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Abstract

Vector-Quantized (VQ-based) generative models usually
consist of two basic components, i.e., VQ tokenizers and
generative transformers. Prior research focuses on improv-
ing the reconstruction fidelity of VQ tokenizers but rarely
examines how the improvement in reconstruction affects the
generation ability of generative transformers. In this pa-
per, we surprisingly find that improving the reconstruction
fidelity of VQ tokenizers does not necessarily improve the
generation. Instead, learning to compress semantic fea-
tures within VQ tokenizers significantly improves genera-
tive transformers’ ability to capture textures and structures.
We thus highlight two competing objectives of VQ tokeniz-
ers for image synthesis: semantic compression and de-
tails preservation. Different from previous work that pri-
oritizes better details preservation, we propose Semantic-
Quantized GAN (SeQ-GAN) with two learning phases to
balance the two objectives. In the first phase, we propose
a semantic-enhanced perceptual loss for better semantic
compression. In the second phase, we fix the encoder and
codebook, but enhance and finetune the decoder to achieve
better details preservation. Our proposed SeQ-GAN signif-
icantly improves VQ-based generative models for both un-
conditional and conditional image generation. Specifically,
SeQ-GAN achieves a Fréchet Inception Distance (FID) of
6.25 and Inception Score (IS) of 140.9 on 256×256 Ima-
geNet generation, which is a remarkable improvement over
VIT-VQGAN (714M), which obtains 11.2 FID and 97.2 IS.

1. Introduction

In recent years, remarkable progress has been made in
image synthesis using likelihood-based generative meth-
ods, such as diffusion models [11, 45], autoregressive
(AR) [15, 43, 56, 57], and non-autoregressive (NAR) [6, 18]
transformers. These models offer stable training and bet-
ter diversity compared to Generative Adversarial Networks
(GANs) [29, 30]. However, unlike GANs, which can gener-
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Figure 1. Visualizing impact of VQ tokenizers on generative
transformers with α trade-off between details preservation and se-
mantic compression in VQ tokenizer training.

ate high-resolution (e.g., 2562 and 5122) images at one for-
ward pass, likelihood-based methods usually require multi-
ple forward passes by sequential decoding [15, 56] or iter-
ative refinement [6, 18]. Consequently, early works [7, 23,
39], which maximize likelihood on pixel space, are limited
in their ability to synthesize high-resolution images due to
the high computational cost and slow decoding speed.

Instead of directly modeling the underlying distribution
in the pixel space, recent vector-quantized (VQ-based) gen-
erative models [50] construct a discrete latent space for gen-
erative transformers. There are two basic components in
VQ-based generative models, i.e., VQ tokenizers and gen-
erative transformers. VQ tokenizers learn to quantize im-
ages into discrete codes, and then decode the codes to re-
cover the input images, which process is termed as recon-
struction. Then, a generative transformer is trained to learn
the underlying distribution in the discrete latent space con-
structed by the VQ tokenizer. Once trained, the generative
transformer can be used to sample images from the under-
lying distribution, and this process is termed as generation.
Thanks to the discrete latent space, VQ-based generative
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Figure 2. Generation results of SeQ-GAN+NAR. 1st row: LSUN-{cat, bedroom, church}. 2nd row: FFHQ and ImageNet.

models [6, 15, 45] can easily scale up to synthesize high-
resolution images without prohibitive computation cost.

The VQ tokenizer has received much attention as the
core component in VQ-based generative models. Various
techniques, such as factorized codes and smaller compres-
sion ratio in VIT-VQGAN [56], recursive quantization in
Residual Quantization [34], and multichannel quantization
with spatial modulated decoder in MoVQ [60], have been
used to compress more fine-grained details into VQ tokeniz-
ers, leading to steadily improving reconstruction fidelity.
However, none of the previous works have carefully ex-
amined a fundamental question, how the improved recon-
struction of VQ tokenizers affects the generation. Lacking
such analysis is due to two main reasons: 1) the underlying
assumption that “better reconstruction, better generation”,
and 2) the absence of a visualization pipeline to intuitively
compare generation results of various VQ tokenizers.

In this paper, we introduce a visualization pipeline for
examining how different VQ tokenizers influence gener-
ative transformers. Unlike previous works that compare
randomly-sampled generation results, our approach models
specific images and facilitates a straightforward comparison
of the generative transformer’s ability using different VQ
tokenizers. The key idea is to reduce the flexibility of the
sampling process by providing ground-truth context to gen-
erative transformers, which can be easily implemented with
an autoregressive (AR) transformer with causal attention.

Our proposed visualization pipeline leads us to two
important observations. 1) Improving the reconstruction
fidelity of VQ tokenizers does not necessarily improve
the generation. 2) Learning to compress semantic fea-
tures within VQ tokenizers significantly improves genera-
tive transformers’ ability to capture textures and structures.
As shown in Fig. 1, increasing the semantic ratio (α=1) im-
proves the AR transformer’s ability to capture texture and
structure, while decreasing it (α=0) results in the trans-
former modeling rough colors instead. These observations
arise due to the competing objectives of reconstruction and

generation optimization. Reconstruction aims to retain vari-
ation in the dataset by favoring latent spaces with larger
variance (i.e., weaker separability), whereas generation op-
timization favors latent spaces with smaller variance (i.e.,
better separability) to optimize a classification objective.

Our observations reveal that there are two competing ob-
jectives for VQ tokenizers: semantic compression and de-
tails preservation, but recent VQ tokenizers [34, 44, 56, 60]
have primarily focused on the latter. To balance the two
objectives for better generation, we propose Semantic-
Quantized GAN (SeQ-GAN), which consists of two learn-
ing phases. The first phase utilizes a semantic-enhanced
perceptual loss to achieve semantic compression, while the
second phase finetunes the decoder to restore fine-grained
details while preserving structures and textures. Com-
pared to previous VQ tokenizers, SeQ-GAN compresses se-
mantic features rather than fine-grained details (e.g., high-
frequency details, colors) into codebook and finetunes the
decoder to restore those details, which does not affect trans-
former learning but improves local details generation.

Our main contributions are summarized as follows. (1)
We rethink the common assumption ”better reconstruction,
better generation” in recent VQ tokenizers, and propose
a visualization pipeline to explore the impact of different
VQ tokenizers on generative transformers. (2) We iden-
tify two competing objectives in optimizing VQ tokeniz-
ers: semantic compression and details preservation, and
introduce SeQ-GAN as a solution that balances these objec-
tives to achieve better generation quality. (3) Our SeQ-GAN
achieves significant improvements over prior VQ tokenizers
in both conditional and unconditional image generation, as
demonstrated through experiments with both AR and NAR
transformers. (Generation results are shown in Fig. 2).

2. Related Work
VQ-based Generative Models. The VQ-based genera-
tive model is first introduced by VQ-VAE [50], which con-
structs a discrete latent space by VQ tokenizers and learns
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the underlying latent distribution by prior models [8, 49].
VQGAN [15] improves upon this by utilizing perceptual
loss [28, 58] and adversarial learning [17] in training VQ to-
kenizers, and using autoregressive transformers [41] as the
prior model, leading to significant improvements in gener-
ation quality. VQ-based generative models have been ap-
plied in various generation tasks, such as image genera-
tion [6, 15, 56], video generation [16, 25, 54], text-to-image
generation [12, 43, 45, 57], and face restoration [19, 51, 62].

Building on the success of VQGAN [15], recent works
have focused on improving the two fundamental compo-
nents of VQ-based generative models: VQ tokenizers and
generative transformers. To enhance VQ tokenizers, VIT-
VQGAN [56] proposes quantizing image features into fac-
torized and L2-normed codes with a larger codebook and
small compression ratio, achieving finer reconstruction re-
sults. Residual Quantization [34] recursively quantizes fea-
ture maps using a shared codebook to precisely approxi-
mate image features. MoVQ [60] enhances the VQ tok-
enizer’s decoder with modulation [27] and proposes multi-
channel quantization with a shared codebook, resulting in
state-of-the-art reconstruction results. Different from previ-
ous works, we argue that improving reconstruction fidelity
does not necessarily lead to better generation quality.

Another line orthogonal to our work is improving gener-
ative transformers. Early works adopt autoregressive (AR)
transformers [15, 44, 56]. However, AR transformers suffer
from low sampling speed and ignore bidirectional contexts.
To overcome these limitations, non-autoregressive (NAR)
transformers are introduced based on different theories, like
mask image modeling [2, 21] (i.e., MaskGIT [6]) and dis-
crete diffusion [1, 26] (i.e., VQ-diffusion [18, 48]). In this
paper, we demonstrate that integrating our SeQ-GAN as the
VQ tokenizer consistently enhances the generation quality
of both AR and NAR transformers.
Visual Tokenizers for Generative Pretraining. Recent
works in large-scale generative visual pretraining also ex-
plore the potential of the visual tokenizer. Instead of di-
rectly performing mask image modeling on pixels [21, 53],
the pioneer BEiT [2] reconstructs masked patches quantized
by a discrete VAE [43]. Follow-up works further strengthen
the semantics of the visual tokenizer, such as PeCo [13],
which adopts contrastive perceptual loss [9, 20] during to-
kenizer training, and mc-BEiT [35], which softens and re-
weights the masked prediction target during visual pretrain-
ing. To further reduce the low-level representation in the
visual tokenizer, iBOT [61] abandons reconstructing pix-
els, but updates the tokenizer online during the pretraining.
BEiT-v2 [40] formulates the training objective of the visual
tokenizer by reconstructing semantic features extracted by
CLIP [42]. Unlike prior attempts to remove low-level rep-
resentation interference in visual pretraining, we highlight
the importance of semantic compression and details preser-
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Figure 3. The influence of VQ tokenizers on the training and
sampling process of generative transformers.

vation in training VQ tokenizers for image synthesis.

3. Methodology

In this section, we first review how VQ tokenizers af-
fect generation in VQ-based generative models in Sec. 3.1.
Then, we present a visualization pipeline in Sec. 3.2 to ex-
amine the impact of different VQ tokenizers on generative
transformers. Based on this pipeline, we make two critical
observations in Sec. 3.3, highlighting the competing objec-
tives in designing VQ tokenizers. Finally, we propose SeQ-
GAN in Sec. 3.4 as a solution that balances these objectives
to improve generation quality.

3.1. Preliminaries

In this section, we cover the fundamental process of VQ-
based generative models and highlight the potential impact
of VQ tokenizers on generation results.
Reconstruction: training VQ tokenizers. The role of VQ
tokenizers is to compress the image into discrete indices.
Specifically, a VQ tokenizer is comprised of an encoder E,
a decoder G and a codebook Z = {zk}Kk=1 with K dis-
crete codes. Given an input image x ∈ RH×W×3, a latent
feature ẑ ∈ R

H
f ×W

f ×nz is first extracted, where nz and f
represent the dimension of the latent features and the spatial
compression ratio, respectively. Then, the feature vector at
each spatial position (i, j) is quantized to the nearest code
in the codebook by

zq = q(ẑ) :=

(
arg min

zk∈Z
∥ẑij − zk∥

)
∈ R

H
f ×W

f ×nz . (1)

The decoder G is responsible for decoding the quantized
features back to the image space, i.e., x̂ = G(zq).

The training objective of the VQ tokenizer is to minimize
the reconstruction error with respect to the input image. Fol-
lowing VQGAN [15] to use adversarial loss (Ladv) [17] and
perceptual loss (Lper) [28, 58], the reconstruction objective
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Figure 4. Visualization pipeline to examine the influence of VQ
tokenizers on generative transformers.

can be formulated as
L(E,G,Z) = Lvq + Lper + Ladv, where

Lvq = ∥x−x̂∥1 + ∥sg[E(x)]− zq∥22 + β∥sg[zq]− E(x)∥22.
(2)

In Eq. 2, sg[·] means stop-gradient and β∥sg[zq]−E(x)∥22 is
known as the commitment loss [50], where the commitment
weight β is set to 0.25 following [15, 50, 56].
Training generative transformers. As shown in Fig. 3,
the encoder and codebook of a trained VQ tokenizer define
a discrete latent space that quantizes an image into a se-
quence of discrete indices for generative transformer train-
ing. This sequence serves as input and label in training the
generative transformer with token classification loss. In this
paper, we use the autoregressive (AR) transformer in VQ-
GAN [15] and the non-autoregressive (NAR) transformer in
MaskGIT [6]. Therefore, the quality of the discrete latent
space defined by the encoder and codebook of VQ tokeniz-
ers will influence the generative transformer training.
Generation: sampling from generative transformers.
After training a generative transformer, we can sample dis-
crete index sequences from it through either autoregressive
decoding [15] or iterative refinement [6]. To map the dis-
crete indices back to visual details, we retrieve the corre-
sponding feature from the codebook and decode it into im-
age space using the VQ tokenizer’s decoder. Therefore, the
decoder will affect the generation quality by influencing the
index-to-visual-details mapping.

3.2. Pipeline for Visualizing VQ Generative Models

Recent VQ-based generative models examine their designs
by looking into the random sampled generation results,
where different sampling techniques are adopted (e.g., top-p
top-k sampling [24], classifier-free guidance [22], or rejec-
tion sampling [43]). However, instead of examining random
samples, we are more curious about how generative trans-
formers model specific images, enabling us to check the in-
fluence of different VQ tokenizers on generative transform-
ers side by side. To achieve that goal, we propose to reduce
the flexibility of the sampling process by providing ground-
truth (GT) contexts for predicting each index, which can be
easily implemented by AR transformers.

The pipeline is shown in Fig. 4. First, we train a VQ

Model Params rFID↓ Generation FID↓
AR AR-L AR-L-2× NAR

baselineVQ 54.5M 3.45 16.97 13.86 11.49 13.26
+Conv×2 70.0M 3.22 17.19 14.50 12.03 13.51
+Attention×2 61.4M 2.90 17.42 14.91 12.04 14.02

Table 1. Comparison of the baseline and decoder-enhanced VQ
tokenizers on the reconstruction FID (rFID) and generation FID,
evaluated on different transformer configurations.

tokenizer along with its corresponding AR transformer. To
analyze a specific image, we obtain the GT index sequence
s = [si]

N
i=1 from the VQ tokenizer and feed it to the

trained AR transformer, similar to the teacher forcing strat-
egy [3, 52] used in training AR transformers. Because the
AR transformer adopts casual attention [41], it does not di-
rectly access the GT indices, but can accesses all GT context
indices for predicting each index. Given the same context
(i.e., preceding GT indices), the next index prediction task
is well-controlled and thus we can get the top-1 predicted
index sequence s′ within one forward pass. Finally, we de-
code the GT sequence s and the AR predicted sequence s′

back to the image space by the decoder of the VQ tokenizer.
Following this approach, we are able to visualize both the
reconstruction of VQ tokenizers and the upper limit predic-
tion of AR transformers for specific images.

3.3. Rethinking the Objectives of VQ Tokenizers

3.3.1 Reconstruction vs. Generation

Motivation. Recent advancements in VQ tokenizers have
led to improved reconstruction results, with MoVQ [60] in
particular enhancing their decoder with modulation to add
variation to quantized code and achieve the highest recon-
struction fidelity. However, few studies investigate whether
improvements of reconstruction fidelity of VQ tokenizers
benefit generation quality. To address this gap, we conduct
the following experiment to answer this question.
Experimental Settings. In Sec. 3.1, we identify two
key factors in VQ tokenizers that affect generation: 1)
the quality of the discrete latent space defined by the en-
coder/codebook, and 2) the index-to-visual-details mapping
defined by the decoder. Inspired by MoVQ [60], we keep
the configuration of encoder/codebook the same, and en-
hance the decoder to strengthen the index-to-visual-detail
mapping. Our baseline is a convolution-only VQGAN [15],
and we add two extra convolution blocks or two interleaved
regional and dilated attention blocks [59] at each resolu-
tion level to enhance the decoder. Based on each tokenizer,
we train the generative transformer with different config-
urations, including different parameter sizes (AR and AR-
Large), different types (AR and NAR), and different train-
ing iterations (AR-Large and AR-Large-2×). Additional
experimental settings can be found in the supplementary.
Results. The results presented in Table. 1 show that en-
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Figure 5. Visualizing the reconstruction and AR prediction of the
baseline tokenizer and its attention-enhanced variant.

hancing the decoder improves reconstruction fidelity, but it
does not necessarily lead to better generation quality. Sur-
prisingly, the baseline tokenizer achieves the best genera-
tion quality. Assuming that the quality of the discrete latent
space (defined by encoder/codebook) remains unchanged,
enhancing the decoder should improve generation quality
by improving the index-visual-details mapping. However,
in reality, enhancing the decoder leads to a degradation in
generation quality. This suggests that jointly learning the
encoder/codebook with an enhanced decoder actually de-
grades the quality of the discrete latent space.

Using the proposed visualization pipeline in Sec. 3.2,
we visualize the reconstruction and AR prediction results
of the baseline tokenizer and its attention-enhanced variant
in Fig. 5. Although the attention-enhanced variant leads to
a more consistent reconstruction, the AR transformer faces
challenges in capturing the details and can only predict a
rough color for the main object, even given ground-truth
contexts. This highlights the generative transformers’ diffi-
culties in modeling the discrete latent space.

The discrepancy between reconstruction and generation
is due to the conflicting optimization objectives. In re-
construction training, VQ tokenizers prefer a latent space
with larger variance (i.e., weaker separability) to retain the
variation of datasets, while generative transformer training
prefers smaller variance (i.e., better separability), because
it optimizes the classification objective (i.e., cross-entropy).
Therefore, in Table. 1 and Fig. 5, a powerful decoder pro-
motes encoding more variation in the codebook, which hin-
ders the separability of the discrete latent space and thus
results in suboptimal generation performance. Through the
result, we arrive at the following observation.
Observation 1. Improving the reconstruction fidelity of VQ
tokenizers does not necessarily improve the generation.

3.3.2 Details Preservation vs. Semantic Compression

Motivation. Observation 1 suggests that compressing more
fine-grained details within the tokenizer in reconstruction

(a) Visualization of the AR predicted results when trained using VQ
tokenizers with different semantic ratios (α).

(b) Reconstruction FID and generation FID with different semantic ratio(α)
in optimizing VQ tokenizers.

Figure 6. Influence of the semantic ratio α in VQ tokenizers on
generation quality.

does not always improve generation. Therefore, we shift
our focus towards exploring the role of semantics in VQ
tokenizers for better generation quality.
Semantic-Enhanced Perceptual Loss. Unlike generative
pretraining [40, 61] that uses fully semantic tokenizers, im-
age synthesis requires consideration of low-level details. To
balance the trade-off between low-level details and seman-
tics in VQ tokenizers, we introduce a semantic-enhanced
perceptual loss that controls the details/semantic ratio.

Specifically, given an input and a reference image, we
extract their activation features ŷl and yl from a pre-trained
VGG [47] network. For each layer l, the feature is of shape
Hl ×Wl × Cl. Then, the perceptual loss can be calculated
as Lper =

∑
l

1
HlWlCl

||ŷl − yl||22. To preserve details, per-
ceptual loss [58] used in previous VQ tokenizers adopts the
features from both the shallow and high layers, which we
denote as Llow

per in this paper. To better compress semantic
information during reconstruction, we propose a semantic-
enhanced perceptual loss Lsem

per , which removes the features
from shallow layers and further includes the logit feature
(i.e., feature before softmax classifier). The layers l to ex-
tract features can be summarized as
- Llow

per : l ∈{relu-{1 2, 2 2, 3 3, 4 3, 5 3}},
- Lsem

per : l ∈{relu5 3, logit}.
We re-weight the two perceptual losses to control the pro-
portion between the details and semantic information by

Lα
per = αLsem

per + (1− α)Llow
per , (3)

where α ∈ [0, 1] is the semantic ratio.
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Figure 7. Pipeline of the two-phase learning in SeQ-GAN.

Results. Using the proposed semantic-enhanced percep-
tual loss, we examine the impact of different semantic ra-
tios (α) during VQ tokenizer training on generation quality.
In particular, we find that increasing α initially improves
the reconstruction FID (rFID), with the best rFID achieved
at α=0.4 before decreasing. However, increasing α con-
sistently improves the generation FID. Our visualizations
in Fig. 6(a) and Fig. 1(b) demonstrate that the semantic-
enhanced VQ tokenizer (α=1) enables the AR transformer
to capture more overall structures and textures than the
baseline tokenizer (α=0). We provide additional visualiza-
tions in the supplementary. These results help us arrive at
the following observation.
Observation 2. Semantic compression within VQ tokeniz-
ers benefits the generative transformer.

3.3.3 Discussion

Tokenizers [32, 46] in Natural Language Processing (NLP)
are naturally discrete and semantically meaningful, and in
large-scale generative visual pretraining [40, 61], fully se-
mantic visual tokenizers that abandon low-level informa-
tion are preferred. However, VQ tokenizers in VQ-based
generative models should consider low-level details. Pre-
vious works [34, 44, 56, 60] prioritize preserving details
to achieve better reconstruction fidelity, but we find solely
compressing fine-grained details within VQ tokenizers will
degrade the discrete latent space and hinder transformer
training. We argue that both semantic compression and de-
tail preservation should be considered when designing VQ
tokenizers for image synthesis.

3.4. Our Solution: SeQ-GAN

To achieve better generation quality, we propose the
Semantic-Quantized GAN (SeQ-GAN) as the VQ tokenizer
in VQ-based generative models, balancing the objectives of
semantic compression and details preservation.

Fig. 7 illustrates the two-phase approach of SeQ-GAN
for tokenizer learning. In the first phase, we prioritize se-
mantic compression by applying the proposed semantic-

Model Datset Latent Codebook rFIDSize K Usage

VQGAN [15]

FFHQ

16×16 1024 42% 4.42
VIT-VQGAN [56] 32×32 8192 - 3.13
RQ-VAE [34] 16×16×4 2048 - 3.88
MoVQ [60] 16×16×4 1024 - 2.26
SeQ-GAN (Ours) 16×16 1024 100% 3.12

VQGAN [15]

ImageNet

16×16 1024 44% 7.94
VQGAN [15] 16×16 16384 5.9% 4.98
VIT-VQGAN [56] 32×32 8192 96% 1.28
RQ-VAE [34] 8×8×16 16384 - 1.83
MoVQ [60] 16×16×4 1024 - 1.12
SeQ-GAN (Ours) 16×16 1024 100% 1.99
Table 2. Reconstruction results on ImageNet and FFHQ validation
set, with K representing codebook size.

enhanced perceptual loss Lα=1
per in Eq. 3. However, seman-

tic compression with VQ tokenizers may cause some loss
of color fidelity and high-frequency details. To address this,
we enhance the decoder in the second phase using inter-
leaved block regional and dilated attention [59]. We fix the
encoder and codebook of the tokenizer and finetune the en-
hanced decoder with Lα=0

per to achieve better detail preser-
vation. Note that in the second phase of tokenizer learning,
we fix the discrete latent space by fixing the encoder and
codebook. Therefore, our decoder-only finetuning enhances
the generation quality of local details without affecting the
transformer learning of structures and textures.

During the training of our SeQ-GAN, we observe the is-
sue of low codebook usage, which has also been reported in
prior VQGAN [15]. To address this issue, we incorporate
entropy regularization techniques that are commonly used
in self-supervised representation learning [5, 36] to miti-
gate the problem of empty clusters. Specifically, given the
feature before quantization ẑ ∈ RN×nz , we aims to map
ẑ to the codebook feature Z = {zk}Kk=1. Denote the ma-
trix D ∈ RN×K as the L2 distance between each feature ẑi
and each code entry zk, we normalize it by softmax Di,k =

exp(−Di,k)∑K
k=1 exp(−Di,k)

. Then we average D along the spatial size

by D̄k = 1
N

∑N
i=1 Di,k, where D̄ ∈ RK can be interpreted

as a soft codebook usage. To increase the codebook usage,
we encourage a smoother D̄, which achieved by penalizing
the entropy H(D̄) = −

∑
k D̄k log D̄k. And we update the

optimization objective in Eq. 2 to Lvq′ = Lvq + γH(D̄),
where we fix γ = 0.01 in our experiments.

4. Experiments
4.1. Image Quantization

We train the SeQ-GAN on ImageNet [10], FFHQ [29] and
LSUN [55], separately. In the first phase, we train the SeQ-
GAN on ImageNet and FFHQ using the Adam [31] opti-
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Model Params steps FFHQ Church Cat Bedroom

BigGAN [4] 164M 1 12.4 - - -
StyleGAN2 [30] 30M 1 3.8 3.86 7.25 2.35
ADM [11] 552M 1000 - - 5.57 1.90
DDPM [23] 114M†/256M‡ 1000 - 7.89† 19.75† 4.90‡

DCT [37] 473M†/448M‡ >1024 13.06† 7.56‡ - 6.40‡

VQGAN [15] 72.1M + 801M 256 11.4 7.81 17.31 6.35
ImageBART [14] - - 9.57 7.32 15.09 5.51
VIT-VQGAN [56] 64M + 1697M 1024 5.3 - - -
RQ-VAE [34] 100M + 370M†/650M‡ 256 10.38† 7.45† 8.64‡ 3.04‡

MoVQ + AR [60] 82.7M + 307M 1024 8.52 - - -
MoVQ + NAR [60] 82.7M + 307M 12 8.78 - - -

SeQ-GAN + AR (Ours) 57.9M + 171M 256 - 2.45 3.61 1.44
SeQ-GAN + NAR (Ours) 57.9M + 171M 12 3.62 2.25 4.60 2.05

Table 3. Quantitative comparison of unconditional image generation on FFHQ [29] and LSUN [55]-{Church, Cat, Bedroom}. The AR
transformer result on FFHQ is omitted due to severe overfitting, consistent with findings in RQ-VAE [34].

mizer with a learning rate of 1e-4 for 500,000 iterations. For
LSUN-{cat, bedroom, church}, we follow RQ-VAE [34] to
use the pretrained SeQ-GAN on ImageNet and finetune for
one epoch on each dataset. In the second phase, we fine-
tune the enhanced decoder of SeQ-GAN on three datasets
for 200,000 iterations with a learning rate of 5e-5. Detailed
settings are provided in the supplementary.

The results are summarized in Table. 2. Since VIT-
VQGAN [56], RQ-VAE [34] and MoVQ [60] prioritize the
reconstruction fidelity by compressing more fine-grained
details within the tokenizer, they usually require a larger la-
tent size. Our SeQ-GAN does not pursue the reconstruction
fidelity, but optimizes for better generation quality. There-
fore, SeQ-GAN does not achieve the best reconstruction fi-
delity. However, compared to VQGAN [15], with the same
latent size and codebook size, SeQ-GAN still has a large
improvement in rFID and codebook usage.

4.2. Unconditional Image Generation

We train AR and NAR transformers on top of SeQ-GAN
for unconditional image generation on FFHQ [29] and
LSUN [55] datasets. All models are trained for 500,000
iterations with the Adam optimizer, using a learning rate of
1e-4. Detailed hyperparameters are in the supplementary.

From the results in Table. 3, previous state-of-the-art re-
sults are achieved by continuous diffusion model ADM [11]
and StyleGAN2 [30], while VQ-based generative models
typically lag behind. Using SeQ-GAN as the VQ tok-
enizer enables our AR/NAR transformers with 171M pa-
rameters to surpass VIT-VQGAN [56], RQ-VAE [34], and
MoVQ [60], despite having fewer parameters. Our method
achieves comparable performance to ADM and StyleGAN2
on both FFHQ and LSUN datasets.

Model Params Steps FID IS

BigGAN-Deep [4] 160M 1 6.95 198.2
DCT [37] 738M >1024 36.51 -
Improved DDPM [38] 280M 250 12.26 -
ADM [11] 554M 250 10.94 101.0

VQ-VAE-2 [44] 13.5B 5120 31.11 ∼45
VQGAN [15] 1.4B 256 15.78 78.3
VIT-VQGAN [56] 714M 256 11.20 97.2
VIT-VQGAN [56] 1.7B 1024 4.17 175.1
RQ-VAE [34] 1.4B 1024 8.71 119.0
MoVQ + AR [60] 389M 1024 7.13 138.3

SeQ-GAN + AR 229M 256 7.55 121.3
SeQ-GAN + AR-L 364M 256 6.25 140.9

VQ-Diffusion [18] 370M 100 11.89 -
MaskGIT [6] 227M 8 6.18 182.1
MoVQ + NAR [60] 389M 12 7.22 130.1

SeQ-GAN + NAR 229M 12 4.99 189.1
SeQ-GAN + NAR-L 364M 12 4.55 200.4

Table 4. FID and Inception Score (IS) comparison of conditional
image generation on ImageNet [10].

4.3. Conditional Image Generation

We train AR and NAR transformers with our SeQ-GAN
tokenizer on 256×256 ImageNet generation. The model
is trained with a learning rate of 1e-4 for 300 epochs
to enable direct comparison with VIT-VQGAN [56] and
MaskGIT [6]. Further training settings can be found in the
supplementary material.

Results are summarized in Table. 4. Our SeQ-GAN+AR
(364M, 256 sample steps) achieves FID of 6.25 and IS of
140.9, a remarkable improvement over VIT-VQGAN [56]
(714M, 256 sample steps), which obtains 11.2 FID and 97.2
IS. Compared to MaskGIT [6], which obtains 6.18 FID, our
SeQ-GAN+NAR achieves a better 4.99 FID with a similar
sampling step and model size. Compared to MoVQ+NAR
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Model Dim Z K Usage rFID AR NAR

VQGAN 256 1024 43.5% 4.07 17.19 14.58

+ F&N 32 8192 99.7% 2.93 24.91 -
+ K-means 256 1024 100% 3.54 16.84 15.02
+ H(D̂) 256 1024 100% 3.45 16.97 13.26

Table 5. Ablation study of codebook regularization compared to
VQGAN [15] baseline and VIT-VQGAN [56] with factorized and
L2-normed code (F&N). K denotes the codebook size.

Loss re
lu
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2

re
lu
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2

re
lu

3
3

re
lu

4
3

re
lu
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3

lo
gi

t

rF
ID

A
R

N
A

R

Llow
per ✓ ✓ ✓ ✓ ✓ 3.45 16.97 13.26

A ✓ ✓ ✓ ✓ ✓ ✓ 3.01 15.19 11.78
B ✓ ✓ ✓ ✓ ✓ 2.93 14.47 11.58
C ✓ ✓ ✓ ✓ 2.81 14.08 10.52
D ✓ ✓ ✓ 2.62 13.34 9.56
Lsem
per ✓ ✓ 2.77 12.07 8.84

E ✓ 4.65 17.88 14.00

Table 6. Ablation of semantic-enhanced perceptual loss.

(389M, 12 sample steps), obtaining 7.22 FID and 130.1 IS,
our SeQ-GAN+NAR-L (364M, 12 sample steps) achieves
much better performance of 4.55 FID and 200.4 IS.

4.4. Ablation

Codebook regularization. We ablate the strategy for in-
creasing codebook usage in the baseline setting (one-phase
training with Lα=0

per ). As shown in Table. 5, although the
factorized and L2-normed codebook in VIT-VQGAN can
largely enhance the reconstruction fidelity, its large code-
book size results in a suboptimal performance on the AR
transformer. Moreover, optimizing the NAR transformer on
a large codebook size is unstable. Compared to the offline
K-means clustering used in previous codebook learning
[33], the entropy regularization used in our paper achieves
a better reconstruction and generation performance.
Design of semantic-enhanced perceptual loss. Our base-
line, Llow

per , utilizes all five layers to compute perceptual loss.
As shown in Table. 6, adding the logit feature improves both
rFID and generation FID. Variant-D achieves the best rFID,
while Lsem

per achieves the best generation FID. This demon-
strates that reconstruction fidelity does not necessarily cor-
relate with generation performance. Removing more shal-
low layers consistently improves generation quality, high-
lighting the importance of semantics when optimizing VQ
tokenizers for generation quality. However, adopting the
logit feature (variant-E) without the spatial feature results in
significantly worse performance. While adjusting the bal-
ance between details and semantics by removing different
perceptual layers is possible, it usually requires extensive
parameter tuning to match the loss scale. Instead, we fix
Llow
per and Lsem

per and simply tune the semantic ratio α in Eq. 3
to achieve our goal.

(a) Effect of 2nd-phase tokenizer learning on generation quality.

Model SeQ-GAN Im
ag

eN
et

FF
H

Q

C
hu

rc
h

C
at

B
ed

ro
om

AR 1st phase 7.83 - 3.49 4.73 2.15
2nd phase 7.55 - 2.45 3.61 1.44

NAR 1st phase 5.31 3.89 3.41 5.22 2.88
2nd phase 4.99 3.62 2.25 4.60 2.05

(b) Effect of 2nd-phase tokenizer learning on generation FID.

Figure 8. Ablation study on the impact of 2nd-phase tokenizer
learning on generation.

Influence of the second phase tokenizer learning. SeQ-
GAN is trained with semantic-enhanced perceptual loss
Lα=1
per in the first phase, which can result in some loss of

color fidelity and high-frequency details. However, by fine-
tuning the enhanced decoder in the second phase, those
details can be preserved for the generation. As shown in
Fig. 8(a), the second phase learning can restore color distor-
tion (e.g., windows). Furthermore, Fig. 8(b) shows that sec-
ond phase learning consistently improves generation FID.
It’s worth noting that joint learning the encoder/codebook
and an enhanced decoder degrades the generation perfor-
mance in our observation 1 (see Sec. 3.3.1). Therefore, the
decoder-only finetuning is an effective way to promote de-
tails preservation without degrading discrete latent space.

5. Conclusion
This work examines a fundamental question in VQ-based
generative models, “how the improved reconstruction of
VQ tokenizers affects the generation”. To answer this ques-
tion, we introduce a visualization pipeline to examine the
influence of different tokenizers on AR transformers. Based
on this pipeline, we find both semantic compression and de-
tails preservation should be considered in optimizing VQ
tokenizers, in which previous works prioritize the latter.
Based on this finding, we propose a simple solution SeQ-
GAN, which achieves remarkable improvement over exist-
ing VQ-based generative models on image synthesis.
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