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Figure 1. (a) The Dynamic Problem of Data Filtering: Web data is non-homogenous, and past work has proposed metrics that ranking
various data subsets according to their diminishing quality (y-axis). However, training on ‘high-quality’ data for multiple epochs leads to
diminishing utility (x-axis), an angle ignored in past work. Assume we have compute equivalent to 6 data pools, one could train on the
best pool (E) for 6 epochs, or train on the best two pools (E and D) for 2 epochs each, and so on. Our work aims to answer–what is the best
allocation of computational resources in such scenarios? (b) Data Filtering Scaling Laws: Our work proposes scaling laws for predicting
the model performance on mixtures of data pools of various quality. Note that we do not train on data mixtures to fit the above scaling
curves (scatter points are test points), rather the scaling curves are estimated from the scaling parameters of individual pools.

Abstract

Vision-language models (VLMs) are trained for thou-
sands of GPU hours on carefully selected subsets of mas-
sive web scrapes. For instance, the LAION public dataset
retained only about 10% of the total crawled data. In re-
cent times, data curation has gained prominence with sev-
eral works developing strategies to retain ‘high-quality’
subsets of ‘raw’ scraped data. However, these strategies
are typically developed agnostic to the available compute
for training. In this paper, we demonstrate that making fil-
tering decisions independent of training compute is often
suboptimal—well-curated data rapidly loses its utility when
repeated, eventually decreasing below the utility of ‘unseen’

⇤
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but ‘lower-quality’ data. While past research in neural scal-
ing laws has considered web data to be homogenous, real
data is not. Our work bridges this important gap in the lit-
erature by developing scaling laws that characterize the dif-
fering ‘utility’ of various data subsets, and accounting for
how this diminishes for a data point at its ‘nth’ repetition.
Our key message is that data curation can not be agnos-
tic of the total compute a model will be trained for. Even
without ever jointly training on multiple data buckets, our
scaling laws enable us to estimate model performance un-
der this dynamic trade-off between quality and repetition.
This allows us to curate the best possible pool for achieving
top performance on Datacomp at various compute budgets,
carving out a pareto-frontier for data curation.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Machine learning has evolved from supervised training
on small carefully labeled datasets to training on massive
scrapes of the web, usually collected from data sources such
as Common Crawl [1]. However, since web-scale datasets
are noisy, they are generally curated to extract ‘high quality’
informative data points. For example, LAION dataset [42,
43] is a carefully curated dataset which retains just 10% of
the original web-crawled data, by keeping only the image-
caption pairs with a high CLIP similarity scores (along with
some other rules). Later approaches developed more so-
phisticated filtering methods like T-MARS [31] which ranks
the data based on CLIP score after masking the text or Fang
et al. [11], Maini et al. [31] which rank the data based on the
drop in CLIP scores after the model if finetuned on some
held-out validation data. Note that all these data curation
approaches involve ranking the data using some metric and
then carefully choosing a threshold score, below which the
samples are filtered out. Visual Language Models (VLM’s)
like CLIP are then generally trained for multiple epochs on
these curated datasets [14].

In this work, we first show that data curation cannot be
agnostic to compute. Specifically, when training for large
compute (large epochs) one needs to filter less aggres-
sively as compared to when training for small compute.
For example, we show that there exist settings when training
on aggressively filtered LAION dataset [42, 43] is actually
worse than naively training on unfiltered raw data from the
common crawl. This is because, after multiple repetitions,
the high-quality filtered data has negligible remaining util-
ity. On the other hand, the low-quality data samples, though
lower in initial utility, are seen fewer times and hence have a
higher utility towards the end. In other words, the utility of
data diminishes with repetition, and hence filtering metrics
must be designed by assessing the trade-off between the di-
minishing utility of a small pool of ‘high-quality’ data, and
the initially lower but slowly diminishing utility of a larger
pool that includes ‘lower-quality’ data.

Given the large variance in computational budgets one
might have, identifying the ideal data filtering threshold
poses a challenge. A straightforward, yet computation-
ally prohibitive method would involve training models with
datasets curated at different thresholds. To circumvent this,
we leverage scaling laws to predict the performance of mod-
els trained with optimal filtering strategies.

Web data is inherently heterogeneous, consisting of data
pools with varying levels of quality. However, current scal-
ing law research tends to model web data using a unified
set of scaling parameters, which is problematic consider-
ing these parameters represent critical dataset characteris-
tics such as quality and diversity. In this study, we in-
troduce the first scaling laws tailored for heterogeneous
web data, enabling the prediction of models trained with

Figure 2. Given an initial data pool of 128M samples, we train
ViT-B/32 CLIP models for a total of 640M samples. As we train
for longer, the accuracy gains on the LAION data subset that fil-
tered the common crawl to 10% of its initial size plateau. Surpris-
ingly, even no-filtering of the common crawl is better than the pop-
ular LAION dataset after seeing more than 450M samples.

data mixtures of diverse quality pools under repetition.
Crucially, our approach does not rely on training with all
possible data mixtures to determine scaling parameters. In-
stead, we estimate these parameters for any given data mix-
ture by utilizing those of the individual pools.

Empirically, we show that our scaling laws for hetero-
geneous webdata allow us to predict the pareto-optimal fil-
tering strategy at various compute budgets ranging from
32M to 640M, using the medium scale pool (128M sam-
ples) of DataComp [14]. Finally, we also validate our scal-
ing curves at extremely large scale up to 34B compute us-
ing pre-trained publicly available checkpoints.

2. Related Work
Data Filtering Vision-language models are trained on
noisy webscale datasets, making data filtering a crucial pre-
cursor. OpenCLIP [23] tried to reproduce the performance
of OpenAI’s CLIP [38] by curating LAION-400M [42]
dataset. However, their performance still lagged that of
CLIP, suggesting the importance of DataCuration. Re-
cently, Datacomp [14] streamlined the efforts in this direc-
tion by releasing a well-crafted benchmark challenge for
subset selection from common crawl.

Most of the state-of-the-art data curation approaches in-
volve ranking the data using some metric. For example,
LAION [42, 43] uses a CLIP score based filtering (amongst
many other rules), where samples with a image-caption sim-
ilarity score lower than 0.28 (as assesed by a pretrained
CLIP) are filtered out. Mahmoud et al. [30], Nguyen
et al. [33] propose to use synthetic-captions generated by
an image captioning model [29] to rank the data. Recently,
T-MARS [31] and CAT [36] highlighted that a large frac-
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tion of images in these webscale datasets lack any learnable
“visual” features, and have high similarity with the caption
only due to text in the images (OCR) matching the cap-
tion. They propose to filter out 50% of the data based on the
CLIP similarity scores after masking the text using an OCR
detection algorithm. Similarly, C-SSFT [31] and DFN [12]
propose filtering out mislabeled samples by assessing the
drop in CLIP scores when finetuning a pretrained CLIP on a
held-out validation set. Some other works include Yu et al.
[48] which uses a mixture of rules and Xu et al. [46] which
uses similarity with downstream metadata.

In this work, we highlight why data filtering cannot be
agnostic to training compute and how the ordering varies
as one changes the training paradigm. Infact, we showcase
LAION filtering (used to train state-of-the-art OpenCLIP
models ) can even be sub-optimal to no-filtering or training
on the raw common crawl under certain settings.

Scaling Laws in Language Modeling One of the most
salient trends in recent deep learning research is the obser-
vation that neural network performance often improves pre-
dictably with an increase in model size, data size, and com-
putation. In the domain of language modeling, such ob-
servations have been systematized into a set of principles
known as scaling laws. Kaplan et al. [26] conducted a com-
prehensive study on scaling laws for neural language mod-
els. They observed that, given fixed computational budgets,
there exists an optimal model size, training data size, and
training time. Interestingly, the triple (model size, data size,
batch size) tends to scale in a roughly lock-step manner, re-
inforcing the notion that larger models require more data
and more computation to be trained effectively. This obser-
vation is corroborated by Hernandez et al. [20], Hoffmann
et al. [21] who delve deeper into training compute-optimal
language models and highlight the importance of balancing
computation with model and data sizes. Sardana and Fran-
kle [41] propose modifications to incorporate the inference
cost as well into the scaling laws. Bahri et al. [3], Hutter
[22] theoretically study neural scaling laws.

Most closely related to our work, Muennighoff et al.
[32] show that training on tokens beyond four epochs yields
negligible gains compared to training on new language data
due to diminishing utility. However, they do not consider
the case of different data quality pools. In this work, we how
that mixture of data pools cannot be modeled with an ef-
fective dataset size formulation of Muennighoff et al. [32].
Crucially, one needs to model a decay in utility factor (the
scaling parameter b in y = an

b) as well.
Finally, Hashimoto [17] as well study scaling laws for

various mixture proporations, but their study is limited to
small scale supervised learning tasks. In this work, we focus
on scaling laws for large scale contrastive training of visual
language models like CLIP.

Scaling laws for downstream performance Although
traditionally the scaling laws have focused on modeling the
training loss, recent works have started directly modeling
the downstream performance [16, 24]. Alabdulmohsin
et al. [2], Caballero et al. [6] propose some amendments to
estimate downstream performance on image classification
and machine transalation tasks respectively. In this work,
we model ImageNet zeroshot accuracy and an average per-
formance over 18 tasks from DataComp [14] to fit the scal-
ing curves for data filtering.

Scaling Laws in CLIP Application of scaling laws to
models like CLIP is still an area of active research. As with
the scaling laws observed in pure language models, there’s
an indication that as the model and data sizes for CLIP grow,
its performance on downstream vision tasks improves, al-
beit with diminishing returns [15, 43]. Cherti et al. [9] try
to fit standard scaling curves similar to Kaplan et al. [26]
on CLIP models of varying size and architecture. How-
ever, note that contrary to language models which are rarely
trained with more than 3-4 epochs, CLIP training invovles
upto 30-40 epochs even at the largest data scale. As we
highlight in this work, one needs to model the diminishing
gains of data with repeated epochs, in order to accurately
estimate scaling curves for visual-language model training.

3. Data Filtering for a Compute Budget

3.1. Experimental setup

We are given a large initial pool of data to train a VLM
(which we use synonymously with CLIP) and want to study
the effects of data filtering at different compute budgets.

As our base unfiltered pool, we use the “medium” scale
of the recently data curation benchmark, Datacomp [14].
The pool contains 128M samples. In Datacomp, the com-
pute budget is fixed to 128M, with the implicit assumption
that data filtering methods will continue to obey their re-
spective ordering in performance as we change the compute
budget. In this work, we explicitly consider different com-
pute budgets for training steps:{32M, 64M, 128M, 640M}
and study the performance of data filtering methods. Note
that filtering to different amounts (for a fixed compute)
changes the number of times each training sample is seen.
For example, at a compute budget of 128M, each sample in
a filtered pool of 12.8M samples would be seen 10 times.

We assess the performance of our models based on their
zero-shot performance across a diverse set of 18 down-
stream tasks. This includes both (a) classification tasks like
ImageNet, ImageNetOOD, CIFAR10, etc., and (b) retrieval
tasks like Flickr and MSCOCO. More details about the
downstream evaluation tasks can be found in Appendix B.
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3.2. When “good” data performs worse

We start with the popular LAION filtering strategy used
in obtaining the LAION dataset [42, 43]. This filters for
image-caption pairs with a high similarity score (> 0.28) as
measured by OpenAI’s CLIP model. When filtering from
common crawl, this threshold amounts to retaining just 10%
of the original pool.

We first compare training without filtering (i.e. raw com-
mon crawl) with training on LAION-filtered subset, at vary-
ing compute budgets. Figure 2 shows the average down-
stream accuracy on 18 tasks (Section 3.1), as the total train-
ing iterations (compute) is scaled from 32M to 640M. We
make the following observations:
1. Good data is better at low compute budget: In the

regime of low training compute, utilizing high-quality
data (for example, via LAION filtering) is beneficial,
corroborating the conventional data filtering intuition.
For instance, at 128M training iterations, LAION’s ap-
proach of filtering surpasses the no-filter strategy signifi-
cantly, achieving an increase of 7.5% zero-shot accuracy
averaged over 18 tasks.

2. Data filtering hurts at high compute budget: The ad-
vantage offered by data filtering consistently diminishes
as we increase our compute budget. Remarkably, be-
yond 450M iterations, training on the unfiltered common
crawl dataset outperforms that on LAION-filtered data.
Why does the same data filtering, which supposedly

picks the ‘best’ data, thereby improving performance at low
compute, end up hurting performance at high compute?

LAION-filtering retains around 10% of the data pool,
hence at around 450M compute budget, each sample from
the LAION-filtered pool is seen around 32 times. The key
insight here is that the same sample, as it is seen multiple
times over training, offers a diminishing utility each addi-
tional time. The LAION-filtered pool has higher initial util-
ity, which does not degrade much at a low compute budget
where samples are not repeated too often. However, at a
high compute budget, the utility of the LAION-filtered pool
diminishes substantially as the samples are repeated multi-
ple times. Eventually, the unfiltered samples, though start-
ing off with a lower utility, end up suffering a smaller drop
in utility as they are repeated less often, even outperform-
ing “high-quality” LAION-filtered data at some point.

Remark. In Theorem 1 we will later show that the rate
of decay of the utility of a pool is influenced by the size
of the pool. In particular, because these models are trained
with a contrastive objective offering O(n2) unique compar-
isons for a dataset of size n, changing the pool size by a
factor of k, actually ends up increasing the total compar-
isons by k

2. This could potentially mean that the reversal
point for LAION v/s no filtering happens much later than

Figure 3. We vary the CLIP filtering threshold after ranking the
data by their metric. While the original paper proposed retaining
30% of the data, our results show that depending on the ratio of
compute to data pool size, we must adaptively make the filtering
less (or more) aggressive to account for the diminishing utility of
good data with repetitions. Results are presented on an average of
18 visual understanding tasks with a global data pool size of 128M
samples, and varying compute scales.

40 epochs when the data pool size is increased by a factor
of 10. That said, the insight from this section underscores
the need to tailor the filtering approach to the model’s total
training compute, challenging existing practices and offer-
ing a new direction for optimizing model performance.

We expand upon modeling and estimating this decay of
utility in Section 5, which one can then use to adaptively
filter the dataset based on the available compute budget.

3.3. Data filtering must be compute-aware
In the previous section, we saw that the popular LAION-
filtering method offered lower gains and eventually under
performing the uncurated pool as we increase our training
compute. Is this something specific to the LAION-filtering
method, or does our intuition about diminishing utility of re-
peated samples hold for other filtering approaches as well?

We study the performance of some recently proposed
state-of-the-art data filtering methods as we change our
compute budget. We specifically analyze two methods: (a)
CLIP score filtering, utilizing the CLIP L/14 model, and
(b) T-MARS , which ranks data based on CLIP scores after
masking text (OCR) features in images (refer to Section 2).
We compare four levels of varying aggressive filtering for
each data filtering approach, and vary total compute (train-
ing iterations) from 32M to 640M, just like before.

Figure 3 illustrates the comparison of Top 10-20%, Top
30%, and Top 40% CLIP filtering at compute scales of 32M,
128M, and 640M. At a 32M compute scale, highly aggres-
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sive filtering, retaining only the Top 10-20% data as per
CLIP scores, yields the best results, while the least aggres-
sive Top 40% filtering approach performs the worst. How-
ever, this trend reverses entirely as the compute is scaled
to 640M . While retaining 10% data excels at low train-
ing compute due to fewer repetitions, its utility diminishes
rapidly with increased compute due to data repetition. Sim-
ilar trends are observed with the T-MARS scoring metric
(Figure 10). Here, retaining Top 20% data, as originally
proposed, stops being optimal as the compute scale in-
creases, and less aggressive approaches prove to be more ef-
fective. These observations underscore the need for a com-
pute aware filtering strategy that balances the high initial
utility of high-quality data which quickly diminishes with
repetitions, and the lower-quality but larger data that offers
lower initial utility but a slower decay due to fewer repeti-
tions.

Can we turn this insight into a more performant
compute-aware data filtering method? The straightforward
strategy is to simply try varying levels of filtering at the
compute budget and pick the best. But this is impractical.
In Section 6, we explore how to effectively extrapolate from
smaller compute budgets to larger while accounting for di-
minishing utility with repetition.

4. Scaling Laws for Data Filtering
4.1. Defining Utility
Past works on scaling laws [25, 26] estimate the error of a
model (at a given parameter count) after training for n sam-
ples as: y = an

b + d, where a, d > 0 and b < 0 are con-
stants to be determined empirically, and y is a performance
metric such as the loss of the model on a validation set. In-
tuitively, b factors in in the diminishing gains as more data is
seen and also models the utility of the data pool itself, with
a lower value indicating higher utility. For instance, Cherti
et al. [9] noted that the b value for OpenAI’s filtered dataset
was lower than that of the LAION dataset, indicating it had
higher utility. Whereas, a is a normalizer and d estimates
an irreducible error at the end of training to infinity. Rather
than estimating the loss at the end of training for n samples,
we can also consider the instantaneous utility of a sample at
any point during training. This is given by:

dy

dn
= a · bnb�1 =

y

n
b. (1)

This equation shows that the instantaneous utility of a sam-
ple is proportional to the current loss and inversely propor-
tional to the number of samples seen so far. This is intuitive
as the utility of a sample decreases as more data is seen.

4.2. Utility under Repetition
Now, let us add one more complexity to this scaling law
from past works. In practice, CLIP style pre-training is

done by repeating multiple epochs of training on the same
data [14]. However, there is no clear understanding of how
the utility of a sample changes with repetition. We hypoth-
esize that this utility decays exponentially with the number
of times the sample is seen. More formally, the utility pa-
rameter (b) of a sample seen k + 1 times is given by:

bk+1 = b ·
✓
1

2

◆ k
⌧

= b · �k (2)

where ⌧ is the half-life of the utility parameter. A higher
value of ⌧ indicates that the utility of a sample decays
slower with repetition. � more concisely captures the decay
in utility with repetition, and is used for simplicity of nota-
tion. Then, a closed form expression of the loss of a model
after seeing n samples k times each is given by:

yk = a · nb1
1

kY

j=2

✓
nj

nj�1

◆bj

+ d (3)

where nj is the number of samples seen at the end of jth
epoch of training. The equation is derived in Appendix F.1
and forms the basis of our scaling law.

Summary of Parameters Let us concisely summarize
the role of each of the parameters in our scaling laws (Eq. 3)
in order to develop better intuition about each of them.
1. Utility Parameter (b): The change in loss scales with

the number of samples seen exponentially based on the
value of b. A high quality data bucket will have a lower
b value compared to a worse data bucket.

2. Half life (⌧): The repetition parameter captures the de-
cay in the utility of repeated data. Intuitively, the half life
⌧ captures the diversity of the data bucket. Data buckets
with high diversity will have a higher value of ⌧ , allow-
ing more repetitions of the bucket, as one would desire.

3. Decay Parameter (�): The decay parameter is a param-
eter directly derived from ⌧ , and not a unique parame-
ter. We use this for simplicity of notation. � captures the
fractional decay in the utility parameter with one epoch
of training on that data.

4. Normalizer (a): The normalizer aims to capture an in-
trinsic property of the task allowing us to relate the
change in loss with the number of samples seen. This
does not change with the bucket. We learn a common
value of a that minimizes the loss for all buckets, and
treat it as a fixed constant across all buckets.

5. Irreducible loss (d): This is a constant parameter added
to the loss that can not be reduced further.

4.3. The case of heterogeneous web data
Now we are ready to add the final layer of complexity to
our scaling laws, that of heterogeneous data. A unique chal-
lenge in the paradigm of webdata, and critically missed in

22706



the existing works on scaling laws, is the presence of data
pools of different quality. As discussed in Section 3, web-
data can generally be partitioned into multiple subsets (like
using clip score), each with it’s own respective scaling pa-
rameters (like respective data utility parameter b).

Training large scale models then involves jointly train-
ing on a mixture of multiple data buckets. This brings us to
us central question—how can we estimate the loss and thus
the scaling curves for a mixture of pools effectively? This
ultimately allows to curate the data conditional to any com-
pute, rather than a static curation. One naive way to esti-
mate the error on training on multiple data mixtures would
be to use the average error on them. However, this does not
factor in the interplay of the two different b values in the ex-
ponent of the scaling curve, and how does the repetition pa-
rameter (⌧ ) change with increasing data mixtures.

Theorem 1. Given p data pools S1
n . . . Sp

n, sampled uni-
formly at random with respective utility, repetition parame-
ters (b1, ⌧1) . . . (bp, ⌧p), then the new repetition half-life of
each of the buckets ⌧̂ = p ·⌧ . Additionally, the effective util-
ity value for the combined pool beff for the combined pool
at the k

th repetition is the weighted mean of the individual
utility values. Formally,

b
(k)
eff =

Pp
i bi�̂

k
i

p
, (4)

where �̂i =
�
1
2

�1/⌧̂ , the new decay parameter per bucket.

We refer the reader to Appendix F.1 for the derivation of
the formulae for beff. We assume that the utility of a sample
decays exponentially on being seen multiple times. How-
ever, there is one major challenge of contrastive training
paradigm, where the effective number of samples in a data
pool of size N is N2. This is because each sample is paired
with every other sample in the data pool. In Appendix G we
show that ⌧̂ = N̂

N ⌧ where N̂ is the total number of samples
in the data pool and ⌧ is the half life.

4.4. Various other formulations
While deciding the scaling laws for data filtering, we con-
sidered various other formulations. This included scaling
laws that modeled the decay in ‘effective samples’ [32]
rather than effective utility. We describe various design con-
siderations and why they were not chosen in Appendix F.
Further, we also study various choices such as the need for
allowing different data buckets to have different ‘half lives’
(⌧ ), but a unified normalizer (a), and the way we optimized
various scaling parameters in Appendix E.

5. Results: Fitting scaling curves for various
data utility pools

Experiment Setup: We experiment on the DataComp
medium scale pool which consists of 128M image-caption

Figure 4. Scaling curves with repeated data for visual-language
models: We partition the DataComp medium scale pool(128M)
samples into various buckets, based on the CLIP scores, and train
a model on each bucket for 10 epochs. (a) The estimated error
curves using the proposed scaling laws (Equation 3). (b) Dimin-
ishing utilities with epochs of various data subsets. Observe that
due to repetitions, even the utility of the best bucket (blue curve)
at it’s 4th repetition becomes lesser than that of worse buckets like
top-20%-30% (red curve) subset at it’s 4st epoch. This highlights
why one needs to adapt the filtering aggressiveness with compute.

pairs. In this work, we use T-MARS [31] score and CLIP
score as the two data utility estimates and rank the web-
data based on them. Specifically, we form four distinct data
subsets, categorized by their respective T-MARS (or CLIP)
scores: top 10% (10% datapoints with the highest scores),
top 10%-20%, and so forth, up to the top 30%-40% subset.
Each subset, approximately 12.8M in size, is then used to
train a model for over 10 epochs. Finally, we estimate the
parameters for the scaling curve with repeated data (Eq, 3),
by fitting over the obtained downstream zeroshot error on
ImageNet or an average performance over 18 visual classi-
fication and retrieval tasks (Appendix B).

Stable optimization of scaling parameters is a crucial
step in estimating the scaling laws. This is especially chal-
lenging due to the sensitive loss landscape given the com-
plex equations. In this work, we converged at using grid
search to estimate the scaling constants a, b, d and ⌧ . We
detail in Appendix E on why we made this choice and share
the detailed grid used for each of the scaling parameters.
Fitting the scaling laws for individual pools: Figure 4
shows the fitted scaling curves (along with the respective
parameters) for various data utility pools using T-MARS
score as a data utility metric (See Appendix C for CLIP
score based data pools). The central column in Figure 4
shows the diminishing utility with epochs of the various
data pools. We note some key observations next.
Web data is heterogeneous and cannot be modeled by
one set of scaling parameters: The heterogeneity of web
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Figure 5. Estimating scaling curve for combination of various
data quality pools based on CLIP Score: Our work proposes
scaling laws for predicting the model performance on combina-
tions of data pools of various quality. Note that we do not train on
data combinations to fit the above scaling curves (scatter points are
test points), rather the scaling curves are estimated from the scal-
ing parameters of individual pools.

data is pronounced, as evidenced by the variability of the
data utility parameter (b), which not only varies signifi-
cantly but also demonstrates a monotonic decrease in mag-
nitude from the highest quality pool (Top 10%) to the lower
quality pool (Top 30%-Top 40%). This variation validates
the use of b as a metric for data utility. Notably, the overall
utility parameter for web data (b = �0.14), depicted by the
pink curve, spans the broad spectrum between the highest
(b = �0.18) and lowest (b = �0.10) utility parameters.
This underscores the inadequacy of a singular scaling law
framework in capturing the diverse nature of web data.

Data diversity varies across pools: Figure 4 elucidate the
variation in the repetition parameter (⌧ ) across the pools,
signaling that data diversity is also not uniform. Pools of
lower data quality exhibit the smallest values of half-life,
indicative of lesser diversity within those pools.

Utility of high quality data with repetitions is worse
than that of low quality data: High quality data, despite
having a greater initial utility as depicted in the data-quality
versus repetitions plot (Figure 4, center column), experi-
ences a rapid decline in utility with successive epochs. No-
tably, the utility of the highest quality data pool (Top 10%)
drops below that of the lowest quality pool (Top 30%-Top
40%) after the fourth epoch. This emphasizes that data
filtering must be contingent to comput. While training for
more compute, a less stringent filtering approach is advis-
able, as a small pool of high-quality data may underper-

form due to frequent repetitions, in contrast to a more siz-
able pool of data with modestly lower quality.

Finally, it’s important to note that this observed dimin-
ishing utility is not an artifact of creating subset pools based
on T-MARS scores. Similar trends can be seen even with
CLIP score based data curation (Appendix C).

6. Estimating the Scaling Laws for Data Mix-
tures

In Section 5, we derived scaling laws to extract the scal-
ing parameters a, b, d, and ⌧ for data pools of varying qual-
ity. The objective is to determine the most effective data
curation strategy relative to the available training compute.
By employing Theorem 1 alongside the scaling parameters
determined for each data pool, we can estimate the scaling
laws for different combinations of these pools. For instance,
the Top-20% pool is considered a combination of the Top-
10% and Top 10%-20% data quality pools. The trends from
scaling curves can then allow us to predict the pareto opti-
mal data filtering strategy at any given compute.

Figure 1 and Figure 5 present the scaling curves for dif-
ferent data mixtures, evaluating performance on ImageNet.
Notably, these curves are derived from the estimated pa-
rameters of individual pools, not from direct training on
mixed pools. The scatter points illustrate actual test perfor-
mance, serving to validate our estimations.

Aggressive filtering is best for low compute/less repeti-
tions regime Aggressive data filtering proves most advan-
tageous in low compute environments when repetitions are
minimal. This is exemplified by the superior performance
of the highest quality data pool (Top 10% T-MARS score),
as illustrated by the blue curve in Figure 1, when the model
is trained for any compute of upto 100M samples seen. The
low compute leads to fewer repetitions, thereby preserving
the initial high utility of top-quality data. This trend holds
true across both ImageNet zeroshot performance and aver-
age performance over 18 tasks.

Data curation cannot be agnostic to compute As com-
pute scales beyond 100M samples seen, the optimal data
curation strategy shifts. For example, our estimated scal-
ing curves for Imagenet performance for various data qual-
ity mixtures indicate Top 20% as the best curation approach
when training for 100M to 350M compute, rather than the
more aggressive filtering of Top 10% which works the best
under 100M training budgets. As the compute scales, the
small but high quality subset of Top10% suffers from di-
minishing utility due to lot of repetitions. On further scal-
ing up the compute beyond 350M samples, even less ag-
gressive filtering strategy of Top 30% works better. These
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Figure 6. Similar to Figure 5, our scaling law accurately predicts
the final error for models trained on 2 different architectures, 3
different pool sizes and 3 different compute budgets.

trends match the pareto optimal strategy as observed empir-
ically as well in Figure 10, where at a compute budget of
32M, Top 10% data retained works the best while at 640M
compute, Top30% works the best.

6.1. Scaling the scaling curves
Past work on scaling laws for CLIP models [9] trained
tens of models at varying compute scales ranging from
3B to 34B training samples and models spanning differ-
ent ViT families. While training models at this compute
is extremely expensive, we utilize their pretrained models.
Cherti et al. [9] tried to fit scaling laws for this family of
models, but the scaling curves showed extremely high er-
rors for models trained on small datasets. We believe this
is primarily because they do not account for the impact of
diminishing utility of repeated data. We use our proposed
scaling laws to estimate errors for the models in question.
The revised scaling trends are presented in Figure 6, which
are able to predict the error with a high accuracy. This con-
firms that our scaling laws hold at massive models trained
for 34B data compute, indicating that the diminishing util-
ity of repeated data must indeed be accounted for while pre-
dicting model training outcomes.

7. Discussion
State of Data Curation Despite recent efforts, the cu-
ration and utilization of data remains surprisingly ad-hoc
and hacky, with very little predictability about the outcomes
of a filtering strategy. In particular, all prior filtering ap-
proaches (i) propose a metric that ranks examples and filters
out data points below a threshold; and (ii) are the thresh-
olds are chosen ‘agnostic’ of the compute the model is sup-
posed to be trained for. While well-resourced organizations
can embark on exhaustive sweeps of ‘filtering’ parameters,
this approach (i) is extremely expensive, especially in the
paradigm of web-scale pre-training; and (ii) does not trans-

fer to new training paradigms where one changes the train-
ing samples to pool size ratios.

Our scaling laws enable practitioners to precisely assess
and quantify the utility of different web data subsets, which
is critical given that webdata is heterogeneous. Finally, we
show how one can estimate scaling law for a mixture of pool
(Theorem 1). This enables a compute aware data curation,
where one can decide the filtering threshold (which pools
to use for training) based on the estimated accuracies using
the scaling law for the mixture of pools.

State of Scaling Laws To the best of our knowledge, all
scaling laws to date have modeled web data with a singu-
lar set of scaling parameters, irrespective of the specific for-
mulation of the scaling law. As we venture into the era of
large-scale foundation model training, where data curation
is a critical step, our work takes significant steps towards
estimating the performance of models over various possible
choices of combinations of different data quality pools.

However, several questions remains open. For example,
how does the data diversity ⌧ of each pool varies as one
mixes them? In this work, we considered ⌧ to remain same
as pools as mixed (upto a scaling up by a factor of increase
in pool size). Similar question holds for the data quality pa-
rameter. In this work, we estimate the effective data quality
beff assuming that dy

dn = by
n is an axiom of scaling laws and

holds true always.

8. Limitations
Effect of batch-size: Performance of visual language
models trained using contrastive loss, varies considerably
with the batch size employed during training. Our scaling
laws, however, do not account for this variation. We per-
form all our experiments with a fixed batch size of 4096 on
the medium scale pool of DataComp.
Consistency of scaling parameters as the pool size is
scaled by orders of magnitude: While we estimate the
scaling parameters of different data quality buckets on a
given pool size, it is not clear whether the scaling parame-
ters remain same for a similar quality pool of say 100x the
size. Crucially, this can allow us to estimate the optimal
training subset for a very large scale training by first opti-
mizing the data pools using scaling laws on a smaller scale.
Variation in data diversity i.e. repetition parameter with
mixing of pools: In our work, we operate under the as-
sumption that the repetition parameter, influenced by data
diversity, remains consistent (up to a factor proportional to
the number of mixed pools). Nonetheless, the alteration in
diversity across different pools, especially as we blend pools
with varying levels of individual diversity, could be more
complex or even challenging to predict accurately.
Acknowledgements: AR thanks Google for providing
GCP credits that supported part of this work.
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