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Abstract

The performance of image restoration (IR) is highly de-
pendent on the reconstruction quality of diverse contents
with varying complexity. However, most IR approaches
model the mapping between various complexity contents
of inputs and outputs through the repeated feature calcu-
lation propagation mechanism in a unified pipeline, which
leads to unsatisfactory results. To address this issue, we
propose an explicit Content Decoupling framework for IR,
dubbed CoDe, to end-to-end model the restoration process
by utilizing decoupled content components in a divide-and-
conquer-like architecture. Specifically, a Content Decou-
pling Module is first designed to decouple content compo-
nents of inputs and outputs according to the frequency spec-
tra adaptively generated from the transform domain. In ad-
dition, in order to harness the divide-and-conquer strategy
for reconstructing decoupled content components, we pro-
pose an IR Network Container. It contains an optimized
version, which is a streamlining of an arbitrary IR net-
work, comprising the cascaded modulated subnets and a
Reconstruction Layers Pool. Finally, a Content Consistency
Loss is designed from the transform domain perspective to
supervise the restoration process of each content compo-
nent and further guide the feature fusion process. Exten-
sive experiments on several IR tasks, such as image super-
resolution, image denoising, and image blurring, covering
both real and synthetic settings, demonstrate that the pro-
posed paradigm can effectively take the performance of the
original network to a new state-of-the-art level in multiple
benchmark datasets (e.g., 0.34dB@Set5 ×4 over DAT).

1. Introduction
Image restoration (IR) has been a long-standing problem

for its highly practical value in various low-level vision ap-
plications, such as image super-resolution (SR), denoising,
and deblurring. It is a typical ill-posed problem due to the
irreversible nature of the image degradation process. Recent
advances in IR have been led by deep learning-based meth-
ods, as they can learn strong and generalizable priors from
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Figure 1. The most representative sample to illustrate our moti-
vation: We observed that the contents in different regions of an
image may follow different patterns/distributions, while many IR
methods employ computationally complex networks consisting of
repeated computational modules in a unified pipeline, to recover
such regions resulting in wrongly restored results. This patch is
img092 from Urban100 [18] dataset.

large-scale datasets. Existing deep learning-based IR ap-
proaches typically follow the two main architectures: con-
volutional neural networks (CNN) architecture and Trans-
former [38] architecture. For example, stacked denoising
auto-encoder [39] is one of the best well-known CNN-based
models for image denoising, Dong et al. proposed SR-
CNN [13] for image SR and multi-scale CNN (MSCNN)
was proposed for image deblurring by Nah et al. [31]. The
deep CNN models with the convolution operation have been
proven to be effective for IR tasks [22, 28, 42, 52, 53]. As an
alternative to CNN, Transformer-based [38] methods were
designed via utilizing the self-attention mechanism to cap-
ture global interactions between contexts and has shown
promising performance in IR problems [4, 6, 27]. Due to
the powerful fitting ability of deep learning-based meth-
ods with the image-to-image regression strategy, the perfor-
mance and reconstruction quality of IR has been improved
significantly.

However, we have identified several issues with cur-
rent CNN-based and Transformer-based IR methods. These
methods have demonstrated excellent average restoration
performance across various benchmarks, while they often
occasionally produce poor/wrong results in some regions
and obtain unsatisfactory results. As shown in Fig. 1, all
the considered methods produce some anti-diagonal lines
(from bottom left to top right) but the lines in the ground-
truth image should be in the opposite direction, i.e., the
diagonal (from top left to the bottom right). Overall, the
quality of different regions in the restored/predicted image
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Figure 2. The alleviation of this overfitting phenomenon. This
patch is fed to the original network (-O) and its simplified version
with reduced computational complexity, respectively. The visually
unsatisfactory restoration results are significantly mitigated, espe-
cially in the red box. NET stands for EDSR [28]. We modulate the
computational cost by simply reducing the width and depth of the
feature layers in the original network. ‘Original Width, Smaller
Depth’ and ‘Smaller Width, Original Depth’ are abbreviated as -
o.w.s.d and -s.w.o.d.
may vary a lot. This shortcoming will result in a signif-
icant decline in the performance when restoring such par-
ticular patches, which hinders the overall reconstruction
ability. We hypothesize that different regions of an im-
age should be processed in different ways instead of being
treated equally. Here, we conduct a simple experiment to
verify this. As shown in Fig. 2, we attribute the essence
of recovering these visually unappealing observations to a
kind of overfitting phenomenon, i.e., enforcing the model to
process different contents/regions in a similar way, yielding
a lack of diversity w.r.t. processing different contents. In
other words, they treat the whole low-quality (LQ) image
as the input, neglecting the characteristic that different con-
tents/regions have varying patterns in the restoration pro-
cess so that all the contents can only be treated equally in a
unified pipeline through the repeated feature extraction lay-
ers. This behavior often results in some wrongly restored
content that should be processed in a different way from
the other regions. Surprisingly, we find that we can effec-
tively correct these errors if we build a smaller network to
reduce the overfitting risk. As shown in Fig. 2, either re-
ducing the width or depth of the network successfully rec-
tifies the errors. This result further reveals the necessity of
processing different content components by modulating the
original network to appropriate sub-nets with correspond-
ing computational costs for IR tasks, and the content de-
coupling operation should be taken into consideration.

The aforementioned discussion leads to a series of re-
search questions about the IR tasks naturally: 1) how to
decouple the contents more rationally; 2) how to process
decoupled content components in a more reasonable way

for different IR tasks; 3) and how to supervise the whole
restoration process under the new paradigm. We will try to
answer these questions in Sec. 3.1, Sec. 3.2, and Sec. 3.3
respectively. To address the questions mentioned above, we
propose an explicit content decoupling framework for im-
age restoration. Specifically, we designed a Content De-
coupling Module to disentangle the content components of
LQ and HQ. This is achieved by adaptively generating fre-
quency masks from the Discrete Cosine Transform (DCT)
domain, and then using them to guide the content decou-
pling process. Besides, an IR Network Container is pro-
posed to handle different content components in a divide-
and-conquer manner, with each sub-net dedicated to han-
dling a specific content component. To constrain the whole
restoration process, we further design a Content Consis-
tency Loss from the transform domain perspective, which
forces the paradigm to pay more attention to the image con-
tents with more complex patterns. We apply the proposed
framework to the most current state-of-the-art IR methods.
Experimental results demonstrate that our framework can
effectively take the performance of the original network to
a new state-of-the-art level.

The contributions of this work are as follows:
• We systematically and comprehensively answer the gen-

eral questions about the image restoration tasks and pro-
pose a solution. The exploration of solving these issues
can guide us to re-examine the challenges faced by image
restoration from a different perspective.

• We propose an explicit Content Decoupling framework
for image restoration, dubbed CoDe, that is needed to
specify neither network architecture nor tasks, which can
be applied to any existing image restoration network.

• Extensive experiments have been conducted on several
real and synthetic IR tasks, demonstrating that our pro-
posed framework can take the original network to a new
state-of-the-art level in both performance and visual qual-
ity while maintaining attractive computational costs.

2. Related Work

Image Restoration. Existing deep learning-based IR
methods can be divided into two main categories: CNN-
based and Transformer-based methods. For the former,
Dong et al. proposed SRCNN [13] for image SR, Zhang
et al. proposed DnCNN [51] for image denoising, and Xu
et al. proposed DCNN [44] for image deblurring. With
the emergence of these pioneering work, a flurry of CNN-
based methods, such as [10, 37, 41, 49, 55, 57], have been
proposed to improve the representation ability for IR tasks.
For the latter, after Chen et al. proposed a backbone model
IPT [6] for various restoration problems based on the stan-
dard Transformer, there emerge a number of Transformer-
based methods [7, 23, 25, 27, 48]. However, most of these
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Figure 3. Overview of the proposed framework. Please refer to the color version for better view.

methods result in over-smoothed outputs and some textural
details also fail to be recovered correctly. This is mainly be-
cause they neglect the difficulty of restoring diverse image
contents can vary, and treat them indiscriminately.

Frequency Decoupling. Recently, researchers have pro-
posed some deep learning-based IR methods, taking the
characteristics of different frequency signals into account
for content decoupling purposes. Li et al. [24] proposed a
frequency decomposition operation for image SR to com-
pensate for the lost information in the LQ image by large
stride convolution. Magid et al. utilized a dynamic high-
pass filter [29] that locally applies adaptive filter weights
for each spatial location and channel group to preserve high-
frequency signals. Fritsche et al. proposed the DSGAN [16]
to generate LR-HR pairs via the low- and high-pass filters.
Jiang et al. [20] and Zhang et al. [58] introduced the Oc-
tave Convolution (OctConv) [8] to obtain the low- and high-
frequency information. There are also methods that use off-
the-shelf operators for frequency decoupling. In [61], Zuo
et al. introduced vertical and horizontal Sobel [14] opera-
tors to generate the gradient map for feature enhancement.
In [26, 46, 60], Haar wavelet [12] was combined in the net-
work to decompose images into 4 diverse content compo-
nents. Shao et al. [34] and Chakrabarti et al. [5] adopted
the Fast Fourier Transform (FFT) [11] to learn the global
low- and high-frequency content components by converting
the features to the frequency domain. However, using these
frequency decoupling methods to achieve content decou-
pling has obvious drawbacks. Whether using the traditional
convolution mechanism or applying off-the-shelf operators
for content decoupling, they are essentially a weighted aver-
age operation, considering the weighted sum of pixel values
within a fixed-size sliding window. Using such filters for all
image patches to decouple content components may not be
the best choice. In addition, the decomposition patterns are
inflexible because one operation can only generate one sub-
band and they can eventually decouple the content into only
2 or 4 subbands.

DCT-based IR Methods. DCT is widely used in tradi-
tional digital image processing, especially in JPEG image
compression [40]. Unlike the aforementioned frequency
decoupling methods, the DCT-based IR methods utilize all
DCT coefficients, which contain information about all con-
tent components of the whole input. Refs [17, 45] use 8× 8
block-wise DCT for image restoration, similar to JPEG im-
age compression. However, this transformation will lead to
severe visual discontinuity, resulting in poor visual quality.
Although this problem can be alleviated by patch overlap-
ping, it would introduce extra computational burdens.

3. Methodology
Overview. The contents in different regions of an im-

age follow different patterns/distributions. Some regions
are very smooth while others may contain a lot of high-
frequency textures. In this case, treating them equally may
compromise the performance in both regions since it is non-
trivial to find a good trade-off between low-/high-frequency
reconstruction. This directly inspires us to conduct content
decoupling. To this end, we dive into the frequency do-
main for help and propose our explicit Content Decoupling
framework, dubbed CoDe, for image restoration. It can
decouple image contents from all the frequency signals
and restore the decoupled content components respectively.
Fig. 3 shows the overall architecture of the proposed frame-
work. Our approach consists of three main components,
Content Decoupling Module (CDM), IR Network Container
(IRNC), and Content Consistency Loss (CCLoss), which
are targeted to solve the three problems presented in Sec-
tion 1. We will describe the technical details of these three
components in the following subsections.

3.1. Content decoupling module

As the 8× 8 block-wise DCT transformation would lead
to visual discontinuity, we deprecate it and use the typical
type-II DCT and type-II inverse DCT (iDCT) on the whole
image for the content decoupling purpose. We denote these
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two operations by D and iD in Fig. 3 respectively. The
type-II DCT and iDCT formula can be expressed as the fol-
lowing Eq. 1 and Eq. 2:

S(u, v)=
2

√
W·

√
H
×
W−1∑
x=0

H−1∑
y=0

LQ(x, y)·cos
(2x+1)uπ

2W
·cos

(2y+1)vπ

2H
, (1)

LQi(x, y)=
2

√
W·

√
H
×
W−1∑
u=0

H−1∑
v=0

Si(u,v)·cos
(2x+1)uπ

2W
·cos

(2y+1)vπ

2H
, (2)

where LQ(·) and S(·) represent the LQ in RGB color space
and the whole DCT spectrum respectively; Si and LQi, i∈
{1, 2, . . . , n} represent a collection of DCT spectrum and
LQ sub-images with only one content component; x, y and
u, v stand for the horizontal and vertical pixel index in RGB
color space and in DCT spectrum; H , W denote the height
and width of the image. Here, we have:{

LQ(·) = LQ1⊕LQ2⊕. . .⊕LQn,

S(·) = S1⊕S2⊕. . .⊕Sn,
(3)

where ⊕ denotes the pixel-wise summation. Note that we
utilize the type-II DCT on the whole image can ensure all
pixel information contributes to the content decoupling pro-
cess. This operation is equivalent to increasing the recep-
tive field of the model in a disguised form, which allows the
model to perceive the content information contained in each
pixel.

The specific mechanism of the CDM is as follows. Tak-
ing LQ as an example, we first set a hyperparameter n, rep-
resenting the number of content components to be decou-
pled. Then n−1 numbers different from each other between
(0,1) are randomly initialized and sorted in ascending order,
[α1, α2, ..., αn−1], which are used to determine the radius of
the frequency mask [r0, r1, ..., rn−1], where

ri=

{
αi∗

√
H2+W 2 , i ∈ {1, 2, . . . , n−1},

0 , i = 0.
(4)

Regarding the pixel in the upper left corner of the DCT
spectrum S(·) obtained by Eq. 1 as the center of the cir-
cle, ri−1 and ri, i∈{1, 2, . . . , n−1} as the inner and outer
radii along the diagonal direction to separate S(·) into n
subbands [S1, S2, ..., Sn]. We call this operation Content
Masking and denote it by M . In this way, we get n DCT
spectra, and for each Si it only contains a specific range
of frequency signal. Then performing the iDCT by Eq. 2
on Si, i∈ {1, 2, . . . , n} to obtain a collection of LQ sub-
images, [LQ1, LQ2, ..., LQn]. Each LQi only contains one
frequency component as well. Similarly, after applying the
above operation to ground truth (GT), we obtain a collection
of GT sub-images, [GT 1, GT 2, ..., GTn], and we have:

GT (·) = GT 1⊕GT 2⊕. . .⊕GTn, (5)

where ⊕ denotes the pixel-wise summation. Note that
[α1, α2, ..., αn−1] are learnable and self-adaptive, and our

method differs from all previous frequency decoupling ones
because it can decouple the image content into arbitrary
number of parts by changing the hyperparameter n.

3.2. IR network container

In this part, we elaborately design IRNC by employ-
ing the divide-and-conquer strategy. It mainly consists of
a simplified version, i.e., a streamlining of an arbitrary IR
network, which contains a collection of cascaded modu-
lated sub-nets with different computation costs and corre-
sponding reconstruction layers following after, which we
call the Reconstruction Layer Pool (abbr. Recon). Specifi-
cally, when setting n>1, there will be n LQ sub-images,
LQ1, LQ2, . . . , LQn, generated from the CDM. Then,
IRNC will transfer into an optimized version with n sub-
nets, Subnet1, Subnet2, . . . , Subnetn, and cascading to-
gether. Subsequently, each LQi will be fed to correspond-
ing Subneti to obtain the reconstructed high-dimensional
features. After that, Recon receives these features and
transforms them back to RGB space through the corre-
sponding reconstruction layer Reconi(·) to obtain n HQ
sub-images HQ1, HQ2, . . . , HQn. If setting n to 1, it de-
notes the content decoupling operation will be omitted and
IRNC will be degraded to the original network. In other
words, this setup is equivalent to restoring LQ by the orig-
inal network, which we denote as ORNet(·). The whole
process of IRNC can be described formally as follows:

{
HQ = ORNet(LQ) , n=1,

HQi=Reconi(Subneti(· · · (Subnet1(LQi)))) , i ∈ {1,2,. . .,n}.
(6)

We build a set of subnets with different model sizes by
adopting the parameter sharing technique [32] to process
different decoupled contents. Without loss of generality,
Subneti with a smaller index has a lower computational
cost and its model size gradually grows with the increase
of index i. Note that the smaller the sub-net index number
is, the fewer the number of feature layers and channels it
contains. Such modulations will bring about a shift in com-
putation cost, and a reduction in the number of parameters.

3.3. Content consistency loss

As our paradigm is multi-output, commonly used loss
functions in image restoration are invalid, such as the L1
Loss and L2 Loss, and in order to maintain the consistency
of diverse content components between HQ and GT, we de-
sign the CCLoss from the frequency domain perspective to
replace the term corresponding to the pixel-wise reconstruc-
tion loss in the original method, which is represented for-
mally as follows:

L(β; Θ) =
n∑
i=1

βi · ∥GT i−HQi∥1, (7)
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Table 1. Quantitative comparison (PSNR/SSIM) for classical image SR with state-of-the-art methods on benchmark datasets.

Scale Method Years TrainSet Set5 [2] Set14 [50] BSD100 [30] Urban100 [18]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×2

ELAN [55] ECCV2022 DIV2K
38.36 0.9620 34.20 0.9228 32.45 0.9030 33.44 0.9391

Ours 38.54 0.9642 34.43 0.9239 32.63 0.9039 33.50 0.9402
Omni-SR [41] CVPR2023 DIV2K

38.22 0.9613 33.98 0.9210 32.36 0.9020 33.05 0.9363
Ours 38.34 0.9622 34.10 0.9219 32.44 0.9026 33.12 0.9369

HAT [7] CVPR2023 DF2K
38.58 0.9628 34.70 0.9261 32.59 0.9050 34.31 0.9459

Ours 38.64 0.9632 34.78 0.9267 32.68 0.9058 34.42 0.9467
SRFormer [59] ICCV2023 DIV2K

38.23 0.9613 33.94 0.9209 32.36 0.9019 32.91 0.9353
Ours 38.35 0.9622 34.08 0.9215 32.44 0.9022 33.02 0.9358

DAT [9] ICCV2023 DF2K
38.58 0.9629 34.81 0.9272 32.61 0.9051 34.37 0.9458

Ours 38.72 0.9633 34.93 0.9279 32.71 0.9056 34.51 0.9472
GRL [25] CVPR2023 DIV2K

38.67 0.9647 35.08 0.9303 32.67 0.9087 35.06 0.9505
Ours 38.82 0.9656 35.17 0.9311 32.81 0.9092 35.12 0.9510

×4

ELAN [55] ECCV2022 DIV2K
32.75 0.9022 28.96 0.7914 27.83 0.7459 27.13 0.8167

Ours 32.86 0.9031 29.08 0.7926 27.92 0.7467 27.34 0.8175
Omni-SR [41] CVPR2023 DIV2K

32.49 0.8988 28.78 0.7859 27.71 0.7415 26.64 0.8018
Ours 32.57 0.8996 28.92 0.7868 27.79 0.7422 26.83 0.8023

HAT [7] CVPR2023 DF2K
32.92 0.9047 29.15 0.7958 27.97 0.7505 27.87 0.8346

Ours 33.01 0.9054 29.22 0.7962 28.09 0.7509 27.93 0.8354
SRFormer [59] ICCV2023 DIV2K

32.51 0.8988 28.82 0.7872 27.73 0.7422 26.67 0.8032
Ours 32.65 0.9001 28.98 0.7892 27.89 0.7469 26.81 0.8051

DAT [9] ICCV2023 DF2K
33.08 0.9055 29.23 0.7973 28.00 0.7515 27.87 0.8343

Ours 33.42 0.9072 29.41 0.7982 28.13 0.7522 27.98 0.8349
GRL [25] CVPR2023 DIV2K

33.10 0.9094 29.37 0.8058 28.01 0.7611 28.53 0.8504
Ours 33.21 0.9101 29.46 0.8071 28.13 0.7619 28.61 0.8513

where Θ denotes all the learnable parameters of our frame-
work, and βi, i∈{1, 2, . . . , n} denote the weighting coef-
ficients of different content components. This loss func-
tion ensures our framework recovers high-quality images
by minimizing the distance between the HQ sub-images and
GT sub-images corresponding to different component com-
ponents. Essentially, it minimizes the DCT coefficients be-
tween HQ sub-images and GT sub-images. Under the su-
pervision of the CCLoss, the final restoration result can be
formally expressed as:

HQ(·) = HQ1⊕HQ2⊕. . .⊕HQn, (8)
where ⊕ represents the pixel-wise summation.

4. Experimental Results and Analysis
The experimental results are shown in this section. We

first report the quantitative and visual comparisons for im-
age SR, image denoising, and image deblurring covering
both real and synthetic scenes. The configurations of hy-
perparameters are as follows: for image SR, we set n to 3,
and β1, β2, β3=0.3, 0.7, 1; for image denoising, n is set to
2, and β1, β2=0.3, 1; for image deblurring, we set n to 3,
and β1, β2, β3=0.3, 0.5, 1 respectively. Note that, for fair
comparisons, we retrain all the models on 4 Nvidia Tesla
V100 GPUs using the code released by the original author,

while the rest of the configurations remain consistent with
the original work, such as the training datasets, input patch
size, batch size, and the testing configurations. For each
task, we apply commonly used datasets for testing and re-
port PSNR (dB) and/or SSIM [43] to evaluate the perfor-
mance of our method.

4.1. Results on image SR

Classical image SR. We first apply our framework to
some most state-of-the-art SISR methods: DAT [9], SR-
Former [59], ELAN [55], HAT [7], Omni-SR [41], and
GRL [25]. Set5 [2], Set14 [50], BSD100 [30], and Ur-
ban100 [18] are used for evaluation. Both CNN-based mod-
els and Transformer-based SR models are summarized. Ta-
ble 1 shows the quantitative comparisons. As observed, our
method demonstrates performance improvements across all
four benchmark datasets for each scale factor. The maxi-
mum increase in PSNR is 0.34 dB on Set5 [2] at ×2 scale
for DAT [9]. It is important to note that our approach does
not alter the network architecture of the original method
but instead focuses on optimizing the computation flow by
considering the content components of the input data. Vi-
sual comparisons are presented in the first 2 rows in Fig. 4,
where we perform ×4 image SR using several most current
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Figure 4. Visual comparisons of ×4 classical image SR (first 2 rows) and real-world image SR (3rd row). These 3 patches are from
Urban100 [18] and RealSR [3]. Best viewed by zooming.

Table 2. Quantitative comparison (average PSNR) with state-of-the-art methods for color image denoising results on benchmark datasets.

Method CBSD68 [30] Kodak24 [15] McMaster [54] Urban100 [18]
σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

RNAN [57] - - 28.27 - - 29.58 - - 29.72 - - 29.08
Ours - - 28.40 - - 29.63 - - 29.89 - - 29.52

SwinIR [27] 34.42 31.78 28.56 35.34 32.89 29.79 35.61 33.20 30.22 35.13 32.90 29.82
Ours 34.56 32.01 28.74 35.41 33.03 29.92 35.74 33.29 30.33 35.21 33.09 29.95

DRUNet [52] 34.30 31.69 28.51 35.31 32.89 29.86 35.40 33.14 30.08 34.81 32.60 29.61
Ours 34.41 31.76 28.57 35.43 32.97 29.92 35.51 33.20 30.13 34.90 32.67 29.65

GRL [25] 34.45 31.82 28.62 35.43 33.02 29.93 35.73 33.46 30.36 35.54 33.35 30.46
Ours 34.52 31.89 28.68 35.56 33.11 29.99 35.84 33.54 30.41 35.69 33.48 30.51

state-of-the-art methods. As depicted, our framework ef-
fectively restores high-frequency details, reducing blurring
artifacts and resulting in sharper and more natural edges.

Real-world image SR. The ultimate goal of image SR
is for real-world applications. So, we also apply our frame-
work to several state-of-the-art real-world image SR meth-

ods for comparison on the RealSR [3] dataset. The quali-
tative results are shown in the 3rd row in Fig. 4, and simi-
lar conclusions can be drawn from the visual comparisons.
Our method produces visually pleasing images with clearer
and sharper edges over the original methods both in CNN-
based [19, 56] and Transformer-based [25, 27] real-world
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Figure 5. Visual comparison of grayscale and color Gaussian image denoising with noise level σ=50. Zoom in for more details.

SR models. This shows that our method can deal with
more complex corruptions and achieves better performance
in real-world scenes.

4.2. Results on image denoising

Besides the experiments on image SR, we also investi-
gate the effectiveness of our framework on image denoising.

Table 3. Quantitative comparison (average PSNR) with state-of-
the-art methods for grayscale image denoising results on bench-
mark datasets.

Method Set12 [51] BSD68 [30] Urban100 [18]
σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

RNAN [57] - - 27.70 - - 26.48 - - 27.65
Ours - - 27.83 - - 26.55 - - 27.73

SwinIR [27] 33.36 31.01 27.91 31.97 29.50 26.58 33.70 31.30 27.98
Ours 33.48 31.11 27.99 32.12 29.68 26.65 33.82 31.41 28.09

DRUNet [52] 33.25 30.94 27.90 31.91 29.48 26.59 33.44 31.11 27.96
Ours 33.34 31.02 27.96 32.06 29.60 26.65 33.57 31.23 28.02

GRL [25] 33.47 31.12 28.03 32.00 29.54 26.60 34.09 31.80 28.59
Ours 33.64 31.23 28.10 32.16 29.63 26.69 34.24 31.89 28.71

Synthetic Image Denoising. First, the experimental
results on color and grayscale Gaussian image denoising
are shown in Table 2 and Table 3. We apply our frame-
work to state-of-the-art denoising methods: RNAN [57],
SwinIR [27], DRU-Net [52], and GRL [25]. Set12 [51],
BSD68 [30], Urban100 [18], McMaster [54], and Ko-
dak24 [15] are used for evaluation. Our framework can im-
prove the performance of these methods across all datasets
and noise levels. The performance gain can be attributed
to the content decoupling strategy, which effectively cap-
tures content distribution throughout the degraded image,
proving particularly effective for heavy noise levels. No-

tably, our method outperforms the state-of-the-art model
GRL [25] by up to 0.15 dB on the large Urban100 [18]
dataset at σ=15 noise level. We also show visual results
for grayscale and color image denoising in Fig. 5. Un-
der our framework, these methods can remove more noise
and preserve more high-frequency image details, resulting
in higher content fidelity.

Table 4. Real-world denoising comparisons on SIDD [1] and
DND [33] datasets.

Method Years SIDD [1] DND [33]
PSNR SSIM PSNR SSIM

Cycle-ISP [47] CVPR2020 39.52 0.957 39.56 0.956
Ours 39.61 0.958 39.70 0.958

AINDNet [21] CVPR2020 38.95 0.952 39.37 0.951
Ours 39.05 0.954 39.52 0.953

NBNet [10] CVPR2021 39.75 0.973 39.89 0.955
Ours 39.84 0.974 39.98 0.957

MIRNet-v2 [49] T-PAMI2022 39.84 0.959 39.86 0.955
Ours 39.95 0.962 39.99 0.957

Real Image Denoising. We also demonstrate the effec-
tiveness of the proposed framework for real image denois-
ing, and apply it to state-of-the-art methods: CycleISP [47],
AINDNet [21], NBNet [10], and MIRNet-v2 [49], and eval-
uate them on both SIDD [1] and DND [33] datasets. Quanti-
tative comparisons in terms of PSNR and SSIM metrics are
summarized in Table 4. When compared to the recent best
methods, our algorithm makes a performance improvement
of 0.11 dB over MIRNet-v2 [49] on SIDD and 0.15 dB over
AINDNet [21] on DND, which indicates the generalization
ability of our framework. Fig. 6 shows the visual compar-
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Figure 6. Visual comparisons of the denoising examples from SIDD [1] dataset with real-world noises. Zoom in for a better view.

Figure 7. Visual comparisons of the single-image motion deblurring on GoPro [31] (1st row) and HIDE [35] (2nd row). Zoom in for
more details.

isons after our framework is applied to these state-of-the-art
methods for real noise removal. The results show that with
the proposed framework these methods are more effective
in removing real noise and can produce more perceptually
pleasing outputs.

Table 5. Single-image motion deblurring results on GoPro [31]
and HIDE [35] datasets.

Method Years GoPro [31] HIDE [35]
PSNR SSIM PSNR SSIM

Stripformer [36] ECCV2022 33.08 0.962 31.03 0.940
Ours 33.19 0.963 31.15 0.942

BANet [37] TIP2022 32.54 0.957 30.16 0.930
Ours 32.69 0.959 30.42 0.932

GRL [25] CVPR2023 33.93 0.968 31.65 0.947
Ours 34.05 0.971 31.76 0.948

4.3. Results on image deblurring

Single image motion deblurring. We further investi-
gate the effectiveness of the proposed framework on im-
age deblurring. We apply our approach to state-of-the-art
methods: GRL [25], Stripformer [36], and BANet [37]. Ta-
ble. 5 shows the experimental results on GoPro [31] and
HIDE [35] datasets. As observed, when our framework
is equipped with the most recent state-of-the-art methods
GRL [25], the PSNR is significantly improved by 0.12 dB
and 0.11 dB on GoPro [31] and HIDE [35] respectively.

The visual comparisons are shown in Fig. 7. We can find
that with our proposed framework, these methods can ob-
tain more detailed structures and clearer contours than the
original models, which also illustrates the feasibility and ef-
fectiveness of our framework.

5. Conclusion
In this paper, we propose a framework with content de-

coupling capacities for image restoration, dubbed CoDe,
which can explicitly model the mapping between the di-
verse content patterns of the inputs and outputs through a
divide-and-conquer-like architecture in an end-to-end man-
ner. Comprehensive experiments across various image
restoration tasks, including image super-resolution, image
denoising, and image deblurring, conducted in both real-
world and synthetic scenes, showcase the effectiveness of
the proposed paradigm, and it can successfully elevate the
performance of the original network to a new state-of-the-
art level with a significant gain across multiple benchmark
datasets.
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