFGSM [17] with 5 steps, PGD [35] with
10 steps, DeepFool [39] with 50 steps and an overshoot of
0.02, CW [7] with 1,000 steps and a learning rate of 0.01,
AutoAttack (AA) [9]. We use the torchattacks library [28]
for our evaluation experiments.

5.2. Main Robustness Results

Results on CIFAR-10 and CIFAR-100. The robust
experimental results on small datasets (CIFAR-10 and
CIFAR-100) are shown in Tab. 1. From the table, it is
evident that our robust method outperforms the baselines
with different training methods under diverse adversarial
settings. For example, ReiT achieves better adversarial ac-
curacy for the seen adversarial attacks: vanilla PGD-trained
ViT-S model achieves 51.51% adversarial accuracy under
the PGD attack, while our ReiT PGD-trained ViT-S model
achieves 52.86% (+1.35%) adversarial accuracy under the
PGD attack. We primarily attribute this superiority to the
negative interference of our proposed II-ReSA module on
the acquisition of adversarial perturbations. Besides, we
also find that our randomized method is effective in de-
fending against unseen white-box or black-box attacks, like
DeepFool, CW, and AutoAttack, which includes a black-
box attack, Square Attack [1]. This means that our ran-
dom entangled method plays a beneficial role in defend-
ing against unseen attacks. Additionally, ReiT can allevi-
ate the phenomenon of (catastrophic) overfitting to some
extent, e.g., the vanilla FGSM-trained ViT-S and PGD-

Model Method NAT PGD-20 PGD-100 AA

ViT-S
vanilla PGD 86.59 51.27 51.19 47.65
ARD & PRM 85.18 51.73 51.57 47.98
ReiT 86.55 52.68 52.61 49.70

DeiT-T
vanilla PGD 82.03 48.83 48.67 45.54
ARD & PRM 81.18 49.37 49.13 46.83
ReiT 80.73 49.92 49.73 50.39

Table 3. Results (%) of comparison with robust ViT methods on
CIFAR-10 dataset. The best results are stressed in BOLD.

trained DeiT-T models overfit (compared with other mod-
els, their adversarial performance plummets by a large mar-
gin), while the corresponding ReiT models show better ad-
versarial performance. This superiority may result from the
beneficial effect that helps the model escape from local op-
tima. Admittedly, our randomized methods usually achieve
a little lower natural accuracy than that of vanilla methods,
which is probably because the II-ReSA module will intro-
duce noises to the inference process, which is advantageous
to robust inference but disadvantageous to natural inference.
Results on ImageNette and ImageNet. We also provide
more experiments on ImageNette and ImageNet to evaluate
the performance of ReiT on large datasets. We train three
ViT models (ViT-T, DeiT-T, and Swin-T) on ImageNette as
well as one model (DeiT-T) on ImageNet, and evaluate the
trained models with NAT, FGSM, MIFGSM, PGD, and CW
attacks. The results are shown in Tab. 2, from which it is
evident that our proposed ReiT achieves better adversarial
robustness than that of the baseline methods.
Combination with other robust methods. Although the
above results are mainly based on standard adversarial train-
ing, we further combine our proposed ReiT with other
stronger robust training methods. Here, we adopt TRADES
[50] due to its excellent performance on [11]. The training
and evaluation settings are the same as those of the stan-
dard adversarial training. We conduct these experiments on
all the models and methods for a comprehensive evaluation.
The results are shown in Tabs. 1 and 2, which demonstrates
that our proposed ReiT can further improve the performance
of existing defense methods.
Comparison with robust ViTs. To better illustrate the
superiority of our proposed ReiT, We compare our method
with the state-of-the-art robust ViTs in [38] that proposed
two useful methods, i.e., Attention Random Dropping
(ARD) and Perturbation Random Masking (PRM), to boost
the robustness of ViTs. Because the ARD & RPM method
achieves the best performance in their work, we directly
use this method as our comparison. Specifically, we retain
their models under our training settings so as to compare
our method with those methods fairly. For the inference,
we evaluate all the methods under PGD-20 (20 steps PGD
attack with the maximum perturbation of 8/255), PGD-100
(100 steps PGD attack with the maximum perturbation of
8/255), and AutoAttack (AA) on CIFAR-10. The results are
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Ablation Component Accuracy
Item Bin Norm Iter Std NAT PGD DeepFool CW

Baseline - - - - 82.03 49.33 1.04 78.42
ReiT ✓ ✓ ✓ 0.1 80.73 50.07 26.25 80.85
Bin % - - - 80.83 49.34 18.46 79.63
Norm ✓ % ✓ 0.1 80.81 46.65 24.12 78.68
Iter ✓ ✓ % 0.1 80.84 49.47 24.18 80.64

Std

✓ ✓ ✓ 0.01 81.84 49.38 22.59 78.86
✓ ✓ ✓ 0.05 80.97 49.53 23.00 79.31
✓ ✓ ✓ 0.2 78.86 48.24 26.18 78.80
✓ ✓ ✓ 0.4 60.24 38.13 25.53 60.28

Table 4. Component ablation study and hyperparameter tuning re-
sults (%) of our proposed method for the DeiT-T model on CIFAR-
10 dataset. The best results are stressed in BOLD.

displayed in Tab. 3, from which we find that our ReiT can
achieve better performance under different adversarial set-
tings. For instance, under the AutoAttack attack for the
DeiT-T model, our method achieves a 4.85% increment
compared with the vanilla robust method, while the ARD &
RPM method only achieves a 1.29% increment. For more
experiments, please refer to the supplementary material.

5.3. Ablation Study

Component ablation. As discussed in Eqs. (8) and (13),
there are three primary components/operations for the pro-
posed ReiT that will affect the effect of the II-ReSA mod-
ule: 1) random entangled tokens r1 and r2; 2) iterative op-
timization of r2; 3) normalization of the optimized r2. The
results are shown in Tab. 4, from which we find that without
the random entangled tokens (here, we just use the random
token r1 and do not optimize r2 any more), the robust per-
formance has no significant improvement, which is because
the different random tokens r of different forward propaga-
tion do not necessarily lead to large differences of the out-
put Yout. If the outputs of two forward propagations are
similar, the attackers can use the last information to gen-
erate effective adversarial examples. For the normalization
ablation study, the robust performance drop without the nor-
malization operation, maybe because the training stage uses
the standard normal distribution to generate random token
r, but in the inference stage, the unnormalized r2 does not
follow the standard normal distribution, which hurts the per-
formance of robust models. Besides, the non-iterative opti-
mization of r2 can also improve the robust performance of
robust models, but it is inferior to the iterative ReiT.
Hyperparameter tuning. Additionally, the intensity of
randomness s in Eq. (13) is a crucial hyperparameter in our
proposed method. To illustrate its effect and select an ap-
propriate value, we conduct a set of hyperparameter tun-
ing experiments on CIFAR-10. The results are exhibited in
Tab. 4, which shows that for smaller s, the natural accuracy
is higher than that of our 0.1-intensity ReiT but lower than
that of the vanilla robust models, while the robust accuracy
is lower than of our 0.1-intensity ReiT but higher than that
of the vanilla robust models. However, for too large s (like

Model Method Run Time NAT PGD DeepFool CW AA

ViT-S

vanilla - 86.59±0.00 51.51±0.00 0.92±0.00 76.66±0.00 47.65±0.00

ReiT
1 86.55±0.00 52.86±0.00 26.60±0.00 79.43±0.00 49.70±0.00
5 85.95±0.64 52.75±0.99 26.05±0.63 79.63±0.41 50.08±0.68

10 85.98±0.72 52.74±1.00 26.03±0.73 79.20±0.75 50.01±0.99

DieT-T

vanilla - 82.03±0.00 49.33±0.00 1.04±0.00 78.42±0.00 45.54±0.00

ReiT
1 80.73±0.00 50.07±0.00 26.25±0.00 80.85±0.00 50.39±0.00
5 81.38±0.59 50.33±0.76 26.54±0.74 80.66±0.53 50.59±1.20

10 81.23±0.66 50.31±0.79 26.42±0.78 80.93±0.74 50.41±0.97

Table 5. Accuracy means and standard deviations (%) of our pro-
posed method on CIFAR-10 dataset under multiple executions.

0.2 and 0.4, especially 0.4), the performances on clean input
and adversarial input will both decline by a large margin,
which probably results from the fact that too strong random
signal interferes with the model to grab useful information
from the input.
Multiple execution. Our robust method includes a ran-
dom module (II-ReSA), whose performance may be influ-
enced by different execution environments. To eliminate the
environmental variance, we run our method multiple times.
The means and standard deviations are shown in Tab. 5, in
which we used the same machine random seed and different
random tokens r1 for the multi-execution results. Note that
no matter how many times we run the vanilla robust model
under the same machine random seed, the performance will
be the same. Thus, the accuracy standard deviations of it are
zero. Besides, the accuracy standard deviations of the one-
time execution ReiT are also zero. For the results of the
multi-execution (five-time and ten-time) ReiT, it is evident
that the robust performance stabilizes around certain values,
which are higher than those of the vanilla robust models.

6. Conclusion

In this paper, leveraging the distinctive architecture of the
self-attention module in ViTs, we introduced an innova-
tive input-independent random entangled self-attention (II-
ReSA) module, which enhances ViTs’ robustness against
adversarial attacks. Additionally, we proposed a novel
framework called the random entangled image transformer
(ReiT), employing a dual-level randomization strategy to
effectively bolster adversarial robustness. Our comprehen-
sive experiments validate the superiority of the proposed
ReiT, which achieves better robust performance compared
to other robust techniques across widely adopted bench-
mark datasets.
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