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Abstract

To synthesize high-fidelity samples, diffusion models typ-

ically require auxiliary data to guide the generation pro-

cess. However, it is impractical to procure the painstak-

ing patch-level annotation effort required in specialized do-

mains like histopathology and satellite imagery; it is of-

ten performed by domain experts and involves hundreds

of millions of patches. Modern-day self-supervised learn-

ing (SSL) representations encode rich semantic and visual

information. In this paper, we posit that such represen-

tations are expressive enough to act as proxies to fine-

grained human labels. We introduce a novel approach that

trains diffusion models conditioned on embeddings from

SSL. Our diffusion models successfully project these fea-

tures back to high-quality histopathology and remote sens-

ing images. In addition, we construct larger images by as-

sembling spatially consistent patches inferred from SSL em-

beddings, preserving long-range dependencies. Augment-

ing real data by generating variations of real images im-

proves downstream classifier accuracy for patch-level and

larger, image-scale classification tasks. Our models are ef-

fective even on datasets not encountered during training,

demonstrating their robustness and generalizability. Gen-

erating images from learned embeddings is agnostic to the

source of the embeddings. The SSL embeddings used to gen-

erate a large image can either be extracted from a reference

image, or sampled from an auxiliary model conditioned on

any related modality (e.g. class labels, text, genomic data).

As proof of concept, we introduce the text-to-large image

synthesis paradigm where we successfully synthesize large

pathology and satellite images out of text descriptions. 1

1. Introduction

Diffusion models produce high-quality and diverse samples

across a spectrum of generative tasks [8, 24]. This leap

forward has been enabled by the simultaneous curation of

large-scale multi-modal datasets [40] and the development

*Equal contribution. Correspondence to agraikos@cs.stonybrook.edu
1Code is available at this link
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Figure 1. We propose using SSL features to condition diffusion

models. This allows us to construct large images by assembling

consistent patches inferred from a spatial arrangement of SSL em-

beddings. The generated image retains the semantics of the em-

beddings used as a condition, maintaining the forested and open

areas from the reference. Best viewed zoomed-in.

of efficient conditioning mechanisms [35, 37]. The key to

unlocking the models’ capabilities is to integrate auxiliary

information during training and inference [8, 15, 28].

Large-scale human-annotated datasets are mostly lim-

ited to image-caption pairs, collected from easily accessi-

ble online repositories and labeled by non-expert annota-

tors. However, in domains such as digital histopathology

and remote sensing, where gigapixel scale images provide

vast amounts of unlabeled data, annotation proves challeng-

ing. Moreover, the process requires expert knowledge and

is more difficult at a finer scale, i.e., captioning large crops

of the gigapixel image is simpler than captioning smaller

patches. Based on our estimates (see supplemental), anno-

tating the entire TCGA-BRCA dataset with captions would

take ≈40,000 hours of pathologist’s time. Replicating the

impressive results of diffusion models in these domains has

been limited by the scarcity of fine-grained per-image con-

ditioning, vital for high-quality image synthesis [29].

Modern-day self-supervised learning (SSL) representa-

tions [5] encode rich semantic and visual information. Fea-

tures from trained self-supervised models serve as compact

image representations and are widely used to perform dis-

criminative downstream tasks successfully [6, 11, 45], prov-

ing that these compressed representations indeed encode

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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useful semantic information about the images. We hypoth-

esize that such SSL representations are already expressive

enough to act as proxies to fine-grained human labels. If

this is true, these representations should be able to condi-

tion the training of effective diffusion models in these do-

mains. In this novel approach, we utilize self-supervised

feature extractors as image annotators; these features pro-

vide necessary per-image conditioning signals at the highest

resolutions, required for diffusion model training.

Our experiments show that conditioning with expressive

self-supervised features leads to precise control over the

image content. The SSL features are adept at identifying

complex patterns and structures in the images, while the

diffusion model learns to translate them into visual com-

ponents accurately (Fig. 3). This motivates us to perform

large-image synthesis by locally controlling the appearance

using SSL conditioning and dictating the global structure

through the spatial arrangement of the conditions.

Our approach synthesizes large images in a patch-based

manner, using a single image diffusion model at the highest

resolution. We represent a large image as a grid of SSL em-

beddings, where each serves as a representation of a large

image neighborhood. The whole image is then synthesized

by generating consistent patches that capture both the lo-

cal properties, as given by the local patch conditioning, and

the spatial arrangement of the conditioning features. If we

change this spatial arrangement, we are, in fact, editing how

semantic elements are arranged globally in the large image.

This strategy enables the controllable generation of images

of virtually any size without significantly increased compu-

tation compared to the base patch-level model.

To generate a large image, our approach requires the

patch diffusion model and the spatially-arranged condition-

ing. We can start with a reference large image as source and

extract SSL embeddings from non-overlapping segments,

enabling our method to synthesize a variation of the origi-

nal image (Fig. 1).

Utilizing SSL embeddings as conditions allows us to

have the necessary control over image generation, at the ex-

pense of an explainable and easy-to-use conditioning mech-

anism. Nevertheless, we argue that since generating im-

ages from learned embeddings is agnostic to the embedding

source, there are simple ways to combine control over gen-

erated images with explainability. We propose training aux-

iliary models to transform higher-level conditioning signals,

such as text captions, to the learned patch representations.

To demonstrate this versatility, we introduce text-to-large-

image synthesis by training an auxiliary model to sample a

spatial arrangement of embeddings from a text description.

We train patch-level diffusion models using self-

supervised features as conditioning on digital histopathol-

ogy (TCGA [4]) and satellite image (NAIP [43]) datasets.

We perform extensive evaluations and demonstrate the ad-

vantages of SSL conditioning and our large-image genera-

tion framework on synthesis and classification tasks. Our

model achieves exceptional patch-level and large-image

quality, the ability to improve classifiers through data aug-

mentation even when synthesizing out-of-distribution data,

and effective fusion of diffusion and SSL features for down-

stream applications. Finally, we are the first to perform

text-to-large image synthesis, which should be of significant

community interest as vision-language models (VLMs) for

pathology and satellite images gain traction.

In summary, our contributions are as follows:

• We develop a novel method to train diffusion models with

self-supervised learning features as conditioning and gen-

erate high-quality images in the histopathology and satel-

lite image domains.

• We present a framework for large-image synthesis, based

on self-supervised guided diffusion, that maintains con-

textual integrity and image realism over large areas.

• We demonstrate the applicability of our model in various

classification tasks and showcase its unique ability to aug-

ment out-of-distribution datasets.

• We introduce text-to-large image generation for digital

histopathology and satellite images, highlighting the ver-

satility of our approach.

2. Related work

Diffusion models: Introduced for image generation by Ho

et al. [16], diffusion models have evolved considerably.

These enhancements include class conditioning [28], ar-

chitectural improvements and gradient-based guidance [8],

and classifier-free guidance [15]. Latent Diffusion Models

(LDMs) [37] proposed a two-step training process with a

Variational Autoencoder (VAE) compressing input images

into a lower-dimensional latent space and a diffusion model

trained in this latent space. Denoising Diffusion Implicit

Models (DDIM) [42] accelerate the sampling process by

10 − 50×. Self-guided diffusion models [17] also utilize

self-supervised learning by quantizing SSL embeddings. In

contrast to our approach, their quantization discards useful

information from the SSL embeddings.

Training generative models directly at the gigapixel reso-

lution is infeasible. An alternative is to generate the images

in a coarse-to-fine manner hierarchically. This has already

been applied to natural images, where chaining multiple dif-

fusion models generates images up to 1024 × 1024 resolu-

tion [32, 39]. However, it is still limited, as it substantially

increases the parameter count and is inherently constrained

by the final target resolution.

In the context of digital histopathology, works have

been limited to training unconditional [26] or class-

conditioned [27, 47] diffusion models. For text condition-

ing, pathology text reports were used to provide context on

the whole-slide scale [48]. Similar approaches have been
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Figure 2. (a) We train diffusion models on patches I (e.g. the one in the green box) taken from a large image conditioned on SSL

embeddings. (b) We present our large image generation framework in 4 steps: (i) We extract a set of spatially arranged embeddings

from a reference image or sample them from an auxiliary model. (ii) For every location (i, j), we compute a conditioning vector λi,j by

interpolating the spatial grid of embeddings. (iii) At every diffusion step, we denoise the patch F (i, j) using the conditioning λi,j . (iv)

The next step is computed by averaging the denoising updates of all patches that overlap at (i, j).

applied to satellite data [10, 41]. Apart from high-quality

images without manual annotation, our SSL conditioning

is also necessary for large-image synthesis, as all previous

conditioning methods would not be sensitive to the intricate

differences between neighboring patches. In recent work,

DiffInfinite [1] explored large-image generation using seg-

mentation masks as conditioning. We argue this is still sub-

optimal as it requires accurate, human-annotated masks for

training and a mask-generating model during inference.

Self-Supervised Learning Self-supervised learning

(SSL) refers to both discriminative [2, 13] and distilla-

tion [5] approaches that aim to learn representations of the

data without supervision. In this work, we are mainly in-

terested in self-supervised learning for histopathology. No-

table recent developments include the Hierarchical Image

Pyramid Transformer (HIPT) [6], which utilizes the inher-

ent hierarchical structure of Whole Slide Images (WSIs),

CTransPath [45], a hybrid CNN and multi-scale Swin

Transformer model, and iBOT [11], a masked image mod-

eling method. These models excel as patch-level feature ex-

tractors for WSIs by leveraging the unique structure of the

large-image data and capture the important semantic infor-

mation that we require for conditioning a generative model.

3. Method

We propose training a diffusion model on patches I drawn

from large histopathology and satellite images, using self-

supervised embeddings y as conditioning. Furthermore,

we present a patch-based approach that utilizes the SSL-

conditioned diffusion model to synthesize arbitrarily large

images. An overview of our method is presented in Fig. 2.

3.1. Learned representation­guided diffusion

Given a pre-trained self-supervised feature extractor, we

employ LDMs [37] to learn the distribution over the large-

image patches p(I). LDMs are comprised of three com-

ponents: an image-compressing Variational Autoencoder

(VAE) that transforms the input images to latent represen-

tations, a U-Net denoiser to learn a denoising diffusion pro-

cess that transforms Gaussian noise to latents, and a condi-

tioning mechanism that controls the diffusion process. The

conditioning is performed in our setting with a single vec-

tor y, obtained from the self-supervised model, integrated

via a cross-attention mechanism. We train the LDM using

pairs of image patches I and the corresponding extracted

self-supervised embeddings y.

3.2. Large image generation

Our goal is to synthesize high-quality large images, that not

only capture global structure but also maintain spatial con-

sistency. As shown in Fig. 2, we replicate the semantics in

each patch with SSL-guided LDM. At the same time, we

preserve the global arrangement of these semantics as de-

fined by the grid of patches in the reference image. Future
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work can explore alternative approaches to ensure spatial

alignment, including using topological constraints or inte-

grating low-resolution information.

We follow the MultiDiffusion [3] methodology to gener-

ate large images using only a patch-based diffusion model.

We can represent the diffusion model as a learned mapping

from images and conditions to images:

Φ : I × Y → I, (1)

where I = R
H×W×C are the large-image patches and

Y = R
d are the per-patch conditions. To generate a patch,

we initialize IT ∼ N (0, I) and sequentially transform to a

“clean” image I0 following the trained LDM:

It−1 = Φ(It | y) (2)

for t = T, T −1, . . . , 1. We assume that a large image can

be formed as a spatial grid of P ×P patches of size H×W .

We then define the large-image diffusion model as

Ψ : J × Z → J (3)

where J = R
PH×PW×C are the large images and Z =

Y × Y · · · × Y
︸ ︷︷ ︸

P 2

are the conditioning vectors of all patches.

The process Ψ(Jt | z) = Jt−1, with JT ∼ N (0, I), can be

approximated by first defining mappings between the two

different image and conditioning spaces:

F
proj
i,j : J → I, λi,j : Z → Y (4)

where, for the case of large-image generation, we set F
proj
i,j

to be a crop (projection) of the large image, centered at

i, j, and λi,j the conditioning yi,j ∈ R
d at i, j. Since we

only have conditioning vectors at the centers of the patches,

we can use spatial interpolation algorithms to implement λ.

This assumes that the interpolant yi,j is a valid conditioning

vector for the diffusion process, which we validate experi-

mentally. Then, Ψ is defined as

Ψ(Jt | z) = argmin
J∈J

∑

i,j

∥F proj
i,j (J)−Φ(F proj

i,j (Jt) | λi,j(z))∥
2

(5)

which can be solved in closed-form by setting each pixel

i, j of J to the average of all the patch-diffusion updates

Ψ(Jt | z) =
∑

i,j

F
unproj
i,j (1)

∑

k,l

F
unproj

k,l (1)
⊗F

unproj
i,j (Φ(F proj

i,j (Jt) | λi,j(z)))

(6)

where 1 denotes a patch image where all values are set to

1 and F
unproj
i,j is the inverse mapping of pixels from the crop

centered at i, j back to the large image.

We are able to generate images larger than the ones pro-

duced by the patch diffusion model. At the same time, we

control what each patch looks like, which is crucial in main-

taining the semantic integrity of the larger image. The self-

supervised conditions can capture the variations between

neighboring patches necessary for producing realistic re-

sults. Generating large images with coarser conditioning,

such as global text prompts [48], would lead to uniform tex-

ture regions (see supplementary).

3.3. Controllable large­image synthesis

Although the grid of self-supervised embeddings z cannot

be manipulated in a human-interpretable manner, we argue

that it is simple to assert more control over the generated

images. As illustrated in Fig. 2, this control can be attained

by training auxiliary models p(z | c) that translate higher-

level conditioning signals, such as text captions c, to learned

patch representations z.

Since there is no available dataset of paired large images

and captions, we resort to pre-trained multi-modal models,

such as Quilt [18], CLIP [34] and BLIP [22], to provide the

text conditioning. We construct training sets by extracting

self-supervised embeddings from training-set large images

and pairing them with multi-modal image embeddings or

generated captions. During inference, we first sample SSL

embeddings from the learned distribution p(z | c), then uti-

lize our patch diffusion models to synthesize a large image.

4. Image Generation Experiments

4.1. Datasets

We train diffusion models on digital histopathology im-

ages from The Genome Cancer Atlas (TCGA) [4] and

satellite imagery from the National Agriculture Imagery

Program (NAIP) [43]. Specifically, we used the TCGA-

BRCA (Breast Invasive Carcinoma Collection), TCGA-

CRC (COAD + READ Colorectal Carcinoma) datasets, and

the Chesapeake Land Cover dataset [36].

For the TCGA-BRCA and TCGA-CRC datasets, we

use images at 20× magnification, and developed diffu-

sion models conditioned on embeddings from HIPT [6] and

iBOT [11], which were pre-trained on PanCancer TCGA. In

the case of the HIPT model, we specifically used its patch-

level ViT. Additionally, for the TCGA-BRCA dataset, we

train a model at 5× magnification using embeddings from

CTransPath [44] for additional evaluations.

The Chesapeake Land Cover dataset dataset contains 732

NAIP tiles, each measuring a 6km × 7.5 km area at 1m

resolution. We extract 256 × 256 non-overlapping pixel

patches, resulting in 667,000 patches total. Given the ab-

sence of publicly available self-supervised learning models

tailored to the NAIP data, we train a Vision Transformer

(ViT-B/16) [9] using the DINO framework [5]. We then use

the learned DINO embeddings to train the diffusion model

on pairs of image patches and self-supervised embeddings.
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Figure 3. (Top) Patches (256 × 256) from our models, and the corresponding reference real patches used to generate them. The SSL-

guided LDM replicates the semantics of the reference patch. (Bottom) Large images (1024 × 1024) from our models, and the corresponding

reference real images used to generate them. We preserve the global arrangement of the semantics defined in the reference image.

For patch-level augmentation, we employ the NCT-CRC

dataset [19], which has 100,000 Colorectal cancer (CRC)

patches from 86 patients. Each 224 × 224 pixel patch at

20× magnification is annotated with one of nine distinct

tissue class labels.

For large-image augmentation, apart from TCGA-

BRCA, we also use the BACH dataset [33]. Introduced in

the ICIAR 2018 Grand Challenge, the dataset contains 400
H&E-stained Breast Cancer images of size 2048 × 1536
pixels, evenly distributed across four categories: normal,

benign, in-situ carcinoma, and invasive carcinoma.

4.2. Implementation details

For all our experiments, we train the LDM on 256 × 256
pixel patches, following PathLDM [48], which fine-tunes

an ImageNet-trained [38] U-Net denoiser and uses a 4×
downsampling VQ-VAE, instead of the default LDM con-

figuration. These modifications were deemed necessary for

applying LDMs on large-image domains.

We train our models on 6 NVIDIA RTX 8000 GPUs,

with a batch size of 100 per GPU, utilizing code and pre-

trained checkpoints from LDM [37]. We set the learning

rate at 10−4 with a warmup of 10,000 steps. We apply

DDIM with 50 steps and a guidance scale of 1.75 for both

patch sampling and large-image generation. When generat-

ing large images we apply the patch diffusion model with a

stride > 1 depending on the desired target quality.

4.3. Image quality results

In Fig. 3, we present synthetic patches and large images

from our TCGA-BRCA and NAIP models, along with the

corresponding references from which the self-supervised

embeddings were extracted. We evaluate our method’s per-

patch and large-image generation quality by computing FID

scores [14] using the Clean-FID implementation [31]. We

generate 10,000 patches (256×256) and 3,000 large images

(1024×1024) from diffusion models trained on the TCGA-

BRCA, TCGA-CRC, and NAIP datasets. Since our gener-

ative model requires a self-supervised conditioning vector

y (or multiple vectors z) for each synthetic image (or large

image), we randomly sample embeddings from reference

images in the training set to generate images for evaluation.

For patches, we measure FID against the real images

(“Vanilla FID”). For large images, we follow the evalua-

tion strategy of MultiDiffusion [3] and use FID to compare

the distribution of 256 × 256 crops from synthesized large

images to that of real image patches of the same size (“Crop

FID”). We also measure FID directly between the large im-

ages and ground truth data using CLIP [34] (“CLIP FID”).

To evaluate the similarity between the reference and

generated large images, we resize from 1024 × 1024 to

256 × 256 and use an SSL model to extract embeddings.

We compute the cosine similarity between the paired em-

beddings (“Embedding Similarity”).

Patch-level quality: Our models achieve low patch

FID scores across all datasets (Tab. 1). For TCGA-BRCA

patches, our “Vanilla FID” of 6.98 is comparable to the cur-

rent state-of-the-art [48] (7.64 at 10×). We attain similar,

low FID scores for the smaller CRC and NAIP datasets.

Synthetic large image quality: We present the “Crop

FID”, “CLIP FID” and “Embedding Similarity” results for

large images in Table 1. The “Crop FID” of the large im-
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Dataset
# Training

images

Patch level Large image level

Vanilla FID
Crop

FID

CLIP

FID

Emb

similarity

BRCA 20x 15M 6.98 15.51 7.43 0.924

CRC 20x 8M 6.78 8.8 7.34 0.938

NAIP 667k 11.5 43.76 6.86 -

BRCA 5x 976k 9.74 - 6.64 -

Table 1. FID scores for our generated patch and large images. Our

patch-level BRCA model is on par with SoTA [48] (7.64 at 10 ×).

“CLIP FID” and “Embedding Similarity” demonstrate our large

images’ realism and contextual accuracy.

ages is comparable to the “Vanilla FID” on the BRCA and

CRC datasets, showing that patches from synthesized large

images have similar semantic content to the ground truth

patches. We attribute the worse “Crop FID” for the NAIP

model to the limited number of samples available for both

SSL and diffusion model training. The “Crop FID” is con-

sistently higher than the patch-level FID, which is expected

as the large-image generation framework only approximates

the distribution of the large images and does not have access

to the true conditioning at every location.

Our low “CLIP FID” scores indicate that the generated

large images are similar to real images when resized to

224× 224 pixels. This indicates that our SSL-guided large-

image generation successfully retains the larger-scale se-

mantic arrangements of real data. For NAIP, our model is

not as good at synthesizing high-frequency details, which

explains the large discrepancy between “Crop FID” and

“CLIP FID”. Additionally, when comparing the “CLIP

FID” of large images synthesized by the 20× BRCA model

and resized to 5×, to images from a model trained directly

on 5× data, we see minimal difference (7.43 vs. 6.64).

We evaluate the contextual similarity between synthetic

and reference large images for the BRCA and CRC data.

We compute cosine similarity between large images us-

ing CTransPath embeddings. Our BRCA and CRC models

demonstrate high “Embedding Similarity” scores of 0.924
and 0.938, respectively, reflecting our framework’s effec-

tiveness in preserving the integrity of context and key fea-

tures on the large-image scale.

5. Image Augmentation Experiments

As shown in Fig. 3, apart from visual fidelity, the synthetic

images preserve the intricate characteristics of the reference

images, both on the patch and large-image scale. These

characteristics include the nuanced textural elements, histo-

logical staining, and cell structure. This correspondence be-

tween real and synthetic images demonstrates the detailed

and varied information captured by the self-supervised em-

beddings used as conditioning. In conjunction with the high

“Embedding Similarity”, it justifies using variations of im-

ages generated from SSL embeddings for patch and large-

image level data augmentation.

Having a powerful generative model enables us to per-

form data augmentation for tasks where we can control the

augmented image label using conditioning. In our setting,

our diffusion models are not trained with class labels; in-

stead, we synthesize a novel image using the conditioning

from a reference patch or region.

We assume that i) the self-supervised embedding used

as conditioning contains information about the target label

and ii) the diffusion-generated variations of an image do not

alter this target label information. We validate both assump-

tions experimentally, by augmenting training sets on patch

and large-image level tissue classification tasks, including a

Multiple Instance Learning (MIL) task.

Large-image augmentation on TCGA-BRCA: We ex-

amine two histopathology slide-level binary classification

tasks on TCGA-BRCA: BRCA Subtyping (Invasive Duc-

tal Carcinoma (IDC) vs Invasive Lobular Carcinoma (ILC))

and HRD prediction. We utilize a minimal dataset, just 10%
of real WSI data (100 WSIs), to train MIL algorithms. We

generate an equal set of synthetic images for 100 additional

WSIs using training set images as reference.

We employ 10-fold cross-validation to divide our dataset

into training and testing segments. Within each fold, two

multiple instance learning (MIL) models, CLAM-SB [25]

and DSMIL [21], are trained on two sets: one with real

data and another combining real and synthetic data. To train

the MIL models, we extract features using the CTransPath

ViT [44]. The results, detailed in Table 2, indicate that

models trained on the augmented datasets consistently sur-

pass their real-only counterparts, regardless of the MIL al-

gorithm used. This demonstrates the value of the synthetic

images generated by our method, confirming their efficacy

as comparable to real images for training purposes.

Large-image augmentation on BACH: We double the

training set of BACH [33] by adding as many synthetic

large-images, produced by the TCGA-BRCA diffusion

model. From each 2048 × 1536 pixel training set image,

we extract a 8 × 6 SSL embedding grid to generate a vari-

ation with the same label. For classification, we employ a

ConvNeXt V2 huge [46] model pre-trained on ImageNet.

We train a 2-layer MLP classifier on top of the penultimate

layer features and evaluate it on the official test set.

The results, presented in Table 3a, reveal a notable im-

provement in classifier performance, from 78% to 83%.

This improvement again confirms the high quality of our

synthetic data while also highlighting the versatility of our

apporach. Despite being trained on 256× 256 patches from

TCGA-BRCA, the model generalizes to produce realistic

large images from a completely different dataset. We at-

tribute this generalization capability to the expressiveness

of the SSL features and the potency of the diffusion model
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TCGA-BRCA Subtyping TCGA-BRCA HRD

Method
1%

Real

1% Real

+ synthetic

10%

Real

10% Real

+ synthetic

20%

Real

1%

Real

1% Real

+ synthetic

10%

Real

10% Real

+ synthetic

20%

Real

CLAM-SB 0.725 0.812 0.886 0.898 0.91 0.603 0.644 0.649 0.765 0.787

DSMIL 0.609 0.659 0.838 0.856 0.905 0.517 0.554 0.563 0.639 0.669

Table 2. The inclusion of synthetic data consistently enhances AUC across various MIL architectures and BRCA tasks. The dataset contains

1000 real images, so “10% + synthetic” indicates training with 100 real and 100 synthetic WSIs, with the remainder used for testing.

to accurately portray them in images. While our model does

not reach the current SoTA accuracy of 87%, achieved by

an ensemble approach [7], the simplicity and ability to inte-

grate with other models make for a noteworthy contribution.

Training Data Test Acc

Real 78 %

Synthetic 70 %

Real + synthetic 83 %

SoTA [7] 87 %

(a)

Training Data Val Acc

Real 93.8 %

Synthetic 90.19 %

Real + synthetic 96.27 %

SoTA [20] 96.26 %

(b)

Table 3. Our data augmentations provide notable improvements

for the BACH (a) and CRC-VAL-HE (b) datasets. Notably, the

diffusion training data does not overlap with the data of the aug-

mented datasets.

Patch-level image augmentation: We further investi-

gate our out-of-distribution generalization capabilities by

augmenting the NCT-CRC dataset [19]. We leverage our

diffusion model trained on the TCGA-CRC data, which

does not overlap with NCT-CRC, conditioned on embed-

dings from an iBOT ViT [11]. We generate an augmented

dataset of equal size to the original by using the SSL em-

bedding of every patch in the NCT-CRC training set to syn-

thesize a corresponding image of the same label.

We train an ImageNet pre-trained ResNet-50 [12] net-

work on three splits: real images only, synthetic im-

ages only, and a combination of both. Evaluation on the

CRC-VAL-HE-7K test set demonstrates a significant per-

formance increase when synthetic data is introduced, with

classifier accuracy rising from 93.8% to 96.27% as pre-

sented in Table 3b. We match the current SoTA [20], which

used an ensemble of deep models, with a model agnos-

tic approach. As in the previous experiment, the diffu-

sion model, now trained on the significantly smaller TCGA-

CRC data, can also effectively synthesize images from a

completely different dataset by only controlling the self-

supervised conditioning.

6. Text-to-large image synthesis

For previous tasks, our large image generation approach

synthesizes variations of an existing set of images from the

pre-computed self-supervised embeddings. In Sec. 3.3 we

discussed how to control large image generation with aux-

iliary signals from any domain (class labels, text captions,

etc.), by training models p(z | c) that can be combined with

the embedding-conditioned image generation. We demon-

strate controllable image synthesis with text-to-large image

generation experiments on histopathology and satellite data.

We measure the similarity between synthetic images and the

text prompts used in generating them using vision-language

models (VLMs).

Text-to-large histopathology images: We utilize the

CRC and BRCA diffusion models to generate 1024× 1024
pixel images from text prompts. We first construct train-

ing sets by pairing 4 × 4 SSL embedding grids z from

large BRCA and CRC images, with their corresponding

Quilt [18] image embeddings c. We then train an auxiliary

diffusion model to sample p(z | c). During inference, we

use a text embedding c′ as a proxy for the image embedding,

to sample z and synthesize a large image. To bridge the gap

between the image and text Quilt embeddings [23, 30] we

perturb the image embeddings when training the auxiliary

diffusion model with Gaussian noise of variance σ2 = 0.1.

To evaluate the text-to-large image pipeline, we gener-

ate images from a pre-defined set of classes described in

natural language; non-malignant benign tissue, malignant

in-situ carcinoma, malignant invasive carcinoma, normal

breast tissue for BRCA and colon adenocarcinoma, benign

colonic tissue for CRC. We construct the confusion ma-

trix of zero-shot classifiers on the synthesized data. We

used two different VLMs as zero-shot classifiers, Quilt and

BiomedCLIP [49]. The results presented in Fig. 4 demon-

strate our ability to synthesize images consistent with the

text prompts. The capabilities of the VLM used, limit

our synthetic image generation. The lower performance of

BRCA vs. CRC is consistent with the results reported in

Quilt [18]. Furthermore, we asked an expert pathologist to

classify 100 synthetic CRC images as benign or adenocar-

cinoma images. Their evaluation showed an 89.9 % agree-

ment rate with the labels used for image generation, indi-

cating consistency in our text-to-large image pipeline. We

show examples of synthesized images in the supplementary.

Text-to-large satellite images: To synthesize novel

satellite images we first create a training set of 30k 1024 ×
1024 pixel large NAIP images, and pair them with captions
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from a BLIP model [22]. We train a diffusion model to sam-

ple the 4×4 SSL embeddings z from the captions c. To eval-

uate, we create a separate set of 1000 NAIP image-caption

pairs and measure the CLIP similarity between generated

images and the given captions. We achieve a CLIP similar-

ity score of 0.22, showing that we can effectively learn the

mapping from text to large images with this hierarchical ap-

proach. Although our CLIP similarity is slightly worse than

the scores reported for text-to-image Stable Diffusion mod-

els (> 0.24) [32], we expect this drop in performance as we

trained with machine-generated captions. Training and gen-

erated image-caption pairs are provided in supplementary.
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Figure 4. Confusion matrix of zero-shot classification for novel

TCGA-CRC and TCGA-BRCA synthetic images.

7. Combining self-supervised embeddings with

diffusion

We further evaluate our patch-generating models by posing

the question does the diffusion model learn more about the

data than the self-supervised learning model? We hypoth-

esize that by combining the pre-trained self-supervised em-

bedding with the denoising task we can improve the learned

representations of the data, leading to better performance in

downstream tasks, which are performed with features from

self-supervised learning. To validate this hypothesis, we

utilize the trained diffusion model as a feature extractor and

apply a Multiple-instance learning (MIL) approach for the

slide-level classification task of subtyping Breast Cancer.

For each patch in a whole-slide image (WSI) we first ex-

tract the self-supervised embeddings, which are then used

as conditioning to obtain features from the denoiser’s U-Net

bottleneck layer at a fixed timestep t = 50.

In Tab. 4, we evaluate the effectiveness of our novel

fusion of generative diffusion and self-supervised embed-

dings. We compare the performance of MIL algorithms [21,

25] using features derived from our approach at 20× and

5× magnification (LDMHIPT/CTransPath) against using only

the self-supervised conditioning (HIPT/ CTransPath). We

used a 10-fold cross-validation strategy consistent with the

data splits from HIPT [6], training the MIL algorithms on

both the full dataset (100%) and a reduced subset (25%).

The results indicate that integrating self-supervised fea-

tures into the diffusion model as conditioning leads to learn-

ing better representations and improves whole-slide classifi-

cation. By fusing the generative knowledge from the diffu-

sion process with the discriminative capabilities of the self-

supervised embeddings, we construct a successful model

for both discriminative and generative tasks.

25% training 100% training

Mag Features CLAM-SB DSMIL CLAM-SB DSMIL

20×
HIPT 0.788 0.784 0.861 0.839

LDMHIPT 0.842 0.795 0.908 0.894

5×
CTransPath 0.900 0.896 0.919 0.910

LDMCTransPath 0.913 0.905 0.923 0.936

Table 4. 10-fold cross-validation AUC for BRCA Histological

subtyping. LDMHIPT denotes diffusion features conditioned on

HIPT embeddings. The fusion of SSL and diffusion features out-

performs the SSL features by themselves.

8. Conclusion

We presented a novel approach to training diffusion mod-

els in large-image domains, such as digital histopathol-

ogy and remote sensing. We overcome the need for fine-

grained annotation by introducing self-supervised represen-

tation guided diffusion models, achieving remarkable image

synthesis results on the patch level. Our approach also en-

ables us to synthesize high-quality large images, where we

have the ability to dictate the global structure by controlling

the spatial arrangement of the conditions. We evaluated the

usefulness of our synthetic images on a number of patch and

large image-level tasks, as well as introduced a text-to-large

image generation framework. Naively augmenting whole-

slide images is a time-consuming process. We leave to fu-

ture work the exploration of adaptive augmentation strate-

gies that choose which image parts to augment. We believe

these results illustrate the great potential for this technol-

ogy to lead to bespoke foundational models for specialized

domains, comparable to existing models for natural images.
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