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Abstract

The most performant spatio-temporal action localisa-
tion models use external person proposals and complex
external memory banks. We propose a fully end-to-end,
purely-transformer based model that directly ingests an in-
put video, and outputs tubelets — a sequence of bounding
boxes and the action classes at each frame. Our flexible
model can be trained with either sparse bounding-box su-
pervision on individual frames, or full tubelet annotations.
And in both cases, it predicts coherent tubelets as the out-
put. Moreover, our end-to-end model requires no additional
pre-processing in the form of proposals, or post-processing
in terms of non-maximal suppression. We perform extensive
ablation experiments, and significantly advance the state-
of-the-art on five different spatio-temporal action localisa-
tion benchmarks with both sparse keyframes and full tubelet
annotations.

1. Introduction

Spatio-temporal action localisation is an important prob-
lem with applications in advanced video search engines,
robotics and security among others. It is typically formu-
lated in one of two ways: Firstly, predicting the bound-
ing boxes and actions performed by an actor at a sin-
gle keyframe given neighbouring frames as spatio-temporal
context [18, 28]. Or alternatively, predicting a sequence of
bounding boxes and actions (i.e. “tubes”), for each actor at
each frame in the video [21, 49].

The most performant models [3, 15, 40, 62], particularly
for the first, keyframe-based formulation of the problem,
employ a two-stage pipeline inspired by the Fast-RCNN
object detector [17]: They first run a separate person de-
tector to obtain proposals. Features from these proposals
are then aggregated and classified according to the actions
of interest. These models have also been supplemented with
memory banks containing long-term contextual information
from other frames [40, 53, 61, 62], and/or detections of
other potentially relevant objects [2, 53] to capture addi-
tional scene context, achieving state-of-the-art results.
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Figure 1. We propose an end-to-end Spatio-Temporal Action
Recognition model named STAR. Our model is end-to-end in
that it does not require any external region proposals to predict
tubelets — sequences of bounding boxes associated with a given
person in every frame and their corresponding action classes. Our
model can be trained with either sparse box annotations on se-
lected keyframes, or full tubelet supervision.

And whilst proposal-free algorithms, which do not re-
quire external person detectors, have been developed for
detecting both at the keyframe-level [9, 25, 51] and tubelet-
level [22, 66], their performance has typically lagged be-
hind their proposal-based counterparts. Here, we show for
the first time that an end-to-end trainable spatio-temporal
model outperforms a two-stage approach.

As shown in Fig. 1, we propose our Spatio-Temporal
Action TransformeR (STAR) that consists of a transformer
architecture, and is based on the DETR [6] detection model.
Our model is “end-to-end” in that it does not require pre-
processing in the form of proposals, nor post-processing
in the form of non-maximal suppression (NMS) in con-
trast to the majority of prior work. The initial stage of
the model is a vision encoder. This is followed by a de-
coder that processes learned latent queries, which represent
each actor in the video, into output tubelets — a sequence
of bounding boxes and action classes at each time step of
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the input video clip. Our model is versatile in that we can
train it with either fully-labeled tube annotations, or with
sparse keyframe annotations (when only a limited number
of keyframes are labelled). In the latter case, our network
still predicts tubelets, and learns to associate detections of
an actor, from one frame to the next, without explicit super-
vision. This behaviour is facilitated by our formulation of
factorised queries, decoder architecture and tubelet match-
ing in the loss which all contain temporal inductive biases.

We conduct thorough ablation studies of these modelling
choices, confirming the benefit of temporal inductive biases
in our model design. Informed by these experiments, we
achieve state-of-the-art on both keyframe-based action lo-
calisation datasets like AVA [18] and AVA-Kinetics [28],
and also tubelet-based datasets like UCF101-24 [49], JH-
MDB [21] and MultiSports [32]. In particular, we achieve
a Frame mAP of 45.1 on AVA-Kinetics, outperforming the
best previous results achieved by a massive video founda-
tion model [57]. Moreover, our state-of-the-art results are
achieved with a single forward-pass through the model, us-
ing only a video clip as input, and without any separate
external person detectors providing proposals [57, 60, 62],
complex memory banks [40, 62, 66], or additional object
detectors [2, 53], as used by the prior works. Furthermore,
we outperform these complex, prior, state-of-the-art two-
stage models whilst also having additional functionality in
that our model predicts tubelets, that is, temporally con-
sistent bounding boxes at each frame of the input video
clip. This capability is demonstrated by our results on tube-
based datasets like UCF101-24 where we surpass the prior
work [66] by 13.2 points on Video AP50.

2. Related Work

Models for spatio-temporal action localisation have typi-
cally built upon advances in object detectors for images.
The most performant methods for action localisation [3, 15,
40, 53, 62] are based on “two-stage” detectors like Fast-
RCNN [17]. These models use external, pre-computed per-
son detections, and use them to ROI-pool features which
are then classified into action classes. Although these mod-
els are cumbersome in that they require an additional model
and backbone to first detect people, and therefore additional
detection training data as well, they are currently the lead-
ing approaches on datasets such as AVA [18]. Such mod-
els using external proposals are also particularly suited to
datasets such as AVA [18] as each person is exhaustively la-
belled as performing an action, and therefore there are fewer
false-positives from using action-agnostic person detections
compared to datasets such as UCF101 [49].

The performance of these two-stage models has further
been improved by incorporating more contextual informa-
tion using feature banks extracted from additional frames in
the video [40, 53, 61, 62] or by utilising detections of ad-

ditional objects in the scene [2, 5, 58, 64]. Both of these
cases entail significant extra computation and complexity
to train additional auxiliary models, and to precompute fea-
tures from them that are then used during training and in-
ference of the localisation model.

Our proposed method, in contrast, is end-to-end in that
it directly produces detections without any additional inputs
besides a video clip. Moreover, it outperforms these prior
works without resorting to external proposals or memory
banks, showing that a transformer backbone is sufficient to
capture long-range dependencies in the input video. In ad-
dition, unlike previous two-stage methods, our method di-
rectly predicts tubelets: a sequence of bounding boxes and
actions for each frame of the input video, and can do so even
when we do not have full tubelet annotations available.

A number of proposal-free action localisation models
have also been developed [9, 16, 22, 25, 51, 66]. These
methods are based upon alternative object detection archi-
tectures such as SSD [35], CentreNet [67], YOLO [43],
DETR [6] and Sparse-RCNN [52]. However, in contrast
to our approach, they have been outperformed by their
proposal-based counterparts. Moreover, some of these
methods [16, 25, 51] also consist of separate network back-
bones for learning video feature representations and propos-
als for a keyframe, and are thus effectively two networks
trained jointly, and cannot predict tubelets either.

Among prior works that do not use external proposals,
and also directly predict tubelets [22, 29, 31, 47, 48], our
work is most similar to TubeR [66] given that our model
is also based on DETR. Our model, however, is designed
with additional temporal inductive biases which improves
accuracy (without using external memory banks precom-
puted offline like [66]. And moreover, unlike TubeR, we
also demonstrate how our model can predict tubelets (i.e.
predictions at every frame of the input video), even when
we only have sparse keyframe supervision (i.e. ground truth
annotation for a limited number of frames) available.

Finally, we note that DETR has also been extended as a
proposal-free method to addressing other localisation tasks
in video such as instance segmentation [59], temporal local-
isation [36, 39, 63] and moment retrieval [27].

3. Spatio-Temporal Action Transformer

Our proposed model ingests a sequence of video frames,
and directly predicts tubelets (a sequence of bounding boxes
and action labels). No external person detections [40, 54,
57], or memory banks [62, 66], are needed.

As summarised in Fig. 2, our model consists of a vision
encoder (Sec. 3.1), followed by a decoder which processes
learned query tokens into output tubelets (Sec. 3.2). We
incorporate temporal inductive biases into our decoder to
improve accuracy and tubelet prediction with weaker super-
vision. Our model is inspired by the DETR architecture [6]
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Figure 2. Our model processes a fixed-length video clip, and for each frame, outputs tubelets (i.e. linked bounding boxes with associated
action class probabilities). It consists of vision encoder which outputs a video representation, x € R7*"*¥*4 The video representation,
along with learned queries, q (which are factorised into spatial q° and temporal components q") are decoded into tubelets by a decoder of

L layers followed by shallow box and class prediction heads.

for object detection in images, and is also trained with a set-
based loss and Hungarian matching. We detail our loss, and
how we can train with either sparse keyframe supervision
or full tubelet supervision, in Sec. 3.3.

3.1. Vision Encoder

The vision backbone processes an input video, X &
RTXHXWX3 to produce a feature representation of the input
video x € R¥*"*wxd Here, T, H and W are the original
temporal-, height- and width-dimensions of the input video
respectively, whilst ¢, h and w are the spatio-temporal di-
mensions of their feature representation, and d its latent di-
mension. When using a transformer backbone, these spatio-
temporal dimensions depend on the patch size when to-
kenising the input, and when using a convolutional back-
bone, they depend on the overall stride. To retain spatio-
temporal information, we remove the spatial- and temporal-
aggregation steps at the end of the original backbone. And
if the temporal patch size (or stride) is larger than 1, we bi-
linearly upsample the final feature map along the temporal
axis to maintain the original temporal resolution.

3.2. Tubelet Decoder

Our decoder processes the visual features, x € RTxhxwxe
along with learned queries, q € RT*5X4  to output
tubelets, y = (b,a) which are a sequence of bound-
ing boxes, b € RT*9*4 and corresponding actions, a €
RT*SXC Here, S denotes the maximum number of bound-
ing boxes per frame (padded with “background” as neces-
sary) and C' denotes the number of output classes.

The idea of decoding learned queries into output de-
tections using the transformer decoder architecture of
Vaswani et al. [56] was used in DETR [6]. In summary,
the decoder of [6, 56] consists of L layers, each perform-
ing a series of self-attention operations on the queries, and
cross-attention between the queries and encoder outputs.

We modify the queries, self-attention and cross-attention
operations for our spatio-temporal localisation scenario, as
shown in Fig. 2 and 3 to include additional temporal induc-
tive biases, and to improve accuracy as detailed below.
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Figure 3. Our decoder layer consists of factorised self-attention
(SA) (left) and cross-attention (CA) (right) operations designed to
provide a spatio-temporal inductive bias and reduce computation.
Both operations restrict attention to the same spatial and temporal
slices as the query token, as illustrated by the receptive field (blue)
for a given query token (magenta). Factorised SA consists of two
operations, whilst in Factorised CA, there is one operation.

Queries Queries, q, in DETR, are decoded using the en-
coded visual features, x, into bounding box predictions, and
are analogous to the “anchors” used in other detection archi-
tectures such as Faster-RCNN [44].

The most straightforward way to define queries is to ran-
domly initialise q € RT*5%4_ where there are S bounding
boxes at each of the 7" input frames in the video clip.

However, we find it is more effective to factorise the
queries into separate learned spatial, q* € R%*?, and tem-
poral, g7*? parameters. To obtain the final tubelet queries,
we simply repeat the spatial queries across all frames, and
add them to their corresponding temporal embedding at
each location, as shown in Fig. 2. More concretely q;; =
q + q; where ¢ and j denote the temporal and spatial in-
dices respectively.

The factorised query representation means that the same
spatial embedding is used across all frames. Intuitively, this
encourages the i‘" spatial query embedding, g3, to bind to
the same location across different frames of the video, and
since objects typically have small displacements from frame
to frame, may help to associate bounding boxes within a
tubelet together. We verify this intuition empirically in the
experimental section.
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Decoder layer The decoder layer in the original trans-
former [56] consists of self-attention on the queries, q, fol-
lowed by cross-attention between the queries and the out-
puts of the encoder, x, and then a multilayer perceptron
(MLP) layer [19, 56]:

= MHSA(q") + ¢, (1)
= CA(u’,x) +u’, ()
z‘ = MLP(v') + v*, (3)

where z’ is the output of the ¢** decoder layer, u and
v are intermediate variables, MHSA denotes multi-headed
self-attention and CA cross-attention. Note that the inputs
to the MLP, self- and cross-attention operations are layer-
normalised [4], which we omit here for clarity.

In our model, we factorise the self- and cross-attention
layers across space and time respectively as shown in Fig. 3,
to introduce a temporal locality inductive bias, and also
to increase model efficiency. Concretely, when applying
MHSA, we first compute the queries, keys and values, over
which we attend twice: first independently at each time step
with each frame, and then, independently along the time
axis at each spatial location. Similarly, we modify the cross-
attention operation so that only tubelet queries and back-
bone features from the same time index attend to each other.

Localisation and classification heads We obtain the fi-
nal predictions of the network, y = (b, a), by applying a
small feed-forward network to the outputs to the decoder, z,
following DETR [6]. The sequence of bounding boxes, b,
is obtained with a 3-layer MLP, and is parameterised by the
box center, width and height for each frame in the tubelet.
A single-layer linear projection is used to obtain class log-
its, a. As we predict a fixed number of S bounding boxes
per frame, and S is more than the maximum number of
ground truth instances in the frame, we also include an ad-
ditional class label, @, which represents the “background”
class which tubelets with no action class can be assigned to.

3.3. Training objective

Our model predicts bounding boxes and action classes at
each frame of the input video. Many datasets, however,
such as AVA [18], are only sparsely annotated at selected
keyframes of the video. In order to leverage the available
annotations, we compute our training loss, Eq. 4, only at
the annotated frames of the video, after having matched the
predictions to the ground truth:

7y |7~| Z»Cframe y y (4)
teT

where T is the set of labelled frames; y and ¥ denote the
ground truth and predicted tubelets after matching. Follow-
ing DETR [6], our training loss at each frame, Lgape, 1S @

sum of an L regression loss on bounding boxes, the gener-
alised IoU loss [45] on bounding boxes, and a cross-entropy
loss on action labels:

ACfr'¢1mze(]:)t7 Bt’ t At Z »Cbox b bt + Elou(bga Bf)

+ 'Cclass (ai; az) (5)
Matching Set-based detection models such as DETR can
make predictions in any order, which is why the predictions
need to be matched to the ground truth before computing
the training loss.

The first form of matching that we consider is to inde-
pendently perform bipartite matching at each frame to align
the model’s predictions to the ground truth (or the & back-
ground class) before computing the loss. In this case, we
use the Hungarian algorithm [26] to obtain 1" permutations
of S elements, 7t € II?, at each frame, where the permuta-
tion at the ¢ frame minimises the per-frame loss,

ﬁt = arg min »Cframe(yt» y;(z)) (6)
wellt

An alternative is to perform fubelet matching, where all

queries with the same spatial index, q*, must match to the

same ground truth annotation across all frames of the input

video. Here the permutation is obtained over S elements as

1
= argmin — L t,Atti . (7
i

Intuitively, tubelet matching provides stronger supervision
when we have full tubelet annotations available. Note that
regardless of the type of matching that we perform, the loss
computation and the overall model architecture remains the
same. Note that we do not weight terms in Eq. 5, for both
matching and loss calculation, for simplicity, and to avoid
having additional hyperparameters, as also done by [38].

3.4. Discussion

As our approach is based on DETR, it does not require
external proposals nor non-maximal suppression for post-
processing. The idea of using DETR for action localisation
has also been explored by TubeR [66] and WOO [9]. There
are, however, a number of key differences: WOO does not
detect tubelets at all, but only actions at the center keyframe.
We also factorise our queries in the spatial and temporal
dimensions (Sec. 3.2) to provide inductive biases urging
spatio-temporal association. Moreover, we predict action
classes separately for each time step in the tubelet, mean-
ing that each of our queries binds to an actor in the video.
TubeR, in contrast, parameterises queries such that they are
each associated with separate actions (features are average-
pooled over the tubelet, and then linearly classified into a
single action class). This choice also means that TubeR re-
quires an additional “action switch” head to predict when
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tubelets start and end, which we do not require as different
time steps in a tubelet can have different action classes in
our model. Furthermore, we show experimentally (Tab. 1)
that TubeR’s parameterisation obtains lower accuracy. We
also consider two types of matching in the loss computation
(Sec. 3.3) unlike TubeR, with “tubelet matching” designed
for predicting more temporally consistent tubelets. And in
contrast to TubeR, we experimentally show how our de-
coder design allows our model to accurately predict tubelets
even with weak, keyframe supervision.

Finally, TubeR requires additional complexity in the
form of a “short-term context module” [66] and the external
memory bank of [61] which is computed offline using a sep-
arate model to achieve strong results. As we show experi-
mentally in the next section, we outperform TubeR without
any additional modules, meaning that our model does in-
deed produce tubelets in an end-to-end manner.

4. Experimental Evaluation
4.1. Experimental set-up

Datasets We evaluate on four spatio-temporal action lo-
calisation benchmarks. AVA and AVA-Kinetics contain
sparse annotations at each keyframe, whereas UCF101-24
and JHMDB51-21 contain full tubelet annotations.

AVA [18] consists of 430, 15-minute video clips from
movies. Keyframes are annotated at every second in the
video, with about 210 000 labelled frames in the training
set, and 57 000 in the validation set. There are 80 atomic
actions labelled for every actor in the clip, of which 60 are
used for evaluation [18]. Following standard practice, we
report the Frame Average Precision (fAP) at an IoU thresh-
old of 0.5 using the latest v2.2 annotations [18].

AVA-Kinetics [28] is a superset of AVA, and adds detec-
tion annotations following the AVA protocol, to a subset of
Kinetics 700 [7] videos. Only a single keyframe in a 10-
second Kinetics clip is labelled. In total, about 140 000 la-
belled keyframes are added to the training set, and 32 000 to
the validation sets of AVA. Once again, we follow standard
practice in reporting the Frame AP at a 0.5 IoU threshold.

UCF101-24 [49] is a subset of UCF101, and annotates
24 action classes with full spatio-temporal tubes in 3 207
untrimmed videos. Note that actions are not labelled ex-
haustively as in AVA, and there may be people present in
the video who are not performing any labelled action. Fol-
lowing standard practice, we use the corrected annotations
of [47]. We report both the Frame AP, which evaluates
the predictions at each frame independently, and also the
Video AP. The Video AP uses a 3D, spatio-temporal IoU to
match predictions to targets. And since UCF101-24 videos
are up to 900 frames long (median length of 164 frames),
and our network typically processes ' = 32 frames at a
time, we link together tubelet predictions from our network
into full-video-tubes using the same causal linking algo-

Table 1. Comparison of detection architectures on AVA control-
ling for the same resolution (160p) and training settings. Binding
each query to a person, rather than to an action (as done in Tu-
beR [66]) yields solid improvements. We report the mean AP for
both ViViT-B and CSN-152 backbones.
ViViT-B  CSN-152
Query binds to action 23.6 25.7
Ours, query binds to person 26.7 27.8

rithm as [22, 31] for fair comparison.

JHMDB51-21 [2]] also contains full tube annotations in
928 trimmed videos. However, as the videos are shorter and
at most 40 frames, we can process the entire clip with our
network, and do not need to perform any linking.

MultiSports [32] is arecent dataset with full tube annota-
tions for 66 fine-grained action classes in 2 129 untrimmed
videos, which are up to 3 676 frames long. It is challeng-
ing, as it contains fast motion with multiple actors perform
different concurrent actions, and there is a large variance in
action durations. Evaluation is the same as for UCF101-24.

Implementation details For our vision encoder back-
bone, we consider both transformer-based (ViViT Fac-
torised Encoder [1]), and convolutional (CSN [55]) back-
bones. For ViVIT, we use the “Base” and “Large” model
sizes [11, 12], which are typically first pretrained on im-
age datasets like ImageNet-21K [10] and then finetuned on
video datasets like Kinetics [23]. We also use CSN-152
pretrained on Instagram65M [37] and then Kinetics follow-
ing [66]. Our models process 1" = 32 frames unless other-
wise specified, with S = 64 spatial queries per frame and
latent decoder dimensionality of d = 2048. Exhaustive im-
plementation details and training hyperparameters are in-
cluded in the supplement. We will also release all code and
models upon acceptance.

4.2. Ablation studies

We analyse the design choices in our model by conducting
experiments on both AVA (with sparse per-frame supervi-
sion) and on UCF101-24 (where we can evaluate the qual-
ity of our predicted tubelets). Unless otherwise stated, our
backbone is ViViT-Base pretrained on Kinetics 400, and the
frame resolution is 160 pixels (160p) on the smaller side.

Comparison of detection architectures Tab. 1 compares
our model, where each query represents a person, and all
of their actions (Sec. 3.2) to the approach of TubeR [66]
(Sec. 3.4), where there is a separate query for each action
being performed. We observe that our parameterisation has
a substantial impact, with our method outperforming bind-
ing to actions by 3.1 points with a ViViT backbone, and 2.1
points with a CSN backbone on the AVA dataset, therefore
motivating the design of our decoder. the supplement shows
that this trend is consistent on UCF101-24 and JHMDB too.

Another architectural baseline that we can compare to is
that of a two-stage Fast-RCNN model using external person
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Table 2. Comparison of independent and factorised queries on the
AVA, UCF101-24 and JHMDBS51-21 datasets. Factorised queries
are particularly beneficial for predicting tubelets, as shown by the
VideoAP on UCF101-24 and JHMDB51-21 which has full tube
annotations. Both models use tubelet matching in the loss.

Table 4. Our model can predict tubelets even when the ground
truth annotations are sparse. We show this by subsampling training
annotations from the UCF101-24 dataset. Our model sees minimal
performance deterioration even when using only 1/24 or 4% of the
annotated frames.

AVA UCF101-24 JHMDBS51-21 Sampling Labelled frames fAP  vAP20 vAP50 vAP50:95
Query fAP fAP VvAP20 VAP50 vAP50:95 fAP vAP20 vAP50 All frames 458814 86.5 874 634 29.8
Independent 25.2 85.6 863 595 289  85.0 885 85.2 Every 12 39237 852 872 630 29.3
Factorised 26.3 86.5 87.4 634 29.8 86.9 89.5 88.2 Every 24 20243 84.9  86.8  63.2 28.1
One per video 2284 70.2 77.1 48.5 20.4

Table 3. Comparison of independent and tubelet matching
for computing the loss on AVA, UCF101-24 and JHMDS51-21.
Tubelet matching helps for tube-level evaluation metrics like the
Video AP (vAP) on UCF101-24 and JHMDB51-21. Note that
tubelet matching is actually still possible on AVA as the annota-
tions are at 1fps with actor identities.
AVA UCF101-24 JHMDB51-21

Query fAP fAP VAP20 vAPS0 vAP50:95 fAP VAP20 vAPS0

Per-frame matching 26.7 88.2 85.7 63.5 29.4 86.0 88.3  86.0
Tubelet matching  26.3 86.5 87.4 63.4 298 869 89.5 882

detections from [61], as used by [3, 13, 15, 62]. This base-
line using the same ViViT-B backbone achieved a mean AP
of 25.2, which is still 1.5 points below our model, empha-
sising the promise of our end-to-end approach. Note that
the proposals of [61] obtain an AP50 of 93.9 for person
detection on the AVA validation set. They were obtained
by first pretraining a Faster-RCNN [44] detector on COCO
keypoints, and then finetuning on the person boxes from the
AVA training set, using a resolution of 1333 on the longer
side. Our model is end-to-end, and does not require any
external proposals generated by a separate model at all.

Comparison to TubeR The second row of Tab. 1 using a
CSN-152 backbone corresponds to our reimplementation of
TubeR. By keeping all other training hyperparameters con-
stant, we observe that our query binding provides an im-
provement of 2.1 mAP points in a fair comparison. Note
that we could not use the public TubeR code [65], as it does
not reproduce the paper’s results: A higher resolution 256p
model achieved only 20 mAP when trained with the public
code, whilst it is reported to achieve 31.1. Exhaustive de-
tails on our attempts to reproduce TubeR with the authors’
public code is in the supplement.

Query parameterisation Tab. 2 compares our indepen-
dent and factorised query methods (Sec. 3.2) on AVA and
UCF101-24. We observe that factorised queries consis-
tently provide improvements on both the Frame AP and the
Video AP across both datasets. As hypothesised in Sec. 3.2,
we believe that this is due to the inductive bias present in
this parameterisation. Note that we can only measure the
Video AP on UCF101-24 as it has tubes labelled. We also
show in the supplement that these observations are consis-
tent on the JHMDB dataset too.

Matching for loss calculation As described in Sec. 3.3,
when matching the predictions to the ground truth for loss

computation, we can either independently match the outputs
at each frame to the ground truths at each frame, or, we can
match entire predicted tubelets to the ground truth tubelets.
Tab. 3 shows that tubelet matching does indeed improve the
quality of the predicted tubelets, as shown by the Video AP
on UCF101-24. However, this comes at the cost of the qual-
ity of per-frame predictions, (i.e. Frame AP). This suggests
that tubelet matching improves the association of bound-
ing boxes predicted at different frames (hence higher Video
AP), but may also impair the quality of the bounding boxes
predicted at each frame (Frame AP). Note that it is tech-
nically possible for us to also perform tubelet matching on
AVA, since AVA is annotated at 1fps with actor identities,
and our model is input 32 frames at 12.5fps (therefore 2.56
seconds of temporal context) meaning that we have sparse
tubelets with 2 or 3 annotated frames.

As tubelet matching helps with the overall Video AP,
we use it for subsequent experiments on UCF101-24 and
JHMDBS51-21. For AVA, we use per-frame matching as the
standard evaluation metric is the Frame AP, and annotations
are sparse at 1fps.

Weakly-supervised tubelet detection Our model can
predict tubelets even when the ground truth annotations
are sparse and only labelled at certain frames (such as the
AVA dataset). We quantitatively measure this ability of our
model on UCF101-24 which has full tube annotations. We
do so by subsampling labels from the training set, and eval-
uating the full tubes on the validation set.

As shown in Tab. 4, we still obtain meaningful tube
predictions, with a Video AP20 of 77.1, when using only
a single frame of annotation from each UCF video clip.
When retaining 1 frame of supervision for every 24 la-
belled frames (which is roughly 1fps and corresponds to the
AVA dataset’s annotations), we observe minimal deteriora-
tion with respect to the fully supervised model (all Video
AP metrics are within 0.7 points). Retaining 1 frame of an-
notation for every 12 consecutive labelled frames also per-
forms similarly to using all frames in the video clip. These
results suggest that due to the redundancy in the data (mo-
tion between frames is often limited), and the inductive bias
of our model, we do not require each frame in the tube to be
labelled in order to predict accurate tubelets.

Decoder design Tabs. 5 and 6 analyse the effect of the
decoder depth and the type of attention in the decoder (de-

18378



Table 5. Effect of decoder depth on performance on the AVA
dataset. Performance saturates at I = 6 layers.
Layers (L) 0 1 3 6 9

mAP 1 234 246 262 265 26.7

Table 6. Effect of the type of attention used in the decoder on AVA.
Factorised attention is both more accurate and efficient (almost
half of the GFLOPs per decoder layer).

Decoder attention mAP  GFLOPs

Full 26.4 10.5
Factorised 26.7 5.3

Table 7. Increasing the image resolution on the AVA dataset leads
to consistent accuracy improvements, primarily on small objects.
APs, APm and API denote the AP at 0.5 IoU threshold on small,
medium and large boxes respectively following the COCO proto-
col [33]. AVA videos have a median aspect ratio of 16:10, and we
pad the larger side when the aspect ratio is different.

Resolution mAP APs APm APl

140 x 224 254 7.2 112 27.8

160 x 256  26.7 11.5 125 28.7

220 x 352 28.8 120 151 30.7

260 x 416 294 133 15.8 31.0

320 x 512 30.0 175 16.0 32.0
Table 8. Comparison of pretraining for our models with ViViT-B
and ViViT-L backbones on AVA using a resolution of 160 x 256.
Larger models benefit more from additional initial pretraining.

Pretrain STAR/B  STAR/L
IN21K [10] — K400 [23] 26.7 27.0
IN21K [10] — K700 [7] 27.3 27.6
CLIP [42] — K700 [7] 30.3 36.2

scribed in Sec. 3.2). As seen in Tab. 5, detection accuracy on
AVA increases with the number of decoder layers, plateau-
ing at around 6 layers. It is possible to use no decoder layers
too: In this case, instead of learning queries q (Sec. 3.2), we
simply interpret the outputs of the vision encoder (Sec. 3.1),
X, as our queries and apply the localisation and classifica-
tion heads directly upon them. Using decoder layers, how-
ever, can provide a performance increase of up to 3.3 mAP
points (14% relative), emphasising their utility.

Tab. 6 shows that factorised attention in the decoder is
more accurate than standard, “full” attention between all
queries and visual features. Moreover, it is more efficient
too, using almost half of the GFLOPs at each decoder layer.

Effect of resolution and pretraining Scaling up the im-
age resolution is critical to achieving high performance for
object detection in images [20, 46]. However, we are not
aware of previous works studying this for video action lo-
calisation. Tab. 7 shows that we do indeed observe sub-
stantial improvements from higher resolution, improving by
up to 4.6 points on AVA. As expected, higher resolutions
help more for detection at small sizes, where we follow
the COCO [33] convention of object sizes. Note that AVA
videos have a median aspect ratio of 16:10, and we pad the
larger side for videos with different aspect ratios.

Similarly, Tab. 8 shows the effect of different pretraining

datasets. Video vision transformers are typically pretrained
on an image dataset (like ImageNet-21K [10]) , before be-
ing finetuned on a video dataset, such as Kinetics [23]. We
find that the initial image checkpoint plays an important
role, with CLIP [42] pretraining significantly outperforming
supervised pretraining on ImageNet-21K [12, 50]. This im-
provement grows further when using a “Large” backbone.
Our observations are consistent with prior works which
have shown that CLIP-pretraining outperforms ImageNet-
21K and even JFT pretraining [24, 30, 34, 41].

Qualitative examples We include example result videos
of our proposed model in the supplementary.

4.3. Comparison to state-of-the-art

We compare our model to the state-of-the-art on datasets
with both sparsely annotated keyframes (AVA and AVA-K),
and full tubes (UCF101-24, JHMDB and MultiSports).

AVA and AVA-Kinetics Tab. 9 compares to prior work
on AVA and AVA-Kinetics. The best previous methods re-
lied on external proposals [3, 54, 60] and external mem-
ory banks [40, 62] which we outperform. There are fewer
end-to-end approaches, and we outperform these by an even
larger margin. Note that though TubeR [66] is a proposal-
free approach, their best results are actually obtained with
the external memory of [61]. Consequently, we have re-
ported the end-to-end, and external-memory versions of Tu-
beR (“TubeR + LTC”) separately in Tab. 9. Furthermore,
as detailed in the supplement, the public TubeR training
code produces significantly lower performance (20.0 mAP).
Hence, to compare to it, we report results with our reimple-
mentation in addition to the paper’s results. Observe that we
outperform TubeR using the same CSN-152 backbone, and
then improve further using larger transformer backbones.

We achieve greater relative improvements on AVA-
Kinetics, showing that our end-to-end approach can lever-
age larger datasets more effectively. To our knowledge, we
surpass the best previous results on AVA-Kinetics, achiev-
ing a Frame AP of 45.1. Notably, we outperform Intern-
Video [60] and VideoMAE-v2 [57], which are two recent
video foundation models using more powerful backbones
and larger, private, web-scale video datasets. Note that In-
ternVideo consists of two different encoders, one of which
is also initialised from CLIP. And like [60], we achieve our
best AVA results by training a model on AVA-Kinetics, and
then evaluating it only on the AVA validation set. Finally,
we do not use any test-time augmentation, unlike previous
works that ensemble results over multiple resolutions and/or
left/right flips as shown by the “Views” column.

UCF101-24 Tab. 10 shows that we outperform prior work
on UCF101-24, both in terms of frame-level (Frame AP),
and tube-level metrics (Video AP). We achieve state-of-the-
art results with a CSN-152 backbone, and improve further
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Table 9. Comparison to the state-of-the-art (reported with mean Average Precision; mAP 1) on AVA v2.2 [18] and AVA-Kinetics (AVA-
K) [28]. Methods using external proposals (i.e. not end-to-end) are also trained on additional object detection and human pose data. Unless
otherwise stated, separate models are trained for AVA and AVA-Kinetics. * denotes the model was trained on AVA-Kinetics and evaluated
on AVA. “Res.” denotes the frame resolution of the shorter side. Web-scale foundational models are denoted in grey. T We also report our
reimplemented results for TubeR, as the authors’ public code does not reproduce their reported results, as detailed in the supplement.

Pretraining Views AVA AVA-K Res. Backbone End-to-end
MVIT-B [13] K400 1 27.3 - - MViT X
Unified [2] K400 6 27.7 - 320 SlowFast X
AIA [53] K700 18 32.3 - 320 SlowFast X
ACAR [40] K700 6 33.3 36.4 320 SlowFast X
TubeR [66] with LTC [61] 1G65M [37]—K400, COCO 2 33.6 - 256 CSN-152 X
MeMVIiT [62] K700 - 34.4 - 312 MVIT v2 X
Co-finetuning [3] IN21K—K700, MiT, SSv2 1 32.8 33.1 320 ViViT/L X

JFT,WTS—K700, MiT, SSv2 1 36.1 36.2 320 ViViT/L X
VideoMAE [54] SSL K700 — Sup. K700. - 39.3 - - ViViT/L X
InternVideo™ [60] 7 different datasets — 11.0 12.5 — Uniformer v2 X
VideoMAE v2 [57] 6 different datasets — 12.6 13.9 — ViViT/g X
Action Transformer [28] K400 1 - 23.0 400 13D v
WOO [9] K600 1 28.3 - 320 SlowFast v
TubeR [66] 1G65M [37]—K400, COCO 1 31.1 - 256 CSN-152 v
TubeR reimplemente(fr 1G65M [37]—K400 1 29.5 33.6 256 CSN-152 v
STAR/CSN-152 (ours) 1G65M— K400 1 314 35.8 256 CSN-152 v
STAR/B (ours) IN21K—K400 1 30.0 36.6 320 ViViT/B v

CLIP—K700 1 33.9 39.1 320 ViViT/B v
STAR/L (ours) CLIP—K700 1 39.2 44.5 320 ViViT/L v
STAR/L (ours)* CLIP—K700 1 42.5 45.1 420 ViViT/L v

Table 10. State-of-the-art comparison on datasets with tubelet annotations, UCF101, JHMDBS51 and MultiSports.
UCF101-24 JHMDB51-21 MultiSports
Pretraining fAP vAP20 VvAP50 vVvAP50:95 fAP VvAP20 vAP50 fAP vAP20 vAP50 Backbone

ACT [22] IN1K 67.1 77.2 51.4 25.0 65.7 74.2 73.7 - - - VGG
MOC [31] INIK —- COCO 78.0 82.8 53.8 28.3 70.8 77.3 7.2 25.2 12.9 0.6 DLA34
Unified [2] K600 79.3 - - - - - - - - - SlowFast
WOO [9] K600 - - - - 80.5 - - - - - SlowFast
TubeR [66] IG65M—K400  83.2 83.3 58.4 28.9 - 87.4 82.3 - - - CSN-152
HIT [14] K700 84.8 88.8 74.3 - 83.8 89.7 88.1 33.3 27.8 8.8 SlowFast
FBIL [8] K700 86.0 86.9 69.1 - - - - 40.8 30.3 9.9 SlowFast
STAR/CSN-152 IG65M—K400  86.7 87.0 65.4 30.6 93.5 96.3 954 454 50.1 18.6 CSN-152
STAR/B IN21K—K400 87.3 88.2 68.6 31.7 86.9 89.5 88.2 46.3 51.6 25.6 ViViT/B
STAR/L CLIP—K700 90.3 89.8 73.4 35.8 92.1 93.1 92.6 59.3 62.0 36.2 ViViT/L

by scaling up to ViViT-Large, consistent with our results on
AVA (Tab. 9). Moreover, note how we substantially out-
perform TubeR [66] using the same CSN-152 backbone.
Our margin of improvement over TubeR grows from vAP20
(+3.7) to vAP50 (+7.0) with the same backbone, showing
that our tubelets are more precise, and is in line with our vi-
sual observations in the supplement. To our knowledge, we
outperform the best previous reported Video AP50 result by
13.2 points. Note that as UCF videos are up to 900 frames,
and as our network processses 1T’ = 32 frames, we follow
prior works and link together tubelets using the same causal
algorithm as [2, 22, 31, 47] for fair comparison.

JHMDBS51-21 Tab. 10 shows that we surpass the state-
of-the-art on JHMDB. Once again, we significantly outper-
form TubeR [66], by 13.1 vAP50, with the same CSN-152
backbone. The CSN-152 backbone outperforms ViViT in
this case, possibly because this is the smallest dataset and
larger backbones can overfit more easily. The videos in this
dataset are trimmed (meaning that labelled actions are be-
ing performed on each frame), and also shorter. Hence the

Video AP is not as strict as it is on UCF. As videos are at
most 40 frames, we set " = 40 in our model so that we pro-
cess the entire clip at once without needing to link tubelets.
MultiSports Finally, Tab. 10 shows that we improve on
prior state-of-the-art on MultiSports substantially on both
Frame AP and Video AP. Although this is a recent bench-
mark with few methods to compare against, our improve-
ment is significant due to the challenging nature of the
dataset: it contains fast motion, many simultaneous actors
and large variation in action duration.

5. Conclusion and Future Work

We have presented STAR, an end-to-end spatio-temporal
action localisation model that can output tubelets, when ei-
ther sparse keyframe, or full tubelet annotation is available.
Our approach achieves state-of-the-art results on four action
localisation datasets for both frame-level and tubelet-level
predictions (in particular, we obtain 45.1% mAP on the
challenging AVA-Kinetics dataset), outperforming complex
methods that use external proposals and memory banks. Fu-
ture work is to extend our method to open vocabularies.
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