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Abstract

Dataset distillation reduces the storage and computa-
tional consumption of training a network by generating a
small surrogate dataset that encapsulates rich information
of the original large-scale one. However, previous distilla-
tion methods heavily rely on the sample-wise iterative op-
timization scheme. As the images-per-class (IPC) setting
or image resolution grows larger, the necessary compu-
tation will demand overwhelming time and resources. In
this work, we intend to incorporate generative diffusion
techniques for computing the surrogate dataset. Observ-
ing that key factors for constructing an effective surrogate
dataset are representativeness and diversity, we design ad-
ditional minimax criteria in the generative training to en-
hance these facets for the generated images of diffusion
models. We present a theoretical model of the process as
hierarchical diffusion control demonstrating the flexibility
of the diffusion process to target these criteria without jeop-
ardizing the faithfulness of the sample to the desired dis-
tribution. The proposed method achieves state-of-the-art
validation performance while demanding much less com-
putational resources. Under the 100-IPC setting on Im-
ageWoof, our method requires less than one-twentieth the
distillation time of previous methods, yet yields even better
performance. Source code and generated data are available
in https://github.com/vimar-gu/MinimaxDiffusion.

1. Introduction

Data, as a necessary resource for deep learning, has concur-
rently promoted algorithmic advancements while imposing
challenges on researchers due to heavy demands on storage
and computational resources [6, 10, 18, 47]. Confronted
with the conflict between the requirement for high-precision
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Figure 1. The validation accuracy and distillation time of differ-
ent methods on ImageWoof [15], with a number following each
method denoting the Image-Per-Class (IPC) setting. Previous
methods are restricted by the heavier running time and memory
consumption as IPC grows larger. In comparison, our proposed
method notably reduces the demanding computational resources
and also achieves state-of-the-art validation performance.

models and overwhelming resource demands, dataset dis-
tillation is proposed to condense the rich information of a
large-scale dataset into a small surrogate one [5, 21,47, 57].
Such a surrogate dataset is expected to achieve training per-
formance comparable to that attained with the original one.

Previous dataset distillation methods mostly engage in
iterative optimization on fixed-number samples at the pixel
level [21, 26, 30, 31, 44, 54, 57] or embedding level [4, 55].
However, the sample-wise iterative optimization scheme
suffers from problems of two perspectives. (1) The param-
eter space of optimization is positively correlated with the
size of the target surrogate dataset and the image resolu-
tion [3, 57]. Consequently, substantial time and computa-
tional resources are required for distilling larger datasets.
As shown in Fig. 1, IDC-1 [21] takes over 90 hours to dis-
till a 100-image-per-class (IPC) set from ImageWoof [15],
while training on ImageWoof itself only requires a matter of
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Figure 2. Sample images distilled by the pixel-level sample-wise
optimization method DM [56] on ImageWoof. As the parameter
space increases along with the Image-Per-Class (IPC) setting, with
the same initialization, the appearance disparity between original
and distilled images is smaller.

hours. (2) The expanded parameter space also increases the
optimization complexity. As shown in Fig. 2, while distilla-
tion yields significant information condensation under small
IPC settings, the pixel modification diminishes when distill-
ing larger-IPC datasets. The reduced disparity also leads to
smaller performance gain compared with original images,
with instances where the distilled set even performs worse.
Especially when distilling data of fine-grained classes, the
sample-wise optimization scheme fails to provide adequate
discriminative information. These constraints severely hin-
der individual researchers from distilling personalized data.
A more practical training scheme is urgently needed to fa-
cilitate the broader application of dataset distillation.

In this work, we explore the possibility of incorporating
generative diffusion techniques [20, 22, 32] to efficiently
compute effective surrogate datasets. We first conduct em-
pirical analysis on the suitability of data generated by raw
diffusion models for training networks. Based on the ob-
servations, we conclude that constructing an effective sur-
rogate dataset hinges on two key factors: representative-
ness and diversity. Accordingly, we design extra minimax
criteria for the generative training to enhance the capabil-
ity of generating more effective surrogate datasets without
explicit prompt designs. The minimax criteria involve two
aspects: enforcing the generated sample to be close to the
farthest real sample, while being far away from the most
similar generated one. We provide theoretical analysis to
support that the proposed minimax scheme aims to solve a
well defined problem with all the criteria, including the gen-
erative accuracy and the minimax criteria, can be targeted
simultaneously without detriment to the others.

Compared with the astronomical training time consump-
tion of the sample-wise iterative optimization schemes, the
proposed method takes less than 1 hour to distill a 100-IPC
surrogate dataset for a 10-class ImageNet subset, including

Random

Acc: 59.4%

Figure 3. The feature distribution comparison of different image
generation methods with the original set. The validation perfor-
mance of each surrogate set is listed in the upper-right corner.

the fine-tuning and image generation processes. Remark-

ably, the GPU consumption remains consistent across all

IPC settings. Furthermore, the distilled surrogate dataset at-

tains superior validation performance compared with other

state-of-the-art methods. Especially on the challenging fine-
grained ImageWoof subset, the proposed method outper-
forms the second-best DD method by 5.5% and 8.1% un-
der the IPC settings of 70 and 100, respectively. The source
code is provided in the supplementary material.

The contributions of this work are summarized into:

* We analyze the data generated by diffusion models, and
emphasize the importance of representativeness and di-
versity for constructing effective surrogate datasets.

* We propose a novel dataset distillation scheme based on
extra minimax criteria for diffusion models targeting the
representativeness and diversity of generated data.

* We theoretically justify the proposed minimax criteria as
enforceable without trade-offs in the generation quality of
the individual data points.

* We conduct extensive experiments to validate that our
proposed method achieves state-of-the-art performance
while demanding significantly reduced training time in
comparison to previous dataset distillation methods.

2. Method
2.1. Problem Definition

The general purpose of dataset distillation is to generate a
small surrogate dataset S = {(x;,v;)}v%, from a large-
scale one T = {(xz,yl)}f\fl [47, 57]. Here each x; de-
notes an image with a corresponding class label y;, and
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Ns < Nrp. The surrogate dataset S is expected to en-
capsulate substantial information from the original 7, such
that training a model on S achieves performance compara-
ble with that on 7. After distilling, we train network models
on S and validate the performance on the original test set.

2.2. Diffusion for Distillation

Diffusion models learn a dataset distribution by gradually
adding Gaussian noise to images and reversing back. Tak-
ing the latent diffusion model (LDM) as an example, given a
training image X, the training process is separated into two
parts. An encoder E transforms the image into the latent
space z = F(x) and a decoder D reconstructs a latent code
back to the image space X = D(z). The forward noising
process gradually adds noise ¢ ~ A(0,I) to the original
latent code zo: z; = /ayzo + V1 — aze, where @y is a
hyper-parameter. Provided with a conditioning vector c en-
coded with class labels, the diffusion models are trained by
the squared error between the predicted noise €y(z, c) and
the ground truth e:

Esimple = ||69(Zt,C) - 6”%7 (1)

where € is a noise prediction network parameterized by 6.
Diffusion models are proven to generate images of higher
quality compared with GANs [8]. There are also some Pa-
rameter Efficient Fine-Tuning (PEFT) methods updating a
small number of model parameters in order for the model
to be better adapted to specific data domains [34, 50]. We
adopt DiT [33] as the baseline and Difffit [50] as the naive
fine-tuning method for image generation. The generated
images are compared with the original data from the per-
spective of embedding distribution in Fig. 3.

The samples of random selection and pre-trained diffu-
sion models present two extreme ends of the distribution.
Random selection faithfully reflects the original distribu-
tion, yet fails to emphasize some high-density regions. In
contrast, diffusion models are over-fitted to those dense ar-
eas, leaving a large part of the original distribution uncov-
ered. We attribute these two distributions to two properties,
respectively. The randomly selected data holds extraordi-
nary diversity, and the diffusion-generated data shows rep-
resentativeness to the original distribution. We claim that
both properties are essential for constructing an effective
surrogate dataset. By naive fine-tuning, Difffit better cap-
tures the representative regions but leaves more regions un-
covered. To this end, we propose extra minimax criteria for
the diffusion model to enhance both of the properties.

2.3. Minimax Diffusion Criteria

Based on the observation that representativeness and diver-
sity are two key factors to construct an effective surrogate
dataset, we accordingly design extra minimax criteria to en-
hance these two essential properties for the diffusion model.

Algorithm 1: Minimax Diffusion Fine-tuning

Input: initialized model parameter 6, original dataset
T = {(x,y)}, encoder E, class encoder E., time
step ¢, variance schedule &, real embedding
memory M, predicted embedding memory D
Output: optimized model parameter 6*
for each step do
Obtain the original embedding: zo = F(x)
Obtain the class embedding: ¢ = E.(y)
Sample random noise: € ~ N'(0,I)
Add noise to the embedding:
Zy = \/EZ()—F\/l —@t6
Predict the noise €4 (2, c) and recovered embedding
Zo(2zt,c) = 24 — €9(2¢, C)
Update the model parameter with Eq. (5)
Enqueue the real embedding: M, < zg
Enqueue the predicted embedding: Mg < Zo(z¢, c)

end

Representativeness It is essential for the small surrogate
dataset to sufficiently represent the original data. A naive
approach to improve the representativeness is aligning the
embedding distribution between synthetic and real samples:

Np
Zm) ., @

L, = 7 —
" arglernaxa <ze(zt,c),N 2

where o(+,-) is the cosine similarity, Zy(z;,c) is the pre-
dicted original embedding by subtracting the noise from the
noisy embedding Zg(z:,c) = z; — €9(2¢,¢), and Np is
the size of the sampled real sample mini-batch. However,
the naive alignment tends to draw the predicted embedding
towards the center of the real distribution, which severely
limits the diversity. Therefore, we propose to maintain an
auxiliary memory M = {z,,}"™, to store the real sam-
ples utilized in adjacent iterations, and design a minimax
optimization objective as:

L, =argmax min o (2¢(2z¢,C),2m) . 3)
0 me[Np]

By pulling close the least similar sample pairs, the diffusion
model is encouraged to generate images that better cover the
original distribution. It is notable that the diffusion training
objective L;mpie itself encourages the generated images to
resemble the original ones. Thus, the minimax criterion al-
lows the preservation of diversity to the maximum extent.

Diversity Although the pre-trained diffusion models al-
ready achieve satisfactory generation quality, the remain-
ing defect is limited diversity compared with the origi-
nal data, as shown in Fig. 3. We expect the data gener-
ated by the diffusion model can accurately reflect the orig-
inal distribution, while simultaneously being different from
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each other. Hence, we maintain another auxiliary memory
D= {zd}fl\ff1 for the predicted embeddings of adjacent it-
erations and design another minimax objective to explicitly
enhance the sample diversity as:
Lg = arg mein drer%%[);} o (29(2z¢,€),2q) . (€))]

The diversity term has an opposite optimization target com-
pared with the representativeness term, where the predicted
embedding is pushed away from the most similar one stored
in the memory bank. Although diversity is essential for an
effective surrogate set, too much of it will cause the gener-
ated data to lose representativeness. The proposed minimax
optimization enhances the diversity in a gentle way, with
less influence on the class-related features.

Combining all the components, we summarize the train-
ing process in Algorithm 1. The complete training objective
can be formulated as:

L= »Csimple + )\’I“£T + )\dﬁdv (5)

where A\, and )4 are weighting hyper-parameters.

3. Theoretical Analysis

Assume that p is the real distribution of the latent variables
z associated with the target dataset 7. We rewrite the opti-
mization problem presented in Eq. (5) in a modified form:

‘min Ad  max
{9(1)}1'6[ND] i,j=1,..,Np

N
+ 3 N Qamn [0 (309), )] + 12(00) - 212},
=1
(6)
where (Q;[-] denotes the quantile function with ¢ as the
quantile percentage. Note that here we consider a theoret-
ical idealized variant of our algorithm wherein we perform
simultaneous generation of all the embeddings {z(0(")},
rather than sample by sample. Hence the objectives turn
to the sum of pairwise similarities rather than the form
in Eq. (4). And we minimize the negative to aim for maxi-
mal representativeness, as in Eq. (5).

It can be considered as a scalarized solution to a multi-
objective optimization problem, wherein multiple criteria
are weighed (see, e.g. [13]). This perspective aligns with
a Pareto front with trade-offs. It means that one objective
decreasing will by necessity result in another increasing.

However, consider that any solution to the following tri-
level optimization problem is also a solution for Eq. (6):

o (2(9(”), i(g(j)))

o (i(g(i))7 i(O(j))>

‘min ~ max
(0D} ieny)  #9=1ND

subj.to {6V} € arg max% Q4 w~p [0 (i(%”),w)]
i=1

subj. to 0% € argmin ||2(0) — z{|%, Vi € [Np].
7

If a solution to Eq. (7) is discovered, either incidentally
through solving Eq. (6) or by careful tuning of step sizes,
the set of minimizers will be sufficiently large at both lev-
els, with no trade-offs involved. However, can we justify the
presumption that there exists a meaningful set of potential
minimizers?

Diffusion Process Model One popular framework for the
mathematical analysis of diffusion involves analyzing the
convergence and asymptotic properties of, appropriately
homonymous, diffusion processes. These processes are
characterized by the standard stochastic differential equa-
tion with a drift and diffusion term. For a time-dependent
random variable Z;,

dZ, = V(Z,)dt + dW, (8)

where V' is a drift function dependent on the current Z; and
dW, is a Wiener (Brownian noise) process. This equation
serves as an appropriate continuous approximation of gen-
erative diffusion, given that Brownian noise is a continuous
limit of adding normal random variables. Consequently, we
aim for any realization z ~ Z; to have certain desired prop-
erties that reflect generative modeling with high probability.

The work [43] established a theoretical model utilizing
concepts in the control of these diffusions, demonstrating
how it can result in sampling from the distribution of a de-
sired data set. In the supplementary material we present
a description of their framework and present an argument
supporting the well-defined nature of the following prob-
lem, indicating that it has non-trivial solutions.

When sampling optimally from the population dataset,
we consider a stochastic control problem wherein V' de-
pends also on some chosen control «(z,t). This control
aims to find the most representative samples and, among
the possible collection of such samples, to obtain the most
diverse one while sampling from the desired dataset p. This
involves solving:

min max
u(zx,t) i,j=1,..,Np

o (wa(i)7 Z;h(]))

Np )
subj. to  u € argmax fol E, ) Qqw~u [a (Zél), w)] ds
i=1 t
Zi~ ,
dz D = w(ZD t)dt + dWs, t € [0,1];
Z() = Zo.

®
This problem poses a bi-level stochastic control challenge
where employing a layered dynamic programming is far
from tractable. Additionally, a multi-stage stochastic pro-
gramming approximation would also be infeasible given the
scale of the datasets involved. Instead, we opt for param-
eterization with a neural network, forego exact sampling,
discretize the problem, redefine the criteria to be time inde-
pendent, and seek to solve an approximate solution for the
tri-level optimization problem Eq. (7).
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Table 1. Performance comparison with pre-trained diffusion models and other state-of-the-art methods on ImageWoof. All the results are
reproduced by us on the 256 %256 resolution. The missing results are due to out-of-memory. The best results are marked as bold.

IPC (Ratio) Test Model | Random K-Center [37] Herding [48] DiT [33] DM [56] IDC-1[21] GLaD[4]| Ours | Full
ConvNet-6 2434111 194409 26.7+0.5 342411 269412 333411 33.840.9 | 370410 | 86.440.2
10 (0.8%) ResNetAP-10 29~4i0.8 22.1i041 32-0i043 34-7i045 30.3i142 39-1i045 32-9i049 39.2113 87.5i0,5
ResNet-18 27~7i0,9 21.1i044 30.2i142 34.7i044 33-4i047 37.3i042 31-7i048 37.61()‘9 89.3i1,2
ConvNet-6 29.110,7 215:&048 29.5:&043 36.1:&048 29.9:&140 35-5;&048 - 37.6102 86.410,2
20 (1.6%) ResNetAP-10 | 32.740.4 25.1+0.7 349101 41.14+0.8 3524106 4344103 - 458,105 | 87.5+05
ResNet-18 29.710,5 23.6:&043 322:&046 40.5:&045 29.8:&147 38.6:&042 - 42-5106 89.311,2
ConvNet-6 413’10,6 36.5;&1,0 40.3;&0(7 46.5;&0(3 44.4:&1‘0 43.9:&1‘2 - 53-9106 86.410‘2
50 (3.8%) ResNetAP-10 47.211,3 40.6i0.4 49.1 +0.7 49.3;&0(2 47.1 +1.1 48.3:&1‘0 - 56.3:‘:10 87.510‘5
ResNet-18 47911,8 39.6;&1,0 48.3;&12 50.1:&0‘5 46.2:&0‘6 48.3;&08 - 57-1106 89.311‘2
ConvNet-6 46.310_6 38.610_7 462:&0.6 50.1;&1_2 47~5:t0.8 48.9;&0_7 - 55.7:‘:0_9 86.410_2
70 (5.4%) ResNetAP-10|50.810.6 459415 534414 543409 517108 52.8418 - 58.3+0.2 | 87.5+05
ResNet-18 52.1+1.0 44,6411 49.7+0.8 515410 519408 Sllii7 - 58.810.7 (893412
ConvNet-6 52.240.4 451405 544414 534403 550413 5324009 - 611107 | 86.440.2
100 (7.7%) ResNetAP-10 | 59.411 ¢ 54.840.2 61.740.0 583408 564108 56.110.9 - 64.5102 | 87.54+0.5
ResNet-18 61.541.3 50.4410.4 593107 589413 602110 583412 - 65.7+0.4 | 89.341.2

In the supplementary material we provide a rationale for
the meaningfulness of the problem in Eq. (9) based on the
model of generative diffusion [43]. Specifically, we argue
that the set of controls that leads to the desired final distri-
bution and the set of minimizers, is sufficiently large for a
low value of the objective at the top layer.

4. Experiments
4.1. Implementation Details

For the diffusion model, we adopt pre-trained DiT [33] as
the baseline and conduct PEFT with Difffit [50]. A, and Ay
are set as 0.002 and 0.008 for Eq. (5), respectively. The im-
age size for the diffusion fine-tuning and sample generation
is set as 256 x256. The fine-tuning mini-batch size is set as
8, and the fine-tuning lasts 8 epochs. The learning rate is
set as le-3 for an AdamW optimizer. After fine-tuning, the
images are generated by 50 denoising steps on a pre-defined
number of random noise, according to the IPC setting. All
the experiments are conducted on a single RTX 4090 GPU.

4.2. Datasets and Evaluation Metric

For practical applicability, the experiments are exclusively
conducted on full-sized ImageNet [6] subsets in this work.
The selected subsets include ImageWoof, ImageNette [15]
and the 10-class split adopted in [21, 42], denoted as Im-
ageIDC afterward. ImageWoof is a challenging subset, con-
taining only classes of dog breeds, while ImageNette and
ImageIDC contain classes with less similarity, and hence
are easier to discriminate. For evaluation, we adopt the
same setting as in [21]. The surrogate dataset is trained on
different model architectures, with a learning rate of 0.01,

Table 2. The Maximum Mean Discrepancy (MMD) between the
extracted features of surrogate dataset and the original one.

IPC ‘ DiT [33] Difffit [50] DM [56] IDC-1[21] Ours

50 54 5.4 4.8 6.7 4.0
100 55 53 4.0 6.4 43

and a scheduler decaying the learning rate at 2/3 and 5/6
of the whole training iterations. The top-1 accuracy on the
original testing set is reported to illustrate the performance.

4.3. Comparison with State-of-the-art Methods

We compare our method with other state-of-the-art methods
across different IPC settings and model architectures. For a
fair comparison, the results are all reproduced by us under
the same evaluation protocol. ResNet-10 [18] with aver-
age pooling is adopted for matching the feature distribution
(DM [56], GLaD [4]) and training gradients (IDC-1 [21]).
DM is implemented on IDC-1 by only modifying the match-
ing objective from training gradients to feature distribution,
such that better performance is achieved. Each experiment
is conducted 3 times, with the mean value and standard vari-
ance reported. Firstly, we present the validation results on
the challenging ImageWoof subset [15] in Tab. 1.

With the target of distilling surrogate datasets of small
IPCs (e.g., 10 and 20), the pixel-level optimization method
IDC-1 [21] demonstrates outstanding performance gain
over random original images. However, as the IPC in-
creases, the performance gain drastically drops. Especially
under the 100-IPC setting, the distilled dataset even per-
forms worse than random original images. This observation
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Table 3. Performance comparison with pre-trained diffusion mod-
els and state-of-the-art methods on more ImageNet subsets. The
results are obtained on ResNet-10 with average pooling. The best
results are marked as bold.

| IPC | Random  DiT [33] DM [56] Ours
° 10 542416  59.1107 60.8+06 62.00.2
S| 20 | 635405 64.8:12 665:11 668104
Z | 50 | 761411 733100 762104 166502
10 48.1410.8 541404 52.840.5 53.140.2
2| 20 | 525000 589402  585i04 590404
T 50 | 68.1t0r 643106 69.1i0s  69.6102

aligns with the empirical findings in Fig. 2, where pixel-
level methods struggle to optimize the expanded parame-
ter space of large IPCs. The embedding-level optimization
method GLaD [4] yields good performance under the 10-
IPC setting. However, it requires overwhelming GPU re-
sources for larger IPC settings, which is inapplicable for
resource-restricted scenarios. It is also notable that on large
IPCs, the coreset method Herding [48] surpasses previous
DD methods with far less computational cost.

The pre-trained DiT [33] here serves as the baseline for
generative diffusion techniques. Under the 50-IPC setting,
DiT outperforms both random original images and IDC-1.
However, the insufficiency of representativeness and diver-
sity restricts its performance on smaller and larger IPCs,
respectively. In contrast, our proposed minimax diffusion
consistently provides superior performance across all the
IPCs over both original images and Herding. Besides, the
proposed method eliminates the need of specific network ar-
chitectures for matching training metrics. Consequently, the
cross-architecture generalization is significantly improved.
Under most IPC settings, the performance gap between
ConvNet-6 and ResNetAP-10 is even smaller than that of
the original images. It validates the universality of the rich
information learned by the minimax fine-tuning process.

Furthermore, we extensively assess the Maximum Mean
Discrepancy (MMD) between the embedded features of the
selected/generated surrogate dataset and the original one
in Tab. 2. The features are extracted by a ResNet-10 net-
work pre-trained on the full original dataset. Our method
achieves the lowest discrepancy by average, where DM [56]
directly sets MMD as the optimization target, proving the
validity of extra minimax criteria in fitting distributions.

Moreover, we show the performance comparison on Im-
ageNette [15] and ImageIDC [21] in Tab. 3. The per-
formance trend generally aligns with that on ImageWoof.
More specifically, on these two easier subsets, DiT quickly
loses the advantage over original images as IPC increases.
Conversely, our proposed minimax diffusion method con-
sistently demonstrates state-of-the-art performance.

Table 4. Performance comparison on ImageNet-1K.

IPC | SRe’L [53] RDED [41] DiT Ours
10 213406 42.040.1 39.640.4 443105
50 46.810.2 56.510.1 529406 58.6+0.3
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o
[

75

(=2}
o

70

65

v
(V]
-
)

w
(=

N
[

60

N
(=)
N\

Difffit . Ours full

DiT Lg onl;
1 50 g only

Validation Accuracy (%)

w
[l

—e— Random L, only

w
o

10 20 50 70 100 10 20 50 70 100

IPC IPC

Figure 4. With the help of the minimax diffusion, the proposed
method significantly enhances the representativeness and diversity
of the generated images. Thereby it consistently provides superior
performance compared with random selection and baseline diffu-
sion models by a large margin across different IPC settings.

Experiments on ImageNet-1K. We further conduct exper-
iments on the full ImageNet-1K with the validation proto-
col of RDED [41] and present the results in Tab. 4. The
synthetic images are resized to 224x224 for evaluation.
The significant performance advantage over the compared
works validates the scalability of the proposed method.

4.4. Ablation Study

Component Analysis. We compare the performance with
baseline diffusion models to validate the effectiveness of
proposed minimax criteria in Fig. 4. The experiments are
conducted on ImageWoof and ImageIDC to evaluate the ef-
fect on challenging and easy tasks, respectively. Under the
IPC of 10 and 20, the raw diffusion models (DiT) gener-
ate informative images, with validation performance much
higher than randomly selected original samples. However,
as the IPC is continuously increased, the performance gap
diminishes for ImageWoof, and random original images
surpass the DiT-generated ones at the IPC of 100. On Im-
agelDC the intersection occurs even earlier at the IPC of
50. The main reason is reflected in Fig. 3, where the sample
diversity remains limited without external guidance. The
naive Difffit fine-tuning adapts the model to specific do-
mains, yet on large IPCs, the over-fitted generative model
still yields inferior performance than the original images.
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Figure 5. Visualization of random original images, images generated by baseline diffusion models (DiT [33] and Difffit [50]) and our
proposed method. For each column, the generated images are based on the same random seed. Comparatively, our method significantly
enhances the coverage of original data distribution and the diversity of the surrogate dataset.

Table 5. The ablation study of the proposed minimax scheme. The
result are obtained with ResNet-10 on ImageWoof and ImageIDC.
m denotes the proposed minimax optimization scheme.

r Ly r Lq ImageWoof ImageIDC
" w\m ~% w\m| 10-IPC 50-IPC  10-IPC  50-IPC

35.640.9 51.040.9 53.5402 663102
344411 471405 49.6107 602412
- 374104 495110 545412 6504058
357408 483106 S51.5406 64.810s
38.7+0.9 5494107 522406 684107
383105 549104 533105 66.8105
392413 5631410 53.1402 69.640.2

<

AN
AN

The addition of representativeness constraint to the train-
ing process further enhances the effect of distribution fit-
ting. At small IPCs, the generated images contain richer
information, yet for larger IPCs, the lack of diversity brings
a negative influence. The diversity constraint, in contrast,
significantly boosts the information contained in the gener-
ated surrogate dataset. Despite the performance advantage
of L4 over L,., combining them still brings stable improve-
ment as our full method. Especially on the easier ImageIDC
task, grouping these two constraints together contributes to
a consistent performance margin over random original im-
ages. The experimental results validate that both represen-
tativeness and diversity play essential parts in constructing
effective surrogate datasets.

Minimax Scheme. In this work, we propose to enhance
the representativeness and diversity each with a minimax
objective. We compare the distillation result with or with-

out the minimax operation in Tab. 5. The first row presents
the performance of naive Difffit fine-tuning. Matching the
embeddings to the distribution center as in Eq. (2) severely
degrades the validation performance across all IPCs. In con-
trast, the minimax version constraint as in Eq. (3) encour-
ages better coverage, where the performance on small IPCs
is improved. The effects of diversity constraint and the full
method show similar trends. The superior performance sug-
gests the effectiveness in enhancing the essential properties
of the generative diffusion techniques.

4.5. Visualization

Sample Distribution Visualization. The target of our pro-
posed method is to construct a surrogate dataset with both
representativeness and diversity. We visualize the t-SNE
distribution of samples generated by our proposed method
in Fig. 3. In comparison with random original images and
baseline diffusion models, our method demonstrates a more
thorough coverage over the entire data distribution while
maintaining consistency in sample density. At the original
high-density region, the generated images also form a dense
sub-cluster, which is not reflected by random sampling. On
the other hand, at the original sparse regions, our method
exhibits better coverage than baseline diffusion models. By
simultaneously enhancing the representativeness and diver-
sity in the generative model, the proposed method manages
to significantly improve the validation performance of the
generated surrogate dataset.

Generated Sample Comparison. The proposed method
notably enhances the representativeness and diversity of the
generated surrogate dataset. We compare the samples gen-
erated with the same random noise (for each column) of
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Figure 6. Hyper-parameter analysis on (a) the training epochs; (b) the representativeness weight A,; (c) the diversity weight A4; (d) the
memory size Nys. The results are obtained with ResNetAP-10 on ImageWoof. The dashed line indicates the value adopted in this work.

different generative methods in Fig. 5 to explicitly demon-
strate the improved properties.

The images generated by baseline DiT exhibit a realistic

high-quality appearance. However, the images tend to share
similar poses and only present the most prominent features
of the objects. In the golden retriever case, the generated
images mostly present the head part, while for the churches
the exterior appearance. Difffit fine-tuning further fits the
model to the distribution, but in most cases, the differences
only lie in small details. Comparatively, the proposed mini-
max criteria significantly enhance both the representative-
ness and diversity of the generated images. On the one
hand, there occurs more class-related content in the gen-
erated images. The golden retriever images include more
body parts and the church images encompass the interior
layout. The minimax optimization leads to better cover-
age over the entire original distribution, with more related
features encapsulated. On the other hand, the diversity is
significantly enhanced, including variations in pose, back-
ground, and appearance styles. In such a way the surrogate
dataset better represents the original large-scale one, lead-
ing to superior validation performance.
Training Curve Visualization. We visualize the accuracy
curve during the training process in Fig. 6a. The valida-
tion performance is rapidly improved as the fine-tuning pro-
cess starts. After four epochs, the model tends to converge
and reaches the highest performance at the 8th epoch. Fur-
ther extending the training epochs injects excessive diver-
sity into the model, leading to performance degradation. We
demonstrate the influence of training epochs on the gener-
ated images in supplementary material.

4.6. Parameter Analysis

Objective Weight \,. \;. We show the influence of repre-
sentativeness weight A, and diversity weight A\; in Fig. 6b
and Fig. 6c, respectively. The )\, variation only produces
negligible performance fluctuation on small IPCs, while on
large IPCs the performance is also relatively stable. For

A4, at a proper variation range, the performance is stable.
However, continuously increasing the diversity of the gen-
erated dataset leads to a lack of representativeness, which
results in a negative impact. The negative impact of over-
diversity can also validated by the poor performance of K-
Center in Tab. 1. A uniform performance decrease is ob-
served as \; reaches 0.03. Based on the performance of
100 IPC, we set A, as 0.002 and A4 as 0.008.

Memory Size N,;. The memory size V), influences the
number of samples involved in the objective calculation.
We investigate its influence in Fig. 6d. When the memory is
extremely small (N;=16), the provided supervision is also
limited, yet the performance is already higher than naive
fine-tuning. As the memory size is increased in a proper
range, the model yields stable performance improvement. It
is notable that with a larger memory, the performance under
the IPC of 10 is better. It can be explained by that a larger
memory contains more representative information. Out of
the consideration of performance as well as storage burden,
we select the memory of 64 in the other experiments.

5. Conclusion

In this work, we propose a novel dataset distillation method
based on generative diffusion techniques. Through extra
minimax criteria, the proposed method significantly en-
hances the representativeness and diversity of the gener-
ated surrogate dataset. With much less computational time
consumption, the proposed method achieves state-of-the-art
validation performance on challenging ImageNet subsets.
It reduces the resource dependency of previous dataset dis-
tillation methods and opens up new possibilities for more
practical applications for distilling personalized data.

Limitations and Future Works. In addition to object clas-
sification, we will explore the possibility of incorporating
generative techniques for more specific data domains.
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