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Abstract

Gradient-based saliency maps have been widely used
to explain the decisions of deep neural network classifiers.
However, standard gradient-based interpretation maps, in-
cluding the simple gradient and integrated gradient algo-
rithms, often lack desired structures such as sparsity and
connectedness in their application to real-world computer
vision models. A frequently used approach to inducing
sparsity structures into gradient-based saliency maps is to
alter the simple gradient scheme using sparsification or
norm-based regularization. A drawback with such post-
processing methods is their frequently-observed significant
loss in fidelity to the original simple gradient map. In this
work, we propose to apply adversarial training as an in-
processing scheme to train neural networks with structured
simple gradient maps. We show a duality relation between
the regularized norms of the adversarial perturbations and
gradient-based maps, based on which we design adversar-
ial training loss functions promoting sparsity and group-
sparsity properties in simple gradient maps. We present sev-
eral numerical results to show the influence of our proposed
norm-based adversarial training methods on the standard
gradient-based maps of standard neural network architec-
tures on benchmark image datasets1.

1. Introduction
Deep neural networks have attained remarkable results in
various computer vision tasks including image classifica-
tion [17], object detection [44], and semantic segmen-
tation [10]. However, understanding and explaining the
decision-making process of these complex models remains
a challenge, which is required for high-risk applications
such as medical imaging [27], autonomous driving [16],
and face recognition [37]. To interpret the predictions of
neural network classifiers, several explanation methodolo-

1The paper’s code is available at: https://github.com/
peterant330/AdvGrad
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Figure 1. The original simple gradient map could be dense and
noisy. Post-processing methods such as sparsification enhance the
sparsity at the expense of lower fidelity to the original map. Our
proposed in-processing strategy with adversarial training results in
higher sparsity without losing fidelity to the simple-grad map. (We
use the Gini index as a sparsity measure, and relative AOPCMoRF

with respect to simple gradient as a fidelity score.)

gies have been proposed in the literature. Among these
explanation methods, gradient-based saliency maps have
been frequently applied to interpret image classifiers. The
saliency maps provide insight into the regions of the in-
put image contributing to the classifier’s decision and po-
tentially prompt the empirical understanding of phenomena
from data-driven models.

Despite the widespread use of standard gradient-based
interpretation maps such as simple gradients [29] and in-
tegrated gradients [32], they often lack desired structures
such as sparsity and connectedness. When applied to
real-world computer vision tasks, the generated saliency
maps have been frequently observed to be noisy and dense.
Such unstructured behavior could hinder the application
of gradient-based maps for detecting the influential fea-
tures in the classifier’s decision-making process. To ob-
tain more structured saliency maps, several post-processing

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11009



schemes [18, 30, 31, 42, 43] have been proposed in the
literature, which denoise the saliency map to gain higher
sparsity. However, a drawback of these post-processing
methods is the deviation from the original simple gradi-
ent map that alters the definition of the interpretation map.
For example, Adebayo et al. [1] conducted a sanity check
and found several interpretation methods such as Guided
Propagation and Integrated Gradients lacked sensitivity to
the model or the data-generating process. Arun et al. [2]
demonstrated similar findings on medical imaging applica-
tions. To illustrate the fidelity vs. sparsity trade-off in such
post-processing schemes, we display an example in Fig. 1,
where the simple gradient map looks to contain significant
noise scattered over the background. A post-processing
sparsification of the gradient map could raise the sparsity
of the map; however, the sparsity comes at the cost of a
considerable drop (more than 82%) in the fidelity score.

In this work, we propose a unified adversarial train-
ing (AT) framework to address the unstructured nature of
standard simple-gradient maps, where we apply a norm-
regularized adversarial training with a properly-designed
norm function as an in-processing scheme to promote the
sparsity structures in the simple gradient map. AT with
standard L2 and L∞-norm perturbations [19] has been suc-
cessfully and widely utilized in the literature to enhance the
adversarial robustness [33] and interpretability [26] of deep
neural networks. In our analysis, we extend the understand-
ing of the influence of AT algorithms on the interpretabil-
ity of a trained model, where we provide a convex duality
framework to understand the influence of the norm function
constrained in AT on the regularized norm of gradient maps
and hence the interpretability of neural nets.

Specifically, we show a duality relation between the reg-
ularized norm of adversarial perturbations and the norm
of input-based gradients. This duality relationship allows
us to design norm-regularized adversarial training methods,
which translates into the regularization of standard sparsity-
inducing norms, e.g. the group norm [41] and the elastic net
[45], of the simple gradient maps. As we show in this work,
the special cases of our proposed framework can promote
desired characteristics such as sparsity and connectedness
in simple gradient maps. Importantly, unlike the sparsity-
regularizing post-processing schemes, the gained sparsity
properties of our proposed AT methods do not cost any loss
in fidelity to the simple-gradient map, because we do not
alter the definition of the interpretation map and only regu-
larize the training process toward networks with more struc-
tured gradient maps.

We conduct several numerical experiments on bench-
mark image datasets to validate the efficacy of our pro-
posed AT-based methodology. The numerical results re-
veal the impact of our proposed norm-based AT methods on
standard gradient-based maps, showing the enhanced spar-

sity and connectedness properties. We empirically analyze
the performance of the trained neural nets in terms of sev-
eral factors including interpretability, robustness, and sta-
bility. Our numerical results indicate the improvements in
the mentioned structure-related factors offered by our de-
signed norm-regularized AT methods. Finally, we utilize
the shown duality relation to propose an interpretation har-
monization scheme for aligning simple gradient maps with
expert gaze maps, which performs satisfactorily in our nu-
merical experiments. Our work’s main contributions can be
summarized as:
• We show a duality relation between the regularized norms

of adversarial perturbations and gradient maps, and de-
velop a unified AT framework for regularizing gradient
maps.

• We derive special cases of our proposed AT-based frame-
work leading to the regularization of the elastic net and
group-norm of gradient map.

• We leverage the duality framework to propose an interpre-
tation harmonization scheme for aligning gradient maps
with human attention.

• We provide numerical results showing the efficacy of the
AT-based framework in improving the sparsity and stabil-
ity of interpretation maps.

2. Related Work
Gradient-based Interpretation. Using the gradient of the
output of a deep neural network w.r.t. an input image is a
widely-used approach to generate saliency maps [29]. This
method has been utilized in several related works and mul-
tiple variants of this approach are proposed in the litera-
ture, including SmoothGrad [30], Integrated Gradients [32],
DeepLIFT [28], and GradCAM [24]. The vanilla gradient-
based maps without post-processing are often noisy and dif-
ficult to interpret. A group of methods are proposed to im-
prove the visual quality by sparsifying the gradient-based
maps: Guided Propagation [31] removes the noise artifacts
from saliency maps by suppressing negative activations in
the back-propagation. Sparsified-SmoothGrad [18] applies
a sparsification to the saliency map to promote sparsity and
robustness. MoreauGrad [43] generates saliency maps us-
ing an optimization problem with sparsity regularization.
One drawback of the discussed methods is that they are
all post-processing schemes, which may compromise the
fidelity to the original simple-gradient map. On the other
hand, our proposed framework is an in-processing scheme
that remains faithful to the simple gradient map.
Adversarial Training and Interpretability. Adversarial
training (AT) involves training the networks using adversar-
ial examples [19]. Fast Gradient Sign Method (FGSM) [9]
generates adversarial samples using a single iteration to cre-
ate the adversarial training example for training the clas-
sifier. Projected gradient descent (PGD) [19] uses several
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gradient-based steps to generate more effective adversarial
examples in order to make the trained model more robust
to norm-constrained adversarial attacks. While the primary
objective of AT is to improve the trained model’s robust-
ness against adversarial attacks, several studies have shown
that AT can also improve the visual quality of interpretation
maps [15, 22, 26]. Specifically, AT has been empirically
shown to suppress irrelevant features [14], and the standard
ℓ∞-norm-based AT will lead to higher sparsity and stabil-
ity of the interpretation maps [3]. Building upon and ex-
tending these findings, our work provides a unified duality
framework that connects the perturbation norm constrained
by the AT algorithm and the norm penalized for the inter-
pretation map. Specifically, we discuss novel variants of AT
methods that lead to the regularization of the elastic net and
group norms of the interpretation maps which have not been
studied in these related works.

3. Preliminaries
3.1. Gradient-based Saliency Maps

Throughout this work, our analysis mainly focuses on the
standard simple gradient as the gradient-based interpreta-
tion. We use x ∈ Rd and y ∈ RC to denote the input and
output of the neural network classifier. Note that y denotes
the output of the neural net’s post-softmax layer and con-
tains the assigned likelihood for each of the C classes in the
classification task. The neural net function fθ : Rd → RC

maps the input vector to the output vector, where θ denotes
the parameters of the neural net. The simple gradient gen-
erates a saliency map by taking derivatives of the output of
the neural network with respect to the input:

SG(fθ,c,x) := ∇xfθ,c(x).

Here, c can be chosen as ground-truth label y or the label c
with the maximum likelihood assigned by the classifier. In
our analysis, we assume ∇xfθ(x) denotes the saliency map
corresponding to the ground-truth label of sample x.

3.2. FGSM and PGD

We consider two of the most widely used forms of adversar-
ial training, FGSM and PGD, in this work. These methods
first generate adversarial samples by calculating the gradi-
ent of the loss function with respect to the input data and
then perturb the data by taking one or multiple small steps
in the direction of the sign of the gradient. The perturbation
is usually bounded by l∞-norm. The parameters of the net-
work are then updated to minimize the loss with respect to
these adversarial samples. We can use the following objec-
tive to summarize the optimization problem where P̂ is the
empirical distribution of training samples

min
θ

E(x,y)∼P̂

[
max

∥δ∥∞≤ϵ
L(fθ(x+ δ), y)

]
. (1)

Table 1. Summary of regularized norm h on perturbation δ
and the resulting regularized function h⋆ of the input gradient
∇xL(fθ(x), y). Detailed description can be found in Section 4.3.

h(δ) h⋆(∇xL(fθ(x), y))

I(∥δ∥∞ ≤ ϵ) ϵ∥∇xL(fθ(x), y)∥1

I(∥δ∥2,∞ ≤ ϵ) ϵ∥∇xL(fθ(x), y)∥2,1∑
i PQϵ1,ϵ2 (δi) ϵ1∥∇xL(fθ(x), y)∥1 + ϵ2∥∇xL(fθ(x), y)∥22
1
4ϵ

∥∥ 1
W

⊙ δ
∥∥2
2

ϵ
∥∥W ⊙∇xL(fθ(x), y)

∥∥2
2

FGSM generates adversarial samples by taking one step in
the direction of the sign of the gradient:

x∗
FGSM = x+ ϵ · sign

(
∇xL(fθ(x), y)

)
PGD, on the other hand, iteratively updates the samples
with a stepsize α:

xt+1 = Πx+S

(
xt + αsign(∇xt

L(fθ(xt), y))
)
,

where S = {z : ∥z∥∞ ≤ ϵ} denotes the ϵ-radius L∞-ball.

3.3. Fenchel Conjugate

The Fenchel conjugate is an essential operation in convex
analysis which has many applications to various computer
vision algorithms. For a function f : X → R, its Fenchel
conjugate f⋆ : X → R is defined as:

f⋆(z) = sup
{
⟨x, z⟩ − f(x) : x ∈ X

}
,

where ⟨·, ·⟩ denotes the inner product, and sup represents
the supremum. Note that for a convex f , f will be the
Fenchel conjugate of f⋆. Furthermore, for every function
f , the Fenchel conjugate f⋆ is guaranteed to be convex.

4. An Adversarial Training Methodology for
Regularizing Interpretation Maps

In this section, we show a duality relation between the in-
put gradient and the perturbation vectors, which is based on
the linear approximation of the loss function ℓ

(
f(x+ δ), y

)
around data point x. In the approximation, the first-order
term ⟨∇xℓ

(
f(x), y

)
, δ⟩ is the inner product of the pertur-

bation vector and the input-based gradient of the loss func-
tion. Therefore, as will be explained in the section, to pe-
nalize a norm of the saliency map in the adversarial training
process, we propose to constrain the dual norm of the per-
turbation vector. We summarize three variants of the norm
constraint on the perturbation and its effect on the simple
gradient saliency maps in Table 1.

4.1. Rethinking the Impact of ℓ∞-Norm-Based Ad-
versarial Training on Saliency Maps

We perform a first-order analysis by means of Fenchel con-
jugate to indicate how L∞-norm-based adversarial training
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could lead to higher sparsity in gradient-based maps. Un-
der a small enough perturbation norm bound ϵ and twice-
differentiable loss function, the objective of adversarial
training in Eq. 1 can be approximated by first-order Taylor
expansion as

Eq. 1 = min
θ

Ex,y∼P̂

[
L(fθ(x), y)

+ max
∥δ∥∞≤ϵ

{
δT∇xL(fθ(x), y)

}]
+O(ϵ2).

Using the common cross-entropy loss or hinge loss, the
derivative of the loss with respect to the predicted log-
its at every training sample will be ∇xL(fθ, (x), y) =
−fθ,y(x)∇xfθ(x), so we can build the connection between
the objective and the saliency map:

Eq. 1 = min
θ

Ex,y∼P̂

[
L(fθ,y(x))

+fθ,y(x) max
∥δ∥∞≤ϵ

{
−δT∇xfθ(x)

}]
+O(ϵ2).

Note we can leverage Fenchel conjugate operation to trans-
form the maximization subproblem in the above problem
into an unconstrained optimization:

max
∥δ∥∞≤ϵ

−δT∇xfθ(x) = max
δ

−δT∇xfθ(x)−I(∥δ∥∞ ≤ ϵ),

(2)
where I(condition) = 0 if the condition holds and +∞ oth-
erwise. With the concept of Fenchel conjugate, the opti-
mal value of the optimization problem defined in Eq. 2 is
ϵ∥∇xfθ(x)∥1. Hence, we successfully transform the orig-
inal minimax optimization problem into a regularized opti-
mization within an approximation error O(ϵ2):

Eq. 1 ≈ min
θ

Ex,y∼P̂

[
L(fθ(x), y)+ϵfθ,y(x)∥∇xfθ(x)∥1

]
.

Hence, we find that adversarial training with L∞-norm is
approximately equivalent to applying L1-norm regulariza-
tion to the simple gradient saliency map, therefore promot-
ing the sparsity of the saliency maps.

4.2. Adversarial Training with Fenchel Conjugate
Regularization: a Unified Approach

Next, we consider adversarial training with a general norm-
based regularization penalty. Here our goal is to promote
a structured saliency map through a regularization function
h⋆(z). Note that for a convex h, the Fenchel conjugate of
h⋆(z) will be h(x), Therefore, we consider the min-max
optimization with the adversarial penalty function −h(δ):

min
θ

Ex,y∼P̂

[
max

δ
L(fθ(x+ δ), y)− h(δ)

]
.

Following our analysis for the L∞-norm-based adversarial
training, we define the first-order approximate loss:

L̂(fθ(x), y, δ) := L(fθ(x), y) + δT∇xL(fθ(x), y),

To measure how well L̂(fθ(x), y, δ) approximates the ad-
versarial loss, we observe the approximation error can be
simply bounded for the class of λ-smooth functions.

Definition 1 We call g : Rd → R λ-smooth if for every x
and z: ∥∇g(x)−∇g(z)∥2 ≤ λ∥x− z∥2.

Observation 1 The approximation error of the first-order
Taylor series expansion of adversarial loss under an ϵ-L2-
norm bounded perturbation ∥δ∥ ≤ ϵ can be bounded as

∣∣L̂(fθ(x), y, δ)− L(fθ(x+ δ), y)
∣∣ ≤ λϵ2

2

The observation shows L̂(fθ(x), y, δ) can be a good ap-
proximation of the adversarial loss under a small ∥δ∥. Com-
bining the approximate loss with h(δ) regularization, we
can derive the following equivalence by Fenchel conjugate:

Proposition 1 Using Fenchel conjugate h⋆, we can reduce
the maximization of the approximate adversarial loss as

max
δ

{
L̂(fθ(x), y, δ)− h(δ)

}
= L(fθ(x), y) + h⋆(∇xL

(
fθ(x), y)

)
.

(3)

In a scenario that the neural network completely fits
the training data, we have that ∇xL(fθ(x), y) =
−fθ,y(x)∇xfθ(x) ≈ −∇xfθ(x). Therefore, to enforce the
gradient map ∇xfθ(x) to satisfy a bounded penalty func-
tion h⋆, we can conduct adversarial training with an addi-
tive penalty term −h(δ). The optimal perturbation δ∗ can be
derived via the standard gradient ascent algorithm to max-
imize the regularized adversarial loss or be approximated
with the analytic solution to the approximate optimization
problem.

4.3. Special Cases of the Fenchel Conjugate-based
Duality Framework

Leveraging the duality framework in the previous section,
we derive regularization penalty terms to penalize other
sparsity norms different from l1-norm and discuss their in-
fluence on the saliency maps.
L2,1-group-norm penalty. The L2,1-group-norm of x ∈
Rd for disjoint variable subsets S1, · · · , St ⊆ {1, · · · , d} is
defined as the special case p = 1 of the following definition:

∥x∥2,p := ∥[∥xS1∥2, · · · , ∥xSt∥2]∥p.

To apply the duality framework to the group norm (with co-
efficient ϵ > 0), we derive its Fenchel conjugate as follows.

Proposition 2 The Fenchel conjugate of the above L2,1-
group-norm is h(z) = I(∥z∥2,∞ ≤ ϵ).
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Different from L1-norm inducing pixel-level sparsity,
L2,1-group-norm will induce sparsity of the patch basis.
Under this regularization, the more influential patches are
expected to be highlighted in the saliency map.This effect
could further lead to a connected saliency map, which will
be desired when adjacent pixels belonging have similar ef-
fects on the prediction of the classifier.
Elastic net penalty. The elastic net penalty h⋆(x) linearly
combines the L1 and L2

2 penalty terms:

h⋆(x) = ϵ1∥x∥1 + ϵ2∥x∥22, ϵ1 > 0, ϵ2 > 0.

Proposition 3 The Fenchel conjugate of the above elastic
net penalty h⋆ is h(z) =

∑
i PQϵ1,ϵ2(zi) where PQϵ1,ϵ2 is

the piece-wise quadratic function defined as:

PQϵ1,ϵ2(zi) =


1

4ϵ2
(zi − ϵ1)

2 if ϵ1 < zi

0 if − ϵ1 ≤ zi ≤ ϵ1
1

4ϵ2
(zi + ϵ1)

2 if zi < −ϵ1.

The linear combination of the L1-norm and L2
2-norm

penalty terms in the elastic net results in a strongly con-
vex regularization function, which is known to promote the
stability of the sparsity pattern. Therefore, one can expect
that the elastic net-regularized maps could possess higher
robustness and stability than the L1-norm regularized maps.
Interpretation harmonization. The purpose of interpreta-
tion harmonization is to align the saliency map generated by
the neural network with some reference attention map. The
reference attention map can be manually labeled by domain
experts, or based on some physical principle behind the
classification task. Through interpretation harmonization,
the network could be enabled to analyze the phenomenon
in a similar way as a human, which would help diminish the
potential bias or shortcuts learned by the neural net [6, 7].

To achieve this goal, we leverage L2-norm regulariza-
tion to diminish the importance scores of unrelated features.
Specifically, assume A ∈ Rd is the expert’s attention map
with non-negative entries. A greater value implies a more
important feature. We define Ã := max(A)−A+σ, where
σ is small enough so that the ordinal relation is reverted and
all elements are positive. To diminish the importance score
of the background region, we use the penalty term:

h⋆(x) = ϵ
∥∥√Ã⊙ x

∥∥2
2
, ϵ > 0

where ⊙ denotes Hadamard product. By adding this regu-
larization term, the importance score of unrelated features
is pushed to 0 while important features remain unaffected.

Proposition 4 The Fenchel conjugate of the above
weighted L2-norm square regularization is:

h(z) =
1

4ϵ

∥∥ 1√
Ã

⊙ z
∥∥2
2
.

Input

GT

Standard
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Figure 2. Qualitative results based on the synthesized dataset.

The derivation requires the weight term Ã to be positive.
However, a positive weight only leads to the diminishing of
the importance score of unrelated features. It does not ex-
plicitly promote larger scores for important features. Empir-
ically, we have found that using δ∗ in the opposite direction
to the gradients for important pixels helps increase the at-
tribution scores for important features and results in better
alignment. Therefore, in our numerical experiment, we set
Ã = 1

2 max(A)−A and δ∗ = 2ϵÃ⊙∇xL(fθ(x), y).

5. Experiments

We conducted comprehensive numerical experiments to
evaluate the performance of our proposed adversarial
training-based methods. Firstly, we evaluate saliency maps’
accuracy on a synthesized dataset with ground truth inter-
pretation. Next, we assessed the visual quality, sparsity, in-
terpretability, robustness, and stability of the saliency maps
on Imagenette. Finally, we demonstrated the effectiveness
of our interpretation harmonization strategy on the CUB-
GHA dataset. Our quantitative results include adversarial
training with one normalized step and multi-step gradient
ascent. The main text focuses on the results of one nor-
malized step, while detailed training settings and complete
numerical results can be found in the Appendix.

5.1. Results on synthesized dataset

To illustrate how adversarial training can improve the
model’s interpretability, we first conducted experiments on
a synthesized dataset with ground-truth for the saliency
maps proposed by [35]. There are three regions on the
ground-truth of the synthesized dataset (Fig. 2): back-
ground without any classification information (white re-
gion); localization information describes the location of an
object (light red region); and distinguishing features crucial
for classification (dark red area). We trained ResNet-34 [12]
with standard training and regularized adversarial training.

As the ground-truth was a ternary class, we reported
the five-band-score reflects pixel accuracy, recall, precision,
and the false positive rate (FPR) based on ternary classifi-
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Table 2. Comparison of five-band-scores and binary scores of standard training and adversarial training.

Methods Five-band-scores Binary scores
Pixel acc (↑) Recall (↑) Precision (↑) FPR (↓) Pixel acc (↑) Recall (↑) Precision (↑) FPR (↓)

standard 89.81 9.86 32.58 1.21 88.66 44.47 16.22 10.22
L1-norm 89.82 6.41 29.20 0.76 94.60 65.06 30.84 4.70

group-norm 89.84 7.54 27.35 0.91 94.27 63.78 29.77 4.99
elastic net 89.91 8.35 26.83 0.92 94.63 65.65 31.29 4.66

harmonization 90.14 11.37 43.31 1.14 93.82 67.05 28.15 5.54

Tench 
(fish)

English  
springer

(dog)

Standard L-1 Group Norm Elastic NetExample

Figure 3. Images optimized for maximizing class-logit activations.

cation. The results are listed in Table 2, where the method’s
name corresponds to the penalty term h⋆ in Eq. 3. The
harmonization training achieved the best scores in terms of
most of the metrics, showing the effectiveness of the pro-
posed harmonization method. We also noticed that adver-
sarial training-based methods consistently achieved higher
accuracy and lower FPR compared with stranded training
but led to lower recall and precision, because the adver-
sarial training raised the sparsity of gradient maps. The
importance scores of the localization area, which was less
important compared with distinguishing features, were also
diminished. Therefore, following [11], we also converted
the ternary classification task to a binary classification task
by considering the background and localization information
as one class. The results suggested that adversarial training
could significantly improve the accuracy of saliency maps
in detecting distinguishing features.

We visualized the saliency maps in Fig. 2 for qualitative
evaluation (we only show results with elastic net regular-
ization here and leave the rest in the Appendix). We dis-
covered that the saliency map of standard training was acti-
vated more clearly in the region of the localization informa-
tion than it was in the region of the distinguishing feature.
In contrast, the saliency map with adversarial training was
activated more significantly for the distinguishing features,
especially on the boundaries. Moreover, the saliency maps
looked more sparse and less noisy.

5.2. Results on ImageNette

We performed numerical experiments on ImageNette, a ten-
class subset of ImageNet [4], to examine the properties of
the proposed adversarial training. Specifically, we studied
the sparsity, interpretability, adversarial robustness, and sta-
bility of the saliency maps generated for EfficientNet [34]

classifiers with the proposed adversarial training methods.
Sparsity. We trained the neural network models with differ-
ent regularization coefficients and used the Gini Index [13]
as a measure of the sparsity of the saliency map. The results
are shown in Table 3. All the proposed adversarial training-
based methods led to more sparse saliency maps than stan-
dard training, with zero or only minor drops in clean ac-
curacy. The L1-norm-based method attained the highest
sparsity. Also, the sparsity increased with the regulariza-
tion coefficient ϵ. The gradient maps visualized in Fig. 4
suggest that standard training could lead to miscellaneous
points in the background. On the other hand, the gradient
maps with our proposed adversarial training methods seem
to have higher visual quality.
Interpretability. To show that the proposed training meth-
ods can improve the interpretability of the model, we calcu-
lated the DiffROAR score [26] for the methods. DiffROAR
measures the difference in the predictive power of the
dataset, where the top and bottom k% of the pixels are
removed according to the importance score. A higher
DiffROAR score shows the model captures the task-related
features from the inputs. To this end, we measured the
DiffROAR score for each method with k from 10% to 90%
in increments of 10%. Each measurement was repeated
with three different initializations, and the final DiffROAR
score was the average of the 27 measurements. The results
are shown in Table 3. Compared with standard training, the
proposed methods can improve the model’s interpretabil-
ity, especially under the elastic net regularization, which
achieved the highest DiffROAR score.

We also visualized the learned feature for each model,
using the optimization-based feature visualization tech-
nique of deep-dream [20]. The results (Fig. 3) also show
that class-specific features identified with the proposed
norm-regularized adversarial training methods look more
meaningful to human perception.
Robustness. To assess the robustness of interpretation
maps under the standard and proposed training methods, we
adopted an L2-norm bounded interpretation attack method
proposed by [18]. We gradually increased the strength
of the attack and measured the robustness through simi-
larity measures of the saliency maps before and after the
attack. We adopted two metrics as robustness measures:
1) top-k intersection ratio [8], which is the ratio of pix-
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fast iterative penalty fast iterative penalty fast iterative penalty

Standard

Figure 4. Qualitative comparison of saliency maps generated by networks with different adversarial training protocols (fast, iterative) and
standard training with additional regularization on input gradients (penalty).

Table 3. Quantitative evaluation on ImageNette.

Methods
DiffROAR

(%) (↑)
Gini

(%) (↑)
Acc.

(%) (↑)

standard 1.81 46.53 89.04

L1-norm (ϵ=0.01) 2.95 56.73 90.46
L1-norm (ϵ=0.05) 2.12 62.04 84.13
L1-norm (ϵ=0.10) 1.97 65.53 78.85

group-norm (ϵ=0.10) 2.57 50.07 86.83
group-norm (ϵ=0.50) 1.32 49.15 87.57
group-norm (ϵ=1.00) 0.40 52.70 83.80

elastic net (ϵ1=0.01, ϵ2=0.01) 2.60 57.10 87.72
elastic net (ϵ1=0.01, ϵ2=0.05) 3.24 57.35 87.67
elastic net (ϵ1=0.01, ϵ2=0.10) 3.14 54.44 87.19
elastic net (ϵ1=0.05, ϵ2=0.01) 2.31 60.05 84.59
elastic net (ϵ1=0.05, ϵ2=0.05) 2.11 61.84 84.69
elastic net (ϵ1=0.05, ϵ2=0.10) 2.17 60.25 84.54

els that remain salient after the interpretation attack, and
2) the structural similarity index measure (SSIM) [38]. We
compared the proposed training methods with the baseline
standard training and three post-processing-based baselines,
SmoothGrad, Sparsified-SmoothGrad (Sparsified-S.), and
MoreauGrad (Fig. 5). Standard training seemed vulnerable
to minor attacks, even when combined with the Smooth-
based post-processing. In contrast, the neural nets trained
by the proposed methods displayed significantly higher ro-
bustness to the attacks. We also observed that the elastic net
and group-norm-based training methods performed slightly
more robustly than the L1-norm-based method.
Stability. We evaluated the algorithmic stability as the mag-
nitude of perturbation in the saliency maps under classifiers
trained with different training data or random initialization.
As pointed out by [39], standard training with different

initializations can result in large discrepancies in saliency
maps. We examined if the proposed training methods can
alleviate this issue. To this end, we switched 10% of the
training data with the test data and initialized two networks
with different random seeds. Then we trained these two
networks with the same training process. We used SSIM
and top-k overlap to measure the similarities of the gener-
ated saliency maps, where the top-k overlap was defined
as the Dice score of the top-k masks. As shown in Fig. 5,
adversarial training could significantly improve stability. It
even brings more improvement than post-processing meth-
ods. Note for Sparsified-SmoothGrad, the high SSIM is
due to the sparsity of the saliency maps. Through studying
top-k overlap, the activated regions were actually different.
Among the three variants of adversarial training, the elas-
tic net could achieve the best stability, as the incorporation
of L2

2 term could increase the smoothness of the objective
function, making the optimization process less sensitive to
the perturbation of the training data.

Comparison of different training protocols. We also
conducted experiments to see how different training pro-
tocols affect the numerical results. Specifically, we com-
pared one-step optimization (fast), multiple-step optimiza-
tion (iterative), and free adversarial training (free, in Ap-
pendix) [25]. As a baseline, we also studied standard train-
ing with norm regularization directly applied to the objec-
tive function (penalty). We visualized a few saliency maps
in Fig. 4 for comparison. Standard training with regular-
ization failed to generate structured saliency maps, showing
the challenge of network optimization with regularization
in the objective function, which further certified the supe-
riority of adversarial training. Visually, fast, and iterative
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Figure 5. Quantitative robustness and stability comparison. Left/Middle: Comparison of SSIM/top-k intersection of saliency maps before
and after the attack. Right: Comparison of SSIM/top-k overlap of saliency maps generated by networks with different stochastic training.

Table 4. Top-k overlap (%) between gaze map and saliency map
on CUB-GHA dataset.

ϵ 0.0 0.1 0.5 1.0 5.0

top 5% overlap 33.42 35.07 38.74 42.63 50.62
top 10% overlap 41.81 42.99 45.60 47 06 52.60

accuracy (%) 67.58 67.50 66.56 66.65 64.99

training achieved comparable quality. However, for L1-
norm, interactive training would lose sparsity compared to
fast training, but for the elastic net, the trend was the op-
posite. The Fenchel conjugate of elastic net regularization
is differentiable everywhere due to the square term, making
its optimization easier compared with L1-norm.

5.3. Harmonization with gaze maps

We conducted experiments on the CUB-GHA [21] to ver-
ify the effectiveness of our interpretation harmonization
strategy on real-world data. CUB-GHA is an extension of
CUB [36], which includes gaze maps collected from do-
main experts for bird category classification. The gaze map
is a type of human attention map reflecting how human ex-
perts would conduct this task. We aim to harmonize the
saliency maps with human attention so that the network
could make the decision more similar to humans.

To do this, we normalized the gaze map and used the
attention score as the weights for the l2-norm perturbation
during adversarial training. The results are shown in Fig. 6.
The original saliency maps highlighted the whole body of
the bird, while the gaze maps were more focused on a spe-
cific part (e.g. head) of the bird. After harmonization, the
saliency maps showed better alignment with the gaze maps.
We also calculated the top-k overlap between saliency maps
and gaze maps (Table 4). The results showed an increasing
trend of the overlap as we raised the coefficient ϵ, while the
trade-off of accuracy was in a reasonable range.

Input

Gaze 
Map

Original 
Saliency

Harmonized
Saliency

Figure 6. Qualitative results based on CUB-GHA dataset.

6. Conclusion
In this paper, we introduced a duality framework to analyze
the impact of norm-regularized adversarial training on the
gradient-based saliency maps of a trained neural net classi-
fier. Leveraging this duality framework, we proposed sev-
eral variants of norm-regularized adversarial training, de-
signed to promote certain structures in the gradient-based
interpretation maps, including sparsity, group sparsity, and
consistency with human attention. We provided experimen-
tal results on several benchmark datasets to validate the ef-
fectiveness of our proposed methods, which demonstrated
that properly designed adversarial training methods can en-
hance model interpretability as well as the stability and ro-
bustness of the gradient-based maps. An interesting future
direction is to develop a similar adversarial training-based
regularization framework for structured interpretation maps
according to integrated gradients, DeepLIFT, and Grad-
Cam. Another relevant future direction is to explore other
forms of penalty terms in order to expand the methodology
to domains beyond computer vision.
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