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Abstract

Composed image retrieval (CIR) task takes a composed
query of image and text, aiming to search relative images
for both conditions. Conventional CIR approaches need a
training dataset composed of triplets of query image, query
text, and target image, which is very expensive to collect.
Several recent works have worked on the zero-shot (ZS) CIR
paradigm to tackle the issue without using pre-collected
triplets. However, the existing ZS-CIR methods show lim-
ited backbone scalability and generalizability due to the
lack of diversity of the input texts during training. We pro-
pose a novel CIR framework, only using language for its
training. Our LinCIR (Language-only training for CIR) can
be trained only with text datasets by a novel self-supervision
named self-masking projection (SMP). We project the text
latent embedding to the token embedding space and con-
struct a new text by replacing the keyword tokens of the
original text. Then, we let the new and original texts have
the same latent embedding vector. With this simple strat-
egy, LinCIR is surprisingly efficient and highly effective;
LinCIR with CLIP ViT-G backbone is trained in 48 minutes
and shows the best ZS-CIR performances on four different
CIR benchmarks, CIRCO, GeneCIS, FashionIQ, and CIRR,
even outperforming supervised method on FashionIQ. Code
is available at github.com/navervision/lincir

1. Introduction

Composed image retrieval (CIR) is a challenging vision-
language (VL) task that takes a composed query of image
and text, aiming to search relative images for both condi-
tions [29]. As language serves as the most natural method
for encoding human interaction, CIR provides a higher de-
gree of freedom and a better user experience for image-
based search engine applications, such as web commerce.

One of the main challenges of CIR is the expensive
dataset collection pipeline. CIR datasets consist of triplets
hxiR , xc, xii, where xiR is an image query, xc is a text
query, and xi is the target image. Unlike image-text paired
datasets, such as CC3M [39] or LAION [38], such triplets
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Figure 1. Training time (hours) vs. Zero-shot Composed Im-

age Retrieval (ZS-CIR) performance. Thanks to our efficient
language-only training strategy, our LinCIR outperforms the pre-
vious ZS-CIR methods in both training time and CIR performance.
The training time is measured on 8 A100 GPUs. We compare the
models on the CIRCO mAP@5 [3] score for a more comprehen-
sive evaluation of CIR models (more results are in Fig. 4). No-
tably, when we scale up the backbone CLIP [19, 35] model size by
ViT-L, ViT-H and ViT-G, LinCIR shows a promising performance
boost with surprisingly short training time (48 mins for ViT-G). On
the other hand, Pic2Word [37] and SEARLE [3] cannot be scaled
up to CLIP ViT-G due to their limitation on restricted textual ex-
pressions and the lack of diversity of input texts.

are almost impossible to collect by web crawling and re-
quire expensive human labor to create each triplet. For ex-
ample, the datasets are constructed by gathering candidates
of hxiR , xii and manually annotating xc by human anno-
tators [29, 47], which is hard to scalable. Therefore, the
size of the training triplets is usually small (e.g., 46.6k [47],
28.8k [29]), and the existing CIR methods trained on such
triplets [2, 6–8, 11, 12, 20–22, 24, 30, 40, 42, 46, 48] suffer
from the lack of generalizability to diverse unseen domains.

To overcome the drawback, recent studies have explored
zero-shot CIR (ZS-CIR), a scalable direction, by eliminat-
ing the dependency on the pre-collected triplet datasets.
For example, Saito et al. [37] and Baldrati et al. [3]
propose projection-based ZS-CIR methods without using
triplet datasets. Based on the pre-trained CLIP [35], they
train a lightweight projection module � that projects the
CLIP image latent embedding zi to the CLIP text token
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Figure 2. Overview of ZS-CIR with a projection to the token embedding space. The mainstream ZS-CIR methods, such as Pic2Word
[37], SEARLE [3] and LinCIR (ours), train a projection module � that projects the image latent embedding zi into the token embedding
space ec with a custom prompt (e.g., a photo of [$]that [cond]). The textual encoder output is used for CIR.

embedding space ec (see Fig. 2). These approaches have
shown promising generalizability to unseen datasets. How-
ever, these methods struggle to handle diverse text condi-
tions because they rely on pre-defined naı̈ve text prompts
during training (e.g., a photo of [$]). Moreover, their train-
ing frameworks need sequential forward operations of the
visual and textual encoders (see Fig. 3 (a)), resulting in inef-
ficient training and limited scalability to a larger backbone.

In this paper, we introduce a new paradigm of ZS-
CIR, named Language Only training for Composed Image
Retrieval (LinCIR)1. As shown in Fig. 3 (b), instead of pro-
jecting the image latent embedding zi, we propose to project
the text latent embedding zc to the token embedding space
ec. We introduce a novel self-supervision, named Self-
Masking Projection (SMP), for language-only training. We
replace all the “keywords” of the original text with the pro-
jected text embedding of the original text to produce an em-
bedding bzc and apply MSE loss between zc and bzc. Here, we
define “keyword” as consecutive adjectives and nouns. For
example, the keywords of “gray cat sleeps on a pillow” are
“gray cat” and “a pillow”; therefore, it becomes “[$]sleeps
on [$]”. The purpose of SMP is to make [$]token inter-
preted as the “one-word summarization” of the input by ex-
tracting the essential information of the input. During infer-
ence, we simply perform text-to-image retrieval by project-
ing image embedding to the token embedding space using
the projection module � as shown in Fig. 2. However, this
strategy can suffer from the modality gap between textual
and visual modalities [27], i.e., even though our � module
works perfectly for text latent embeddings, it can under-
perform for the target visual embeddings. We mitigate the
issue by employing a random noise addition strategy [33],
carefully choosing a probability distribution that ensures the
diversity of the noise-augmented textual embeddings.

Our paradigm has three advantages over the previous ap-
proaches. First, while Pic2Word and SEARLE projection
modules are trained with a restricted text prompt, i.e., a
photo of [$], the projection module of LinCIR is trained
with the diverse text inputs from the actual texts. Due
to this reason, Pic2Word and SEARLE show degenerated

1Pronounced as “linker”, meaning for linking the two modalities.

performances when the backbone size becomes larger (see
Fig. 1). On the other hand, LinCIR is more generaliz-
able to complex and diverse text conditions, showing supe-
rior ZS-CIR performances than others, especially for larger
backbones. Second, as LinCIR only utilizes the textual
encoder, our training process is highly efficient and scal-
able than the methods incorporated with the visual en-
coder; our language-only training strategy is ⇥6.0 faster
than Pic2Word [37] and ⇥8.4 faster than SEARLE [3] with
CLIP ViT-L backbone. When we scale up the backbone
size to CLIP ViT-G, the gap becomes ⇥16.4 and ⇥17.6,
respectively. Even ViT-G training for LinCIR only takes
48 minutes using 8 A100 and less than 2 hours using 1
V100. Third, our method is storage-efficient; for example,
the CC3M dataset [39] images occupy about 430GB storage
size, while its captions only need 125MB. We train LinCIR
only with 571MB storage size for storing the 5.5M training
captions. In summary, LinCIR shows the best training time
and ZS-CIR performance as shown in Fig. 1 and 4.

Our contribution can be summarized as follows: (1)
We propose LinCIR, a novel and efficient language-only
training framework for ZS-CIR. (2) We introduce a new
self-supervision for language-only training, named Self-
Masking Projection (SMP). (3) We employ a better ran-
dom noise addition strategy than naı̈ve Gaussian noise to
mitigate the modality gap. (4) LinCIR achieves the best
training time and the ZS-CIR performances on four ZS-
CIR benchmarks (CIRCO [3], GeneCIS [44], FashionIQ
[47] and CIRR [29]). Notably, LinCIR even outperforms
the state-of-the-art supervised method [2] on FashionIQ.

2. Preliminaries

Vision-langauge models (VLM). As with previous ZS-
CIR methods, LinCIR utilizes a pre-trained VLM, such as
CLIP [19, 35] or BLIP [25]. We use VLMs that map an im-
age input xi and a text input xc to the d-dimensional joint
embedding space. Here, a given caption xc is tokenized by
the pre-defined tokenizer as tc = {tkc | k = 1 · · ·K}, where
K is the number of tokens, and mapped to token embed-
dings ec = Ew(tc) = {Ew(tkc ) | k = 1 · · ·K}, where Ew

is the embedding layer parameterized by w. Afterwords, a
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Figure 3. Comparison of Pic2Word [37] and LinCIR training procedures. (a) Pic2Word [37] and SEARLE [3] training procedure
requires both the visual encoder and the textual encoder. They only need images for training, while the text prompt is pre-defined [37] or
automatically generated [3]. (b) LinCIR is trained solely on texts with the frozen textual encoder. First, a projection module � projects a
textual latent embedding of a sentence zt into the token embedding space. Before the projection, a random noise n is added to zt to reduce
the modality gap between text and image. We introduce a new self-supervision, named Self-Masking Projection (SMP), by replacing all
keywords of the given caption with the projected embedding by � and extracting a modified text embedding bzt. Finally, the projection
module � is trained by the MSE loss between zt and bzt. Note that both (a) and (b) use the same inference strategy shown in Fig. 2.

textual encoder C encodes the token embeddings to extract
textual latent embeddings zc =  C(xc) =  C(Ew(tc)).
The visual latent embeddings are extracted by the visual en-
coder  I : zi =  I(xi). We will use the terminology token
embeddings to represent ec, and use textual (or visual) la-
tent embeddings to represent zc (or zi).

VLM modality gap. The VLM joint embedding space
suffers from the semantic gap between each modality.
Namely, the visual and the textual latent embeddings are
not exactly aligned with each other, but they are located in
completely separate regions of the embedding space [27].

Such a modality gap hinders the harmonization of visual
and textual latents in the joint embedding space. To miti-
gate the gap, language-only training has been recently in-
troduced for image captioning tasks [16, 26, 33]. They train
a text decoder from the CLIP textual embeddings to gener-
ate image captions from visual embeddings. During train-
ing the decoder, the modality gap is bridged by injecting
Gaussian noises [16, 33] or projection-based method [26].

In this paper, we utilize language-only training and a
noise-addition strategy to mitigate the modality gap. We
carefully studied the impact of noise and found a better dis-
tribution rather than simple Gaussian noise. We believe our
findings can be transferred to other language-only training
methods. Moreover, our target task, CIR, needs to model a
relationship between triplets of hxiR , xc, xii, whereas pre-
vious language-only training methods only consider the
pair-wise relationship (i.e., image captioning). We tackle
this problem by proposing a novel self-supervision, named
Self-Masking Projection (SMP), which injects the projected
textual embeddings into the original token embeddings.

CIR by projection to token embeddings. The main-
stream ZS-CIR methods, such as Pic2Word [37] and
SEARLE [3], employ a projection-based method. Namely,

they learn a projection module � from the image latent em-
bedding space to the token embedding space. For inference,
they project the image latent embedding zi to the token em-
bedding ($), then perform text-to-image retrieval with the
prompt “a photo of [$]that [cond]”, where [cond] is
a text condition. Fig. 2 shows an overview of how textual
projection-based ZS-CIR works. The main research point
of this field is how to train the projection module � to cap-
ture the visual information into the token embedding space.

Pic2Word [37] trains the projection module � by min-
imizing contrastive loss between image latent embedding
and the textual latent embedding of “a photo of [$]” (see
Fig. 3 (a)). SEARLE [3] employs a similar approach to
Pic2Word. First, they employ optimization-based textual
inversion to generate pre-defined special tokens for an im-
age and train � to predict the token embedding. SEARLE
employs CLIP zero-shot classification to predict the “con-
cept” of the given image and refine the prompt by letting
GPT [4] continue the phrase. Both methods only use image
inputs xi for training without accessing the CIR triplets.

Although Pic2Word and SEARLE achieve reasonable
ZS-CIR performances, they have two significant problems.
First, they heavily rely on the initial prompt, “a photo of
[$]”, limiting the diversity of the textual encoder input.
As Fig. 1, we argue that diversifying the input texts dur-
ing training the projection module � is critical to train with
larger backbones (e.g., CLIP ViT-G), while using the naı̈ve
prompt is failed to scale up the backbone size. Second, they
need image inputs, which are less compact and redundant
than text datasets. Moreover, the visual encoder usually
needs more computation resources than the textual encoder
because the visual encoder takes the fixed length token (e.g.,
256). In contrast, the textual encoder takes shorter token
lengths (e.g., average token length of CC3M ⇡10). We
tackle the problems by introducing a language-only train-
ing method, showing remarkable efficiency and scalability.
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3. Language-only Training of Zero-shot CIR

This section introduces a new paradigm for ZS-CIR, named
Language Only training for Composed Image Retrieval
(LinCIR). We first introduce a novel language-only self-
supervision, Self-Masking Projection (SMP), that enables
a language-only training for CIR (§3.1). Then, we explain
the modality gap problem and empirically show that adding
a carefully chosen random noise can mitigate the problem
(§3.2). Finally, we describe the advantage of LinCIR in
terms of efficiency and scalability (§3.3).

3.1. Self-Masking Projection (SMP)

We aim to learn a projection module � that captures and re-
tains the original visual information after the projection and
the textual encoder. While the previous methods focus on
directly mapping visual information to the token space with
a naı̈ve prompt (i.e., a photo of [$]), we argue that focusing
on the textual encoder is more important. Our zero-shot CIR
is based on text-to-image retrieval (see Fig. 2). It means that
the quality of the textual latent embedding is more critical to
the final ZS-CIR performances. Hence, rather than focusing
on minimizing the gap between visual information and the
naı̈ve prompt, we aim to achieve a projection module � that
captures the semantics of the keywords in the given text.

To achieve our goal, we introduce a novel language-only
self-supervision named Self-Masking Projection (SMP).
First, we project the textual embedding zc of a given text
input xc with the projection module � to the token embed-
ding space, i.e., bec = �(zc), where bec is the projected tex-
tual embedding. Then, we replace the token embeddings of
all the “keywords” of xc with the projected token embed-
ding bec. We define the keywords of the sentence as consec-
utive nouns and adjectives. For example, the keywords of
“A Russian Blue cat is gray and cute” will be “A Russian
Blue cat”, “gray” and “cute”; hence it will be converted to
“[$]is [$]and [$]”, where [$]is a special token to rep-
resent the projected token embedding bec. By treating all
the main concepts (keywords) in the caption as the same
[$], we intend [$]to represent the overall essential infor-
mation of the inputs. Note that similar to [MASK] tokens
of masked modeling, [$]with different positions will be
encoded in different features due to the positional embed-
dings. Using the converted caption, we extract a converted
textual latent feature bzc and minimize MSE loss between
the original textual embedding zc and bzc. Note that we only
train the �module while keeping the textual encoder frozen.

The intuition behind SMP is that semantic information is
not balanced across the tokens, but concentrated on the spe-
cific keywords. We assume that it is more common that
adjectives and nouns in the sentence are more important
than other part-of-speechs (POS), such as verbs or adverbs.
We empirically observe that our design choice (replacing
all keyword token embeddings with bec) is the best among

No noise Student-t Exp �2 N (0, 1) Unif(-1,1) Ours

L 0.81 (19.8) 0.76 (23.1) 0.76 (23.5) 0.78 (23.5) 0.77 (23.7) 0.74 (25.1) 0.71 (25.5)

H 0.63 (31.8) 0.59 (32.4) 0.67 (28.3) 0.64 (27.0) 0.60 (32.8) 0.59 (33.9) 0.53 (34.8)

G 0.51 (33.3) 0.55 (36.1) 0.63 (30.8) 0.56 (30.7) 0.55 (35.9) 0.58 (35.3) 0.48 (36.9)

Table 1. Modality gap vs. distributions. Modality gap [27]
(lower denotes less gap) on CC3M and CIRR dev R@1 (higher de-
notes better performance – in the parentheses) for different noises
with different backbone sizes (from ViT-L/14 to ViT-G/14).

the other variants, such as randomly replacing n keyword
tokens (n = 1, 3, 5), replacing a random token, replacing
all non-keyword tokens, or replacing all noun tokens (See
Tab. 8).

SMP has two benefits over the previous image-based
ZS-CIR supervision [3, 37]. First, SMP allows the tex-
tual encoder to accept more diverse captions rather than “a
photo of [$]”. While previous methods risk being sensitive
to natural sentence variations, potentially affecting perfor-
mances, our approach replaces tokens in natural sentences,
maintaining robust performance across a more diverse set
of sentence constructions. Second, SMP only requires lan-
guage inputs; therefore, the overall training procedure is ef-
ficient regarding the training time and the storage size. It
means that LinCIR can easily scale up in terms of the back-
bone size and the dataset scale. We will discuss the effi-
ciency and the scalability of LinCIR in the Sec. 3.3.

3.2. Searching for a better noise distribution for

reducing the modality gap.

Although SMP enables the language-only training, we still
suffer from the modality gap between textual and visual em-
bedding space [27]. Namely, even if the � module works
perfectly for language inputs, it can fail to be generalized
to visual inputs. To tackle the problem, we employ a sim-
ple noise addition strategy following Nukrai et al. [33]: we
add a random noise before the projection during training.
Nukrai et al. [33] employed a simple Gaussian noise, but
we empirically observe that Gaussian noise is not effective
in mitigating the gap. Tab. 1 shows the modality gap [27]
measured by various CLIP backbones by adding different
probability distributions to textual embeddings. In the table,
we observe that the careful choice of distribution greatly af-
fects the modality gap and the final performances.

We also observe that the generally used probabilistic dis-
tributions can suffer from a curse of dimensionality in the
CLIP embedding space dimensions (e.g., 768-dim). The
norm histogram of each probabilistic distribution (Fig. B.2)
shows that the samples drawn from a Gaussian distribution
have almost identical norm sizes. From this observation,
we employ a probability distribution enforcing the diverse
norm sizes instead of the Gaussian distribution. We multi-
ply a random scalar value by a random vector drawn from a
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Figure 4. Training time vs. CIR performances. We evaluate three CIR methods with three backbone sizes: ViT-L, ViT-H, and ViT-G.
To avoid an unreliable assessment due to the nature of R@1, CIR performances are measured in CIRCO mAP@5 [3], GeneCIS average
R@3 [44], FashionIQ Average R@50 [47], and CIRR average R@10 [29]. In all evaluation results, LinCIR achieves the best training
time-performance trade-off. Moreover, Pic2Word and SEARLE show degenerated performances when scaling up the backbone size.

Visual encoder Textual encoder
# layers d # tokens TP # layers d # tokens TP

ViT-L 24 1024 256 18.5 12 768 12.56 65.5
ViT-H 32 1280 256 16.3 24 1024 12.56 35.5
ViT-G 48 1664 256 11.8 32 1280 12.56 26.5

Table 2. Configuration of CLIP visual and textual encoders.

Every visual encoder uses the patch size 14 and the input resolu-
tion 224⇥224. The text token length is the average token length of
the CC3M [39] captions by the CLIP tokenizer. d denotes the hid-
den dimension of Transformer blocks, and TP denotes throughput
per second (higher means faster). TPs are measured by 1 V100 on
CC3M [39] captions and COCO [28] images with FP16 weights.

Gaussian distribution, i.e., n ⇠ Unif(0, 1)⇥N (0, 1). Con-
ceptually, our distribution is a randomized Gaussian distri-
bution with varying variances. In the Appendix, we illus-
trate that our design choice shows a more diverse norm dis-
tribution than the other distributions (See Fig. B.2).

In our experiments, we empirically observe that the noise
addition strategy improves the overall CIR performances
with a large gap by bridging the modality gap. We also em-
pirically observe that our design choice outperforms other
probability distributions with a large gap by diversifying the
impact of the random noise (see Tab. 9).

3.3. Efficiency and scalability

The most remarkable advantages of LinCIR beyond its gen-
eralizability are the training efficiency and scalability. First,
a text dataset is storage-efficient; the caption storage size of
CC3M dataset [39] is only 125 MB, while its image storage
size is about 430GB, about 3,400 times larger. Second, the
forward complexity of the textual encoder is notably lower
than that of the visual encoder. For example, as shown in
Tab. 2, the textual encoder has fewer depth, dimension size,
and input token size than the visual encoder taking 224 ⇥
224 resolution images. As a result, the average inference

time of the CLIP ViT-L visual encoder is ⇥3.5 times slower
than that of the textual encoder (Tab. 2). Furthermore, the
average throughput of the ViT-G textual encoder is even
⇥1.4 times faster than the ViT-L visual encoder.

All these advantages make LinCIR easily scalable. Even
though we increase the backbone size, the overhead of the
textual encoder is not significantly increased. We can train
LinCIR with the CLIP ViT-G backbone in 48 minutes using
8 A100 GPUs and 2 hours using a single V100.

4. Experiments

4.1. Implementation details

We use three-layered MLP for the � model: LN [1] -
Linear - GeLU [18] - Linear - GeLU - Linear -
LN. The intermediate hidden dimension is set to 4d (d for
each architecture is shown in Tab. 2). We do not apply
the `2-normalization to the textual encoder outputs during
training because, as shown in Fig. B.2, the added random
noises have larger norm sizes than 1. If we apply the `2-
normalization, we observe that the � module is not con-
verged. Keywords of the given text are extracted by the POS
tagger of spacy library. We use the AdamW optimizer
[31] with a fixed learning rate of 0.0001, weight decay of
0.01, and mini-batch size of 512. Dropout with probability
50% is applied for the regularization. We use CC3M [39]
captions and 2.47M number of the curated StableDiffusion
prompts2 for the training dataset (i.e., there are 5.5M train-
ing captions).

For a fair comparison between models, we select the
model showing the best zero-shot CIRR [29] dev R@1
score for the model selection. We employ an early stopping
strategy by monitoring the validation score. We evaluate
the CIR performances of the selected model in a zero-shot
manner, i.e., one model is evaluated on four benchmarks.
We employ the visual and textual encoders of the official

2
https : / / huggingface . co / datasets / FredZhang7 /

stable-diffusion-prompts-2.47M
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mAP@5 mAP@10 mAP@25 mAP@50

ViT-L
Pic2Word† 8.72 9.51 10.64 11.29
SEARLE† 11.68 12.73 14.33 15.12
LinCIR 12.59 13.58 15.00 15.85

ViT-H
Pic2Word 11.65 12.33 13.71 14.43
SEARLE 16.08 16.92 18.81 19.69
LinCIR 17.60 18.52 20.46 21.39

ViT-G
Pic2Word 5.54 5.59 6.68 7.12
SEARLE 13.20 13.85 15.32 16.04
LinCIR 19.71 21.01 23.13 24.18

Table 3. CIRCO results. Results of Pic2Word [37], SEARLE [3],
LinCIR by using different CLIP backbones are shown. † denotes
that the numbers are measured by the official checkpoint.

CLIP ViT-L [35], and OpenCLIP ViT-H and ViT-G [19]. In
the Appendix, we show that LinCIR can be easily extended
to the other VLMs, such as BLIP [25].

4.2. Experimental protocols

Evaluation benchmarks and metrics. As pointed out by
Baldrati et al. [3], the existing CIR benchmarks only have
a single positive, which can cause an unreliable evaluation.
A similar phenomenon is also reported in the image-text
cross-modal retrieval problem by Chun et al. [10]; such
benchmarks can lead to a wrong model comparison result.
For this reason, we use CIRCO as the main benchmark,
which has multiple positives and measures a more reli-
able ranking-based metric, mAP@K [32]. We also report
the R@K evaluation results on three additional datasets,
GeneCIS [44], FashionIQ [47], and CIRR [29]. We describe
the details of each dataset in the Appendix.

In this paper, we argue that R@1 results can be some-
what noisy due to the false negatives in the dataset. Note
that these benchmarks only have a unique positive triplet
for each query hxiR , xc, xii, i.e., if other plausible images
(i.e. false negatives) exist in the gallery set, the R@1 score
in these benchmarks cannot correctly measure the actual re-
trieval performance. Due to this reason, we will focus on
the mAP score if it is available. Otherwise, we will concen-
trate on R@K with a larger K (e.g., 10) rather than R@1.

Comparison methods. We compare LinCIR with the re-
cent ZS-CIR methods: Pic2Word [37] and SEARLE [3].
For a fair comparison, we train all methods with the same
backbone architecture as LinCIR, namely ViT-H and ViT-G
CLIP backbones. ViT-L results are measured using the of-
ficial checkpoints. We did not directly compare our method
with recent methods that require massive external triplet
datasets or take a long training time [15, 45]. More com-
parisons with these methods can be found in the Appendix.

R@1 R@2 R@3

ViT-L
Pic2Word† 11.16 21.47 30.38
SEARLE†

12.26 22.11 31.30
LinCIR 12.19 22.76 32.38

ViT-H
Pic2Word 11.89 22.17 31.94
SEARLE 13.34 23.72 32.72
LinCIR 13.76 23.87 33.16

ViT-G
Pic2Word 10.67 20.70 29.50
SEARLE 12.87 22.61 32.46
LinCIR 13.66 24.64 33.54

Table 4. GeneCIS results. The average R@1, R@2, R@3
for “Focus Attribute”, “Change Attribute”, “Focus Object”, and
“Change Object” are shown. The full table is in the Appendix.

4.3. Main results

The experimental results are summarized in Fig. 4: LinCIR
outperforms the comparison methods in training time and
retrieval performances. In all benchmarks, we observe that
while the performance of LinCIR is enhanced by enlarging
the backbone size, Pic2Word and SEARLE show inferior
performances with the ViT-G backbone. We presume that
it is because Pic2Word and SEARLE have a limited under-
standing of complex text queries because their �module are
trained on texts not diverse enough (i.e., a photo of [$]).
On the other hand, our �module shows a better understand-
ing of complex texts as LinCIR is trained on diverse real-
world texts from the caption datasets.

We also provide the full evaluation results on the four
benchmarks below. Tab. 3 shows the evaluation results on
the CIRCO dataset. In all experiments, LinCIR outperforms
others with a significant gap. We can observe a similar
finding in the GeneCIS average R@K results for four dif-
ferent subtasks (Tab. 4), especially for R@K with a larger
K. As shown in the Appendix, LinCIR outperforms other
models, especially on “Focus Attribute” and “Change At-
tribute” tasks. We presume that it is because the Pic2Word
and SEARLE training prompts are more specialized to ob-
jects (a photo of [$]), where LinCIR can handle more de-
tailed concepts in the image by altering all the nouns in the
sentence (e.g., “gray [$] sleeps on a [$]”).

In the FashionIQ benchmark (Tab. 5), LinCIR even out-
performs the state-of-the-art supervised method [2] with a
large gap (38.32 vs. 45.11 in the average R@10). Our work
is the first ZS-CIR method that outperforms the supervised
CIR method despite its generalizability to the other CIR
benchmarks and flexibility for handling various conditions.

We observe somewhat mixed results on CIRR (Tab. 6):
LinCIR achieves the best R@10 score, but not in some other
metrics. We argue that this is because of two reasons. First,
R@K with a small K cannot fully reflect the authentic per-
formance. As shown in the Appendix, the retrieval results
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Shirt Dress Toptee Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

ViT-L
Pic2Word† 26.20 43.60 20.00 40.20 27.90 47.40 24.70 43.70
SEARLE† 26.89 45.58 20.48 43.13 29.32 49.97 25.56 46.23
LinCIR 29.10 46.81 20.92 42.44 28.81 50.18 26.28 46.49

ViT-H
Pic2Word 36.90 55.99 28.01 51.51 40.18 62.01 35.03 56.50
SEARLE 36.46 55.45 28.46 51.07 38.81 60.89 34.57 55.80
LinCIR 36.90 57.75 29.80 52.11 42.07 62.52 36.26 57.46

ViT-G
Pic2Word 33.17 50.39 25.43 47.65 35.24 57.62 31.28 51.89
SEARLE 36.46 55.35 28.16 50.32 39.83 61.45 34.81 55.71
LinCIR 46.76 65.11 38.08 60.88 50.48 71.09 45.11 65.69

Combiner (supervised) [2]† 39.99 60.45 33.81 59.40 41.41 65.37 38.32 61.74

Table 5. FashionIQ results.
† denotes that the numbers are from the original paper. LinCIR ViT-G even outperforms the previous state-

of-the-art supervised CIR method [2] with a large gap although LinCIR is not directly trained on the FashionIQ dataset.

Full Subset
R@1 R@5 R@10 R@1 R@2 R@3

ViT-L
Pic2Word† 23.90 51.70 65.30 53.76 74.46 87.08
SEARLE† 24.24 52.48 66.29 53.76 75.01 88.19
LinCIR 25.04 53.25 66.68 57.11 77.37 88.89

ViT-H
Pic2Word 32.94 63.11 73.86 62.22 81.35 91.23
SEARLE 34.00 63.98 75.25 64.63 83.21 92.77
LinCIR 33.83 63.52 75.35 62.43 81.47 92.12

ViT-G
Pic2Word 30.41 58.12 69.23 68.92 85.45 93.04
SEARLE 34.80 64.07 75.11 68.72 84.70 93.23
LinCIR 35.25 64.72 76.05 63.35 82.22 91.98

Table 6. CIRR results. Due to the noisy nature of CIRR as a
ZS-CIR benchmark, we only highlight the R@10 score for the full
CIRR set. The detailed discussion can be found in Sec. 4.3

of LinCIR are plausible to humans, but because the dataset
has incomplete positives (i.e., there are many false nega-
tives), the R@1 score cannot correctly evaluate the model
performance. According to Chun et al. [10], the similarity
between the rankings measured by R@K on a partially an-
notated benchmark and those measured by mAP on a fully
annotated benchmark becomes lower when we use a small
K (e.g., 1). Second, as observed by previous works [3, 37],
the quality of the CIRR benchmark as a ZS-CIR benchmark
is somewhat doubtable. The CIRR text relative captions
are often not truly relative (i.e., there exist false positives),
and reference images can even be harmful to retrieval. As
pointed out by Baldrati et al. [3], this problem becomes
more severe when we use a small subset of images, i.e., the
subset R@Ks. In summary, due to the noisy nature of CIRR
full and subset R@1s, we propose to focus on the CIRR full
R@10 scores rather than other metrics. In CIRR full R@10,
LinCIR shows the same trends as the other benchmarks.

CIRR dev Fashion IQ
Supervision design R@1 R@10 R@50

a photo of [$][37] 21.65 24.93 44.35
Ours, but [$]extracted by  I 22.63 22.01 39.87
Our SMP design choice 25.66 26.28 46.49

Table 7. Impact of the supervision design. Different target text
designs (e.g., [$]sleeps on [$]in Fig. 3 (b)) affect the perfor-
mances. “Ours, but [$]extracted by  I” denotes that the textual
encoder before the � module is replaced with the visual encoder.

CIRR dev Fashion IQ
SMP Masking strategy R@1 R@10 R@50

All non-keyword tokens 20.59 19.61 36.97
Random token 22.98 22.44 40.92
All noun tokens 24.95 25.16 45.19

1 keyword token 23.92 26.42 45.91
3 keyword tokens 24.66 26.69 46.54

5 keyword tokens 25.14 26.28 46.29

All keyword tokens 25.66 26.28 46.49

Table 8. Impact of the SMP masking strategy. The CIRR re-
trieval performances by varying the masking strategy for SMP
(i.e., “Keyword masking” in Fig. 3 (b)) are shown. We define
“keyword” as consecutive adjectives and nouns, except for “All
noun tokens”. “All noun tokens” defines keywords as nouns.

4.4. Analysis

In this subsection, we provide detailed analyses of our de-
sign choices. If not specified, we compare the models on
the CIRR dev split and FashionIQ test split.

Impact of Self-Masking Projection (SMP) supervision.

We compare two variants of SMP in Tab. 7. First, instead of
employing our keyword masking strategy, we use “a photo
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CIRR dev Fashion IQ
Noise type R@1 R@10 R@50

No noise 19.76 20.42 38.31

Student-t 23.08 22.81 41.00
Exponential 23.51 25.78 45.26
�2 23.54 23.11 41.89
N (0, 1) 23.70 23.31 41.89
Unif(-1, 1) 25.14 25.88 45.78

N (0, 1)⇥ Unif(0, 1) 25.47 26.05 46.29

Table 9. Impact of the choice of the random noise. Adding noise
to the textual latent space helps to mitigate the inferior generaliz-
ability due to the modality gap. Moreover, using better random
noise can significantly boost the overall performances.

CIRCO GeneCIS FashionIQ CIRR AvgCC3M SDP COYO OWT mAP@5 R@3 R@10 R@10

4 8 8 8 13.72 32.80 25.11 64.95 34.15
8 4 8 8 9.52 32.38 23.63 62.58 32.03
8 8 4 8 11.36 31.48 26.18 65.33 33.59
8 8 8 4 9.67 30.90 24.41 64.05 32.26

4 4 8 8 12.59 32.38 26.28 66.68 34.48

4 4 8 4 10.06 33.36 21.11 63.16 31.92
4 4 4 8 11.54 32.08 26.97 66.80 34.35

Table 10. Impact of the training corpus. OpenWebText (OWT)
[14] and SD prompts (SDP) are text-only datasets and CC3M [39]
and COYO-700M (COYO) [5] are image-text aligned datasets. In
our experiments, we use CC3M + SDP for the training corpus,
considering the dataset scale and overall CIR performances.

of [$]” as Pic2Word and SEARLE to train the � module.
Second, we replace the textual encoder before � module
with the visual encoder using the corresponding image of
the caption. In the table, “a photo of [$]that [cond]”
variant performs worse than our design choice due to the
limited diversity of the input texts. Interestingly, we observe
that using both image and text pairs for LinCIR performs
worse than our design choice. Note that the second model
is trained on CC3M image-text pairs without using 2.47M
SD prompts as our design choice. We presume it makes
the � model overfitted to CC3M image-text relationships,
which significantly differ from our target CIR datasets.

Impact of masking design choice. We compare other
masking design choices, such as random tokens or non-
keyword tokens, with our design choice in Tab. 8. Tab. 8
shows that (1) masking the keywords performs better than
masking the others. (2) Our keyword design – i.e., consecu-
tive adjectives and nouns – is better than defining keywords
as nouns. (3) The overall performances are enhanced by in-
creasing the masked keywords. As the differences are not
significant, we mask all the keywords for simplicity.

Impact of the random noise addition. As we discussed
in Sec. 3.2, the random noise addition is critical to mitigat-
ing the modality gap. Tab. 9 supports this claim: when we
do not add any noise, the performance becomes the worst.
Our design choice shows the best performance among the
other noise designs due to the diverse norm size of our dis-
tribution as shown in Fig. B.2.

The impact of the training corpus. We evaluate the im-
pact of the training corpus in Tab. 10. We use four corpora,
CC3M [39] (3M captions), StableDiffusion Prompts (SDP)
(2.47M text prompts), COYO-700M (700M captions) [5]
and OpenWebText (OWT) [14] (8M web texts). CC3M
and COYO are image-text paired datasets, and OWT and
SDP are text-only datasets. The example training samples
of each dataset are shown in the Appendix. In Tab. 10, we
observe that models trained with image descriptions (CC3M
and COYO) perform better than models trained with general
texts because general web texts are often irrelevant to visual
information. In addition, using multiple corpora improves
the overall performance, e.g., CC3M (34.15) ! CC3M +
SDP (34.48). Although we observe that using more mas-
sive captions (e.g., 3M + 2.47M + 700M) can be helpful
for some CIR tasks, such as FashionIQ and CIRR, we use
CC3M and SDP for our training set considering the corpus
size (3M + 2.47M), and the overall performances.

Qualitative results. We provide the additional qualita-
tive retrieval results in the Appendix. In summary, LinCIR
shows qualitatively plausible retrieval performance even in
a large-scale image database, e.g. LAION-2B. Also, we ob-
serve that the retrieved results by LinCIR often suffer from
false negatives in benchmark datasets, showing the limita-
tion of the R@1 evaluation on the existing CIR benchmarks.

5. Conclusion

We propose a novel zero-shot composed image retrieval
(ZS-CIR) framework named Language Only training for
Composed Image Retrieval (LinCIR). LinCIR presents
a breakthrough in addressing the challenges associated
with the previous ZS-CIR methods. By leveraging a
novel self-supervision technique, Self-Masking Projection
(SMP), LinCIR eliminates the dependency on expensive
CIR triplets, opting for a training process solely based on
text inputs. This innovative approach significantly enhances
scalability and generalizability, overcoming limitations ob-
served in existing ZS-CIR methods. Notably, our LinCIR
model achieves remarkable efficiency and ZS-CIR perfor-
mances compared to other methods on multiple CIR bench-
marks, including CIRCO, GeneCIS, FashionIQ, and CIRR.
We underscore the effectiveness of our language-only train-
ing framework, offering a potent solution with wide-ranging
implications for image retrieval tasks.
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