
Backdoor Defense via Test-Time Detecting and Repairing

Jiyang Guan1,2, Jian Liang1,2, Ran He1,2*

1MAIS&CRIPAC, Institute of Automation, Chinese Academy of Sciences, China
2School of Artificial Intelligence, University of Chinese Academy of Sciences, China

guanjiyang2020@ia.ac.cn, liangjian92@gmail.com, rhe@nlpr.ia.ac.cn

Abstract

Deep neural networks have played a crucial part in
many critical domains, such as autonomous driving, face
recognition, and medical diagnosis. However, deep neural
networks are facing security threats from backdoor attacks
and can be manipulated into attacker-decided behaviors by
the backdoor attacker. To defend the backdoor, prior re-
search has focused on using clean data to remove backdoor
attacks before model deployment. In this paper, we inves-
tigate the possibility of defending against backdoor attacks
by utilizing test-time partially poisoned data to remove the
backdoor from the model. To address the problem, a two-
stage method TTBD is proposed. In the first stage, we pro-
pose a backdoor sample detection method DDP to iden-
tify poisoned samples from a batch of mixed, partially poi-
soned samples. Once the poisoned samples are detected,
we employ Shapley estimation to calculate the contribu-
tion of each neuron’s significance in the network, locate the
poisoned neurons, and prune them to remove backdoor in
the models. Our experiments demonstrate that TTBD re-
moves the backdoor successfully with only a batch of par-
tially poisoned data across different model architectures
and datasets against different types of backdoor attacks.

1. Introduction

Over the past years, deep neural networks have played a cru-

cial part in many critical domains, such as autonomous driv-

ing [36], face recognition [35], graph learning [43, 44] and

remote sensing [6, 9]. Despite their widespread use, deep

neural networks lack transparency, making them vulnerable

to different attacks [41]. This vulnerability leads to seri-

ous mistakes in security-related areas, causing significant

threats and concerns. Recent studies have proven that back-

door attacks [26, 46] pose a severe security threat to deep

neural networks. Backdoor attacks [8], taking advantage of

the overfitting of the deep neural networks, inject the back-

*Corresponding Author

door poisoned data with the small invisible triggers into the

model’s training dataset, and cause the model trained on that

to behave normally on clean samples but predict the wrong,

attacker-decided labels on the backdoor poisoned samples.

A wide variety of backdoor attacks [1, 4, 8, 28, 45] have

been proposed, and recent works such as WaNet [28] and

LF [45] add invisible backdoor triggers onto clean samples,

leading to more serious security threats.

To reduce the threats of backdoor attacks, numerous

backdoor defense methods have been proposed, which can

generally be classified into two categories: the training-

stage backdoor defense and the post-training backdoor de-

fense (model repairing backdoor defense). Because train-

ing deep neural networks is an expensive process that re-

quires significant data collection and computational re-

sources, training on the cloud and directly using third-party

well-trained models have become increasingly popular, and

thus, in this paper, we mainly focus on the model repairing

backdoor defense. The model repairing backdoor defense

usually involves retraining [37] or pruning [25, 40] to re-

move backdoor based on the clean data, for example, by us-

ing 5% of clean samples from the training dataset. Previous

works have mainly focused on repairing poisoned models

before model deployment with certified clean data, while in

this work, we investigate whether the backdoor defense can

be performed with partially-poisoned test-time data by the

defender.

In this setting, the defenders have access to the mixture

of both the clean samples and the backdoor poisoned sam-

ples, or in other words, the partially poisoned data. While

the poisoned samples in the mixed, partially poisoned data

can help remove backdoor, detecting them accurately poses

a significant challenge. Moreover, since poisoned sample

detection can not be entirely accurate, there may be some

clean samples mixed with the detected poisoned samples,

which presents another challenge for backdoor removal. As

for the backdoor poisoned sample detection, TeCo [26] is

a state-of-the-art backdoor sample detection method that

leverages sample corruption robustness consistency to dis-

tinguish between poisoned and clean samples. However,

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

24564

TeCo is sensitive to different model architectures and can-

not successfully distinguish poisoned data from clean data

on some model architectures such as VGG [32], causing

problems to backdoor removal. To overcome it, we propose

a novel backdoor detection method called Detection Dur-

ing Pruning (DDP), which can accurately detect poisoned

samples across different model architectures. After poi-

soned data detection, we propose a Shapley-based backdoor

cleanse method, which can tolerate imprecise backdoor de-

tection. Our experiments demonstrate that our two-stage

backdoor defense framework Test-Time Backdoor Defense

(TTBD) 1 can remove backdoor using only a small batch of

partially poisoned data (100 images) and remove backdoor

in models with only a small decrease in accuracy across 3

common model architectures and 3 common datasets facing

7 different types of backdoor attacks.

Our contributions are summarized as follows:

• We introduce a realistic scenario of removing the back-

door from models with test-time partially poisoned data,

offering a new perspective on backdoor defense.

• We propose a novel two-stage backdoor defense frame-

work TTBD, which detects the poisoned samples at test

time and then uses Shapley estimation to guide poisoned

neuron pruning.

• The experiments demonstrate that TTBD removes back-

door successfully with only a batch of partially poisoned

data across different model architectures and datasets fac-

ing various attacks.

2. Related Work

2.1. Backdoor Attack

Backdoor attacks usually inject poisoned label-flipped sam-

ples with the attacker-decided backdoor triggers into the

model training dataset and cause the poisoned model trained

on that to behave normally on clean samples but be ma-

nipulated on the poisoned samples. The first and most fa-

mous backdoor attack is BadNets [8], which injects a small

square at the corner of the image as the backdoor trigger,

leading to the model’s misclassification on the triggered

samples. To make the backdoor trigger more invisible, the

following works leverage strategies such as blending [4],

natural reflection [27], low frequency [45] and encoder-

decoder framework [20] to design the invisible backdoor

triggers. Furthermore, to make backdoor attacks more flex-

ible and convert, the multi-target and multi-triggers attacks

have been proposed [42, 47].

1In our paper, TTBD means leveraging unlabeled test data (containing

unknown backdoor data) to mitigate the backdoor neurons, while, existing

post-training backdoor defense leverages clean data to remove backdoors.

Additionally, the main similarity between TTBD and post-training back-

door defense lies in updating models to remove backdoor.

2.2. Training-Stage Backdoor Defense

Under this setting, the defenders have access to the training

dataset and are able to control the model training process,

so that they can detect and filter the poisoned data or add

restrictions to suppress the overfitting of backdoor during

the training process [47]. The backdoor samples, as outliers

of the training dataset, have different representation statics

in the feature space and different sensitivity to image trans-

formation, and thus the defenders make use of these dif-

ferences to filter out the poisoned samples in the training

dataset [5, 15, 16]. Other methods leverage restriction to

model training to weaken the influence of backdoor sam-

ples during the training process [21, 30, 33].

2.3. Post-Training Backdoor Defense

With the rise of machine learning as a service (MLass) in

recent years, users can leverage third-party models directly

without training models by themselves [10]. However, these

models may be poisoned, which poses a significant threat

to the users. Under such circumstances, defenders need

to remove backdoors from the models without having ac-

cess to the training dataset or training process. Most post-

training backdoor defense methods leverage clean labeled

data to prune backdoor neurons [11, 25], reverse the back-

door trigger and unlearn it [3, 12, 37, 48], adversarially ac-

tivate backdoor neurons [40], and distillate neural attention

[22, 31] to remove backdoor. All these methods defend

against the backdoor before the model deployment and ne-

glect the backdoor defense with partially-poisoned test-time

data. During test time, the defender can only get access to

the partially poisoned data and how to use it to remove the

backdoor in the deployed models is still a problem.

There are a few sample-oriented backdoor defense meth-

ods during test time [19, 34]. However, both of them only

focus on eliminating triggers from samples and do not re-

pair the backdoor models, which causes the model to pro-

cess detection or elimination on each sample and affects

the model’s inference speed a lot. Additionally, sample-

level trigger elimination requires a pre-trained autoencoder,

which restricts its applicability and scope of use. Since

backdoor behavior is typically due to the overfitting of the

backdoor trigger and the specific target label in models, re-

pairing at the model level is generally more effective. Our

TTBD removes the backdoor by repairing the model using

only one batch of test-time partially poisoned samples.

2.4. Test-Time Adaptation

Test-Time Adaptation (TTA) [24] holds significant impor-

tance within the area of Domain Adaptation (DA). In some

situations where source training data is not available, Test-

Time Adaptation leverages test-time data in the target do-

main to adapt the models without access to training data,

garnering considerable attention. Generally, existing TTA

24565

DDP Detection

A batch of Partially
Poisoned Images Prune according

to Activation

PCS

DDP Detection

TeCo Detection

Image Augmentation

CRC

Framework of TTBD

Shapley Estimation

ASR ShapleyACC Shapley

Prune

Clean Model

Poisoned
Model

Stage 1 Stage 2

Model Owner

Inference
Stage

Poisoned
Model

Figure 1. Framework of TTBD. Samples and models in the red broader represent poisoned samples and models, and samples and models

in the green broader represent clean samples and models.

methods make use of strategies such as mutual informa-

tion maximization and pseudo-label training [23], and en-

tropy minimization [38] to adapt to the target domain. In-

spired by TTA, removing the backdoor from the pre-trained

models with test-time data is also important. Especially, in

some cases, only the potentially partially poisoned test data

is available.

3. Proposed Method
3.1. Problem Definition

We consider a realistic scenario in which the defender seeks

to remove backdoor attacks in models at test time. In this

scenario, the attackers attempt to use the poisoned data to

attack the defenders’ backdoor models, and intuitively, the

defenders are able to make use of those poisoned data to re-

move the backdoor in their models. However, the attackers

typically do not use the fully poisoned data to avoid sus-

picion of the defenders. Thus in most cases, the defenders

are provided partially poisoned data which mixes the clean

samples and the poisoned samples. Then how the defenders

use the partially poisoned data to remove the backdoor is a

challenging problem.

3.2. Poisoned Sample Detection

During test time, the defenders only have access to partially

poisoned samples and we hope the defenders remove the

backdoor from the models with only a batch of partially poi-

soned images. To solve this backdoor removal problem, we

propose a two-stage backdoor defense method. Intuitively,

the first step of backdoor removal is to use poisoned sample

detection to distinguish the poisoned samples from clean

samples. And then, the defenders leverage these detected

poisoned samples to remove the backdoor from the back-

door models. An overview of our framework is shown in

Figure 1. In this subsection, we focus on the first stage of

TTBD. To be specific, we review a SOTA detection method

TeCo, and propose our backdoor sample detection method

DDP.

� Detection with TeCo. TeCo [26] is a state-of-the-art

backdoor detection method, which utilizes samples’ corrup-

tion robustness consistency to distinguish between the poi-

soned samples and the clean samples. To be specific, TeCo

conducts Corruption Robust Consistency (CRC) as the de-

tection indicator, expressed as:

CRC = deviation(Severity),

Severity = [sev1, · · · sevi, · · · sevn]
(1)

where sevi represents the recorded severity for the i-th type

of corruption. However, TeCo has some limitations, such

as being sensitive to different model architectures. It fails

when faced with certain model architectures, such as VGG.

To deal with the problem, we propose a new poisoned sam-

ple detection method called DDP.

� Detection with DDP. The previous backdoor detection

method TeCo has used the difference in sensitivity between

poisoned and clean samples to image transformations as a

means of distinguishing between them. According to pre-

vious works [25], another difference between poisoned and

24566

clean samples is that poisoned samples activate backdoor

neurons, while clean samples do not. Therefore, the defend-

ers can make use of the difference in backdoor activation to

distinguish the poisoned and clean samples. Pruning neu-

rons with the highest activation value among the poisoned

samples will help remove backdoor in models and when the

defenders are given a batch of partially poisoned samples,

they can use the activation of each sample in the batch to

guide the pruning process and remove backdoor attacks in

the model. For poisoned samples, pruning neurons with the

highest activation value results in a sharp decrease in the

model’s ASR, leading to changes in predictions for both

normal and poisoned samples. However, for clean sam-

ples, pruning neurons with the highest activation value only

causes changes in the normal samples. Therefore, we use

the Prediction Change Score (PCS) as an indicator of poi-

soned sample detection. Poisoned samples typically exhibit

a higher PCS than clean samples, and PCS is expressed as:

PCS =
1

n

n∑

i=1

�(ˆpredictioni �= predictioni) (2)

where predictioni represents the original model’s predic-

tion on the i-th sample and ˆpredictioni represents the

pruned model’s prediction on the i-th sample. To prevent

the accuracy of the model from influencing the PCS, prun-

ing is early stopped when the accuracy of the model drops

below a certain threshold. Pruning based on samples’ ac-

tivation value is an intuitive way to remove backdoor in

models and detect poisoned samples. However, in our set-

ting, only one sample is used at a time for activation es-

timation and poisoned neuron location, which reduces the

performance of backdoor removal using the poisoned sam-

ples’ activation. To address this limitation, we calculate the

Shapley value of the neurons using the whole batch of par-

tially poisoned samples as the indicator of neurons which

are important to both clean and backdoor samples and prune

the neurons with the top-k activation values and the bottom-

l Shapley values. This approach provides a more accurate

measure of the importance of each neuron in the neural net-

work and can effectively locate the poisoned neurons. The

calculation of the Shapley value and its effectiveness will be

discussed in the following section.

� How to detect under extremely low poising rates? In

some cases, the attackers may feed the backdoor samples

sparsely (some of the batches are totally clean) during the

inference time or attack at a very low poisoning rate to avoid

the defenders’ detection. In these cases, defenders have

the capacity to aggregate images from multiple batches and

subsequently remove the backdoor. When confronted with

such minimal instances of poisoning, defenders leverage a

combination of techniques including TeCo and DDP as a

dual detection approach to enhance the accuracy of detec-

tion. Then the defenders leverage the TTBD framework to

remove the backdoor from the models. TTBD-SPARSE in

Table 6 demonstrates that the defenders remove backdoor

successfully by aggregating images from 20 batches of im-

ages when the attackers attack with a very low poisoning

rate 1% and sparsely (some of the batches are totally clean).

3.3. Backdoor Removal with Shapley Value

Typically, only a small portion of the total neurons in

a model act as backdoor neurons, which are activated

only when poisoned samples are provided. After pruning

these poisoned neurons, the backdoor behavior is removed

[25]. Neurons’ activation value is the most commonly used

method in locating poisoned neurons and the defenders can

prune neurons to remove the backdoor according to their

activation value [25, 37]. However, the neuron’s activation

value is not accurate and some of the normal neurons also

have a larger activation value and it will get worse when the

number of samples is small. Thus, it is vital to locate poi-

soned neurons in a more accurate way. In this subsection,

we leverage Shapley value to locate poisoned neurons and

remove the backdoor according to it.

� Shapley Value. In deep neural networks, there are thou-

sands of neurons and complex interactions between them,

making it challenging to quantify their contributions to the

model’s output. Shapley value, as an important concept in

game theory, can allocate each player’s contribution to the

outcome [7]. Shapley value is calculated by the average of

each player’s marginal value, and Shapley value of player i
is expressed as [2]:

φi =
1

n

∑

S⊂N\i
PS · (V (S ∪ i)− V (S)) (3)

where V represents the performance metric, N =
[1, 2 · · ·n] represents all n players, S represents a subset

of N having s players, and PS = (n−s−1)!s!
(n−1)! represents S’s

relative importance. In deep neural networks, each player

in Equation 3 can be seen as a neuron in the model, and

the performance metric V can be used to represent accu-

racy (ACC) or attack success rate (ASR) in backdoor de-

fense tasks. Please note that during test time, the partially

poisoned samples are unlabeled. To address this issue, our

method employs the predicted label of the original model as

the label for these samples.

� Estimating Shapley Value. Because deep neural net-

works have thousands of neurons, directly calculating Shap-

ley value is time-consuming. To accelerate Shapley calcula-

tion, two Shapley estimation acceleration methods are pro-

posed [7, 11]. First is Monte-Carlo estimation. From Equa-

24567

Attack Before FP [25] ANP [40] DBD [16] TTBD-TeCo TTBD-DDP

(%) ACC ASR ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓
BadNet [8] 91.23 90.22 91.58 51.52 86.09 1.79 78.09 2.99 88.57 1.17 88.50 2.51
Blended [4] 93.76 94.88 93.48 94.14 86.92 37.01 70.18 8.04 86.00 3.00 88.53 2.24
SIG [1] 91.45 91.47 92.17 94.57 86.26 25.04 75.01 67.82 88.42 2.17 89.59 2.77
LF [45] 93.76 86.74 93.30 87.37 84.76 17.78 79.13 7.47 90.28 2.05 90.47 2.72
WaNet [28] 91.48 89.91 91.55 0.20 88.36 0.66 80.90 6.61 91.58 0.49 91.07 0.78
IAB [29] 91.09 90.61 92.15 82.06 90.68 4.09 69.66 14.36 88.69 1.77 88.47 1.97
SSBA [20] 93.43 73.44 93.34 52.76 91.68 2.19 78.52 1.13 91.94 0.17 91.09 3.28
Average 92.31 88.18 92.51 66.09 87.82 12.65 75.93 15.49 89.35 1.55 89.67 2.32

Table 1. Defense methods against common attacks on PreAct-ResNet18 using CIFAR10.

Attack Before FP [25] ANP [40] DBD [16] TTBD-TeCo TTBD-DDP

(%) ACC ASR ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓
BadNet [8] 90.53 84.45 90.35 79.58 − − 57.54 2.48 88.50 84.97 87.11 1.63
Blended [4] 90.81 88.31 90.62 87.90 − − 55.24 6.21 86.78 89.73 86.97 4.81
SIG [1] 90.75 82.93 90.60 83.46 − − 55.92 0.00 88.38 83.95 89.48 2.64
LF [45] 88.88 93.43 88.79 92.39 − − 56.83 10.21 86.61 88.18 87.04 1.68
WaNet [28] 89.29 85.63 89.67 72.07 − − 55.80 15.22 88.24 1.38 88.58 1.82
IAB [29] 89.24 71.79 89.73 77.43 − − 57.21 13.10 86.15 20.30 84.77 3.92
SSBA [20] 89.66 91.28 89.59 88.97 − − 58.45 12.20 87.51 90.63 89.02 1.98
Average 89.88 85.40 89.91 83.11 − − 56.71 8.49 87.45 65.59 87.57 2.64

Table 2. Defense methods against common attacks on VGG19 using CIFAR10.

tion 3, Shapley value can also be expressed as the average

of the marginal value of neurons in all possible orders, ex-

pressed as [2]:

φi = Eπ∈Π(V (Si
π ∪ i)− V (Si

π)) (4)

where π represents a random permutation of neurons, Π
represents permutation set of all neurons, and Si

π represents

neurons after neuron i in permutation. With Equation 4,

we use Monte-Carlo estimation to estimate Shapley value.

Furthermore, when pruning neurons during Shapley estima-

tion, models’ ACC and ASR will decrease to near zero after

pruning only a small number of neurons, and the marginal

values after that are negligible. Thus we can early stop this

pruning process to promote estimation efficiency. In our

experiments, we set a threshold for model pruning, and if

the models’ performance decreases under this threshold, the

pruning is early stopped and another new permutation prun-

ing begins. In our experiments, we estimate neurons’ Shap-

ley value with only 40 average iterations, which is accurate

enough for locating the poisoned neurons.

� Backdoor Removal. The Shapley value estimated

above indicates the relative importance of neurons to the

performance of the model and can be used by defenders to

guide neuron pruning. Intuitively, facing the partially poi-

soned sample situation, the defenders leverage the detected

poisoned samples and the labels that the original model pre-

dicts to estimate the model’s ASR Shapley value. While the

Shapley value is more accurate than model activation, di-

rectly pruning the top ASR Shapley value neurons can cause

a sharp decrease in accuracy. This is due to the fact that

the detected poisoned samples may contain normal samples,

and the number of poisoned samples is often small. To ad-

dress this issue, we estimate the Shapley value of ACC us-

ing the entire batch of samples and select neurons with both

the top-k ASR Shapley value and the bottom-m ACC Shap-

ley value. Additionally, to prevent neurons from having a

small Shapley value due to having both large positive and

negative marginal values, we improve Equation 4 and use

the mean of the absolute values of the marginal values as

the absolute Shapley value, which is expressed as follows:

φ̂i = Eπ∈Π|V (Si
π ∪ i)− V (Si

π)| (5)

where φ̂i represents the absolute Shapley value, and | · | rep-

resents the absolute value. Pruning neurons with top-k ASR

Shapley value and bottom-m ACC absolute Shapley value,

our proposed method locates the poisoned neurons accu-

rately and removes the backdoor with only a small accuracy

decrease, only leveraging a batch of partially poisoned data,

without the need of fine-tuning the model with clean sam-

ples.

4. Experiment
4.1. Setup

� Datasets and Model Architectures. We evaluate var-

ious backdoor defense methods on three common datasets

used in backdoor defense, CIFAR10, CIFAR100 [17], and

Tiny-ImageNet [18]. Furthermore, following the Backdoor-

Bench [39], we also evaluate all backdoor defense methods

on three common model architectures, PreAct-ResNet18

[13], VGG19 [32], and DenseNet161 [14].

24568

Attack Before FP [25] ANP [40] DBD [16] TTBD-TeCo TTBD-DDP

(%) ACC ASR ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓
BadNet [8] 55.17 99.91 50.13 99.86 49.83 0.07 44.12 98.89 49.42 2.83 53.24 0.25
Blended [4] 55.03 99.78 49.75 99.39 50.38 96.02 44.51 100.00 47.86 3.75 48.92 7.89
LF [45] 54.93 98.91 50.37 98.26 49.48 94.44 43.80 98.67 51.43 1.81 50.51 0.77
WaNet [28] 46.98 98.00 48.35 73.03 44.98 1.36 44.00 99.71 46.92 0.48 47.00 0.60
IAB [29] 57.75 99.29 55.25 65.88 54.49 0.22 45.42 97.93 57.19 1.19 47.63 0.91
SSBA [20] 56.02 98.16 51.54 85.81 52.84 84.57 44.40 99.85 52.92 2.65 53.43 2.21
Average 54.31 99.01 50.90 87.04 50.33 46.11 44.38 99.18 50.96 2.12 50.12 2.11

Table 3. Defense methods against common attacks on PreAct-ResNet18 using Tiny-ImageNet.

Attack TTBD-5% TTBD-10% TTBD-20%
(%) ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓
BadNet [8] 84.67 3.68 87.11 1.63 88.30 1.60
Blended [4] 82.34 5.96 86.97 4.81 85.32 1.94
SIG [1] 88.61 0.99 89.48 2.64 89.23 0.98
LF [45] 88.02 2.28 87.04 1.68 88.18 1.92
WaNet [28] 88.35 3.54 88.58 1.82 88.47 1.46
IAB [29] 87.93 1.28 84.77 3.92 86.22 1.67
SSBA [20] 89.14 1.80 89.02 1.98 88.04 2.58
Average 87.00 2.79 87.57 2.64 87.68 1.74

Table 4. Performance of TTBD-DDP with different poisoning

rates.

Attack TTBD-50 TTBD-100 TTBD-200

(%) ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓
BadNet [8] 85.30 1.24 87.11 1.63 88.42 1.26
Blended [4] 86.07 4.40 86.97 4.81 87.09 2.95

SIG [1] 88.68 1.87 89.48 2.64 89.50 1.00
LF [45] 87.42 2.21 87.04 1.68 87.73 2.82

WaNet [28] 86.77 5.44 88.58 1.82 87.69 2.53
IAB [29] 86.10 1.46 84.77 3.92 86.02 1.47

SSBA [20] 87.82 1.71 89.02 1.98 89.14 2.36
Average 86.88 2.62 87.57 2.64 87.94 2.06

Table 5. Performance of TTBD-DDP with different batch sizes.

� Attack Settings. We consider 7 popular state-of-the-art

backdoor attacks: BadNets [8], Blended [4], SIG [1], LF

[45], WaNet [28], IAB [29],and SSBA [20]. We follow the

default configuration in BackdoorBench [39] for a fair com-

parison. As for the poisoning rate, to test different defense

methods’ performance on different poisoning rates, we set

the poisoning rate to 1% for CIFAR10 and 10% for Tiny-

ImageNet. To ensure the integrity of our experiments, we

set the poisoning rate to 10% for WaNet on CIFAR10 using

both PreAct-ResNet and VGG, and for LF and SSBA on

CIFAR10 using VGG, as these attacks are not able to suc-

cessfully inject a backdoor at 1% poisoning rate (1% poi-

soning rate injection causes a very low ASR). Additionally,

since SIG cannot perform an attack on Tiny-ImageNet with

poisoning rates of either 1% or 10%, we did not use SIG on

Tiny-ImageNet.

� Defense Settings. We compare our method with pre-

vious state-of-the-art model-repairing-based backdoor de-

fense methods, including Fine Pruning (FP) [25] and Ad-

versarial Neuron Pruning (ANP) [40]. Additionally, to fully

verify the effectiveness of our method, we also include a

state-of-the-art training-stage backdoor defense, DBD [16].

We follow the default configuration in BackdoorBench [39]

for a fair comparison. To ensure the effectiveness of the

compared backdoor defense methods, following Backdoor-

Bench, we have specified that FP and ANP have access to

5% of the benign training data, and DBD can access the full

poisoned training dataset and control model’s training pro-

cess. Additionally, we also compare with ShapPruning [11]

in Appendix. We set the partially poisoned data’s poison-

ing rate to 10% in our TTBD method, and the image batch

used in TTBD only consists of 100 partially poisoned sam-

ples. Furthermore, we study the influence of the poisoning

rates and the batch sizes on our TTBD’s performance in the

influence of poisoning rates and batch sizes subsection. Ad-

ditionally, for poisoned sample detection, we have selected

the top 10 detected samples in TeCo and the top 6 detected

samples in DDP as our identified poisoned samples. We

have used these samples to estimate the ASR Shapley value

of neurons and remove the backdoor in the models.

� Evaluation Metric. We use two commonly used met-

rics to measure the effectiveness of different backdoor de-

fense methods: accuracy on clean samples (ACC) and at-

tack success rate on poisoned samples (ASR). The ultimate

goal of defenders is to leverage various methods to achieve

a no-backdoor model with high ACC and low ASR.

4.2. Experiment Results

Tables 1, 2, and 3 demonstrate the performance of TTBD-

TeCo and TTBD-DDP across different model architectures

(PreAct-ResNet18 and VGG19) and datasets (CIFAR10 and

Tiny-ImageNet), as evaluated against 7 different state-of-

the backdoor attacks. Additionally, we have also con-

ducted experiments on DenseNet161 and CIFAR100 in Ap-

pendix. In the tabeles, Before represents the original back-

door model without model defense mechanisms, while FP,

ANP, DBD, TTBD-TeCo, and TTBD-DDP represent the re-

paired model with the specific backdoor defense. In most

cases, our TTBD backdoor defense methods remove back-

24569

Attack(%) BadNet [8] Blended [4] SIG [1] LF [45] WaNet [28] IAB [29] SSBA [20] Average

Before
ACC 91.23 93.76 91.45 93.76 91.48 91.09 93.43 92.31

ASR 90.22 94.88 91.47 86.74 89.91 90.61 73.44 88.18

TTBD-SPARSE
ACC 83.05 84.88 88.27 83.69 87.33 82.69 81.62 84.50

ASR 9.67 8.98 1.50 7.60 0.89 6.97 4.28 5.70

Table 6. Performance of TTBD under extremely low poisoning rate.

door in models with a small decline in accuracy (around 2%
average accuracy decline on CIFAR10). In Table 2, because

ANP can not work on VGG (VGG19 model does not have

batch normalization layers), we use ’-’ to fill in the blank.

Due to the possibility of detection errors in some samples

during TeCo and DDP, a small percentage of poisoned sam-

ples may be mistakenly identified as clean samples. This

makes it difficult for the defender to fine-tune the model us-

ing the detected clean samples directly, as the presence of

even a very small percentage of poisoned samples can lead

to the backdoor being retained in the model. Typically, most

previous model repairing backdoor defense methods need

clean samples to fine-tune the backdoor model and main-

tain the models’ accuracy. Although without clean samples

to fine-tune the model, our TTBD-TeCo and TTBD-DDP

can effectively remove the backdoor by pruning a small per-

centage of neurons, and our backdoor removal procedure re-

moves the backdoor (using top-k ASR Shapley values) with

a small decline in accuracy (using bottom-m ACC absolute

Shapley values). In Table 3, there is a slightly greater de-

crease in accuracy on Tiny-ImageNet by our TTBD-based

methods compared with the results on CIFAR10. This is

due to the lack of fine-tuning with clean data, as models

trained on Tiny-ImageNet have fewer redundant neurons

than models trained on CIFAR10. And if the defender can

obtain access to some clean samples for fine-tuning, the

accuracy of the models can be recovered. While TTBD-

TeCo and TTBD-DDP yield comparable backdoor defense

results on PreAct-ResNet using both CIFAR10 and Tiny-

ImageNet, TTBD-TeCo is not effective on VGG models.

This is because TeCo’s detection is sensitive to variations in

model architectures, resulting in an AUC of approximately

0.5 on VGG models. In contrast, TTBD-DDP successfully

removes backdoor attacks across various model architec-

tures and datasets with pruning a very small portion of neu-

rons.

On the other hand, the compared methods have their

weaknesses and are not as successful in removing backdoor

attacks from models. For instance, FP [25] fails because

neuron activation is not an accurate way to identify the poi-

soned neurons. As a result, pruning neurons based on the

smallest activation is unable to pinpoint and eliminate the

poisoned neurons responsible for the backdoor attack. Ad-

ditionally, ANP [40] leverages neurons which are sensitive

to adversarial training and masks them, but this approach

leads to significant accuracy reductions in the models. DBD

[16] leverages self-supervised learning to train backbone

models, train the fully connected layers, and removes labels

of low-credit samples to fine-tune the source models. Table

1 demonstrates that while DBD is able to remove backdoors

from the models, the accuracy of the resulting models is sig-

nificantly lower than the accuracy of the original backdoor

models. In comparison, TTBD-DDP reduces the backdoor

to an average ASR of 2.32% with only a 2.64% accuracy

decrease, and TTBD-TeCo reduces the backdoor to an av-

erage ASR of 1.55% with only a 2.96% accuracy decrease

on PreAct-ResNet18 using CIFAR10.

4.3. Sensitivity Analysis

In this subsection, we analyze the influence of different poi-

soning rates and batch sizes on TTBD-DDP on VGG19 us-

ing CIFAR10. Table 4 demonstrates TTBD-DDP’s perfor-

mance across different poisoning rates of the partially poi-

soned image batch. Specifically, TTBD-5%, TTBD-10%,

and TTBD-20% represent TTBD-DDP’s performance us-

ing the image batch with 5%, 10%, and 20% poisoning

rates, respectively, with the batch size of 100. With the in-

crease of the poisoning rates, TTBD-DDP’s performance

rises and TTBD-DDP removes different types of backdoor

attacks with a low poisoning rate. Table 5 demonstrates

TTBD-DDP’s performance across different batch sizes of

the image batch, where TTBD-50, TTBD-100, and TTBD-

200 represent TTBD-DDP’s performance using 50, 100,

200 partially poisoned samples with the poisoning rate of

10%. With the increase of the batch sizes, TTBD-DDP’s

performance rises and TTBD-DDP removes all the seven

backdoor attacks with only 50 partially poisoned samples.

We also consider a sparse condition for the backdoor at-

tackers, where they poison at a very low poisoning rate, and

only some of the batches are poisoned. Following TTBD-

SPARSE in 3.2, we leverage DDP and TeCo as a dual detec-

tion method to detect and remove backdoor, and the results

are demonstrated in Table 6. TTBD-SPARSE represents the

defenders removing the backdoor by aggregating 20 batches

of images and leveraging TeCo and DDP as a dual detection

approach when the attackers attack with a very low poison-

ing rate 1% and sparsely (some of the batches are totally

clean).

4.4. Ablation Study

In this subsection, we will take poisoned sample detection

and backdoor neuron locating into consideration to validate

24570

(a) DDP-BadNet (b) DDP-Blended (c) DDP-SIG (d) DDP-LF (e) DDP-WaNet

(f) TeCo-BadNet (g) TeCo-Blended (h) TeCo-SIG (i) TeCo-LF (j) TeCo-WaNet

Figure 2. TTBD’s ACC and ASR fluctuation during neuron pruning on VGG19. Red lines represent ASR and blue lines represent ACC.

Attack Before TTBD-RAND TTBD-ACT TTBD-DDP

(%) ACC ASR ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓
BadNet [8] 91.23 90.22 82.30 10.90 88.58 51.53 88.50 2.51
Blended [4] 93.76 94.88 85.29 92.90 88.65 3.28 88.53 2.24
SIG [1] 91.45 91.47 82.92 81.08 83.30 18.10 89.59 2.77
LF [45] 93.76 86.74 85.56 91.88 85.32 35.74 90.47 2.72
WaNet [28] 91.48 89.91 83.21 78.78 91.02 0.50 91.07 0.78
IAB [29] 91.09 90.61 82.09 92.63 89.95 1.47 88.47 1.97
SSBA [20] 93.43 73.44 84.71 8.42 90.35 3.97 91.09 3.28
Average 92.31 88.18 83.73 65.23 88.17 16.37 89.67 2.32

Table 7. Ablation study against five common attacks on PreAct-ResNet18 using CIFAR10.

our method’s effectiveness. In Table 7, TTBD-RAND rep-

resents randomly selecting samples from the partially poi-

soned samples and using Shapley estimation to prune the

poisoned neurons, and TTBD-ACT represents leveraging

samples detected by DDP and using neurons’ activation to

locate poisoned neurons. Randomly chosen samples are not

relevant to the backdoor behavior, and thus, the models after

TTBD-RAND have an average 22.95% ASR decrease but

also have an average 8.58% ACC decrease. Additionally,

due to the fact that neurons’ activation on poisoned samples

does not directly correspond to their importance in terms of

ASR, the TTBD-ACT approach exhibits a lower ACC-ASR

compared to TTBD-TeCo and TTBD-DDP when facing dif-

ferent types of attacks. Moreover, the presence of clean

samples mixed in with the detected poisoned samples and

the limited number of detected samples present challenges

for TTBD-ACT. As a result of these factors, TTBD-ACT

is unable to completely remove the backdoor effect in the

models, and the average ASR remains at 16.37%.

5. Conclusion and Limitation

This paper introduces a backdoor defense framework lever-

aging test-time data called TTBD, which leverages a two-

stage framework to detect and remove the backdoor from

the poisoned models with only a batch of partially poisoned

samples. To detect the poisoned samples from the partially

poisoned data, a backdoor sample detection method DDP

is proposed. DDP leverages the prediction changes dur-

ing pruning to accurately detect poisoned samples. After

poisoned sample detection, we leverage Shapley estimation

to prune the backdoor-related neurons. Using the TTBD

framework, two methods, TTBD-DDP and TTBD-TeCo,

successfully remove seven state-of-the-art backdoor attacks

using only a batch of partially poisoned data across differ-

ent model architectures and datasets. Furthermore, TTBD

demonstrates the ability to remove backdoor in models with

varying batch sizes or poisoning rates. Considering that the

performance of TTBD is influenced by the accuracy of poi-

soned sample detection, and DDP can be further improved,

our future research will focus on developing more precise

methods for detecting poisoned samples.

6. Acknowledgement

This work was funded by the National Natural Science

Foundation of China (Grant No U21B2045, U20A20223,

32341009). This work was also funded by the Na-

tional Natural Science Foundation of China under Grant

62276256, the Beijing Nova Program under Grant

Z211100002121108, and the Young Elite Scientists Spon-

sorship Program by CAST.

24571

References
[1] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new

backdoor attack in cnns by training set corruption without

label poisoning. In Proc. ICIP, pages 101–105. IEEE, 2019.

1, 5, 6, 7, 8

[2] Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial

calculation of the shapley value based on sampling. Com-
puters & Operations Research, 36(5):1726–1730, 2009. 4,

5

[3] Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushan-

far. Deepinspect: A black-box trojan detection and mitiga-

tion framework for deep neural networks. In Proc. IJCAI,
2019. 2

[4] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn

Song. Targeted backdoor attacks on deep learning systems

using data poisoning. arXiv preprint arXiv:1712.05526,

2017. 1, 2, 5, 6, 7, 8

[5] Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranas-

inghe. Februus: Input purification defense against trojan

attacks on deep neural network systems. In Proc. ACSAC,

pages 897–912, 2020. 2

[6] Zhe Dong, Yanfeng Gu, and Tianzhu Liu. Generative

convnet foundation model with sparse modeling and low-

frequency reconstruction for remote sensing image interpre-

tation. TGARS, 2024. 1

[7] Amirata Ghorbani and James Zou. Neuron shapley: Discov-

ering the responsible neurons. In Proc. ICLR, 2020. 4

[8] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-

nets: Identifying vulnerabilities in the machine learning

model supply chain. arXiv preprint arXiv:1708.06733, 2017.

1, 2, 5, 6, 7, 8

[9] Yanfeng Gu, Yanyuan Huang, and Tianzhu Liu. Intrin-

sic decomposition embedded spectral unmixing for satellite

hyperspectral images with endmembers from uav platform.

TGARS, 2023. 1

[10] Jiyang Guan, Jian Liang, and Ran He. Are you stealing

my model? sample correlation for fingerprinting deep neural

networks. In Proc. NeurIPS, 2022. 2

[11] Jiyang Guan, Zhuozhuo Tu, Ran He, and Dacheng Tao. Few-

shot backdoor defense using shapley estimation. In Proc.
CVPR, pages 13358–13367, 2022. 2, 4, 6

[12] Wenbo Guo, Lun Wang, Yan Xu, Xinyu Xing, Min Du, and

Dawn Song. Towards inspecting and eliminating trojan back-

doors in deep neural networks. In Proc. ICDM, pages 162–

171, 2020. 2

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In Proc. ECCV,

pages 630–645. Springer, 2016. 5

[14] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proc. CVPR, pages 4700–4708, 2017. 5

[15] Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, and

James Bailey. Distilling cognitive backdoor patterns within

an image. In Prco. ICLR, 2022. 2

[16] Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui

Ren. Backdoor defense via decoupling the training process.

In Proc. ICLR, 2022. 2, 5, 6, 7

[17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 5

[18] Ya Le and Xuan Yang. Tiny imagenet visual recognition

challenge. CS 231N, 7(7):3, 2015. 5

[19] Xi Li, Zhen Xiang, David J Miller, and George Kesidis. Test-

time detection of backdoor triggers for poisoned deep neural

networks. In Proc. ICASSP. IEEE, 2022. 2

[20] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran

He, and Siwei Lyu. Invisible backdoor attack with sample-

specific triggers. In Proc. ICCV, pages 16463–16472, 2021.

2, 5, 6, 7, 8

[21] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,

and Xingjun Ma. Anti-backdoor learning: Training clean

models on poisoned data. In Proc. NeurIPS, pages 14900–

14912, 2021. 2

[22] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li,

and Xingjun Ma. Neural attention distillation: Erasing back-

door triggers from deep neural networks. In Proc. ICLR,

2021. 2

[23] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need

to access the source data? source hypothesis transfer for un-

supervised domain adaptation. In Proc. ICML, pages 6028–

6039, 2020. 3

[24] Jian Liang, Ran He, and Tieniu Tan. A comprehensive sur-

vey on test-time adaptation under distribution shifts. arXiv
preprint arXiv:2303.15361, 2023. 2

[25] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-

pruning: Defending against backdooring attacks on deep

neural networks. In Proc. RAID, pages 273–294, 2018. 1,

2, 3, 4, 5, 6, 7

[26] Xiaogeng Liu, Minghui Li, Haoyu Wang, Shengshan Hu,

Dengpan Ye, Hai Jin, Libing Wu, and Chaowei Xiao. Detect-

ing backdoors during the inference stage based on corruption

robustness consistency. In Proc. CVPR, 2023. 1, 3

[27] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Re-

flection backdoor: A natural backdoor attack on deep neural

networks. In Proc. ECCV, pages 182–199. Springer, 2020. 2

[28] Anh Nguyen and Anh Tran. Wanet–imperceptible warping-

based backdoor attack. In Proc. ICLR, 2021. 1, 5, 6, 7, 8

[29] Tuan Anh Nguyen and Anh Tran. Input-aware dynamic

backdoor attack. In Proc. NeurIPS, pages 3454–3464, 2020.

5, 6, 7, 8

[30] Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, and Zico

Kolter. Certified robustness to label-flipping attacks via ran-

domized smoothing. In Proc. ICML, 2020. 2

[31] Lijun Sheng, Jian Liang, Ran He, Zilei Wang, and Tieniu

Tan. Adaptguard: Defending against universal attacks for

model adaptation. In Proc. ICCV, 2023. 2

[32] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2, 5

[33] Jacob Steinhardt, Pang Wei Koh, and Percy Liang. Certified

defenses for data poisoning attacks. In Proc. NeurIPS, 2017.

2

[34] Tao Sun, Lu Pang, Chao Chen, and Haibin Ling. Mask and

restore: Blind backdoor defense at test time with masked au-

toencoder. arXiv preprint arXiv:2303.15564, 2023. 2

24572

[35] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior

Wolf. Deepface: Closing the gap to human-level perfor-

mance in face verification. In Proc. CVPR, pages 1701–

1708, 2014. 1

[36] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray.

Deeptest: Automated testing of deep-neural-network-driven

autonomous cars. In Proc. SEC, pages 303–314, 2018. 1

[37] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bi-

mal Viswanath, Haitao Zheng, and Ben Y Zhao. Neural

cleanse: Identifying and mitigating backdoor attacks in neu-

ral networks. In Proc. SP, pages 707–723. IEEE, 2019. 1, 2,

4

[38] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-

shausen, and Trevor Darrell. Tent: Fully test-time adaptation

by entropy minimization. In Proc. ICLR, 2020. 3

[39] Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu,

Shaokui Wei, Danni Yuan, and Chao Shen. Backdoorbench:

A comprehensive benchmark of backdoor learning. In Proc.
NeurIPS, pages 10546–10559, 2022. 5, 6

[40] Dongxian Wu and Yisen Wang. Adversarial neuron pruning

purifies backdoored deep models. In Proc. NeurIPS, pages

16913–16925, 2021. 1, 2, 5, 6, 7

[41] Yisong Xiao, Aishan Liu, Tianyuan Zhang, Haotong Qin,

Jinyang Guo, and Xianglong Liu. Robustmq: benchmarking

robustness of quantized models. Visual Intelligence, 2023. 1

[42] Mingfu Xue, Can He, Jian Wang, and Weiqiang Liu. One-to-

n & n-to-one: Two advanced backdoor attacks against deep

learning models. IEEE Transactions on Dependable and Se-
cure Computing, 19(3):1562–1578, 2020. 2

[43] Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou

Huang, and Ran He. Graph information bottleneck for sub-

graph recognition. In Proc. ICLR, 2021. 1

[44] Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou

Huang, and Ran He. Recognizing predictive substructures

with subgraph information bottleneck. TPAMI, 2021. 1

[45] Yi Zeng, Won Park, Z Morley Mao, and Ruoxi Jia. Rethink-

ing the backdoor attacks’ triggers: A frequency perspective.

In Proc. ICCV, pages 16473–16481, 2021. 1, 2, 5, 6, 7, 8

[46] Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian Lv,

Fanchao Qi, Zhiyuan Liu, Yasheng Wang, Xin Jiang, and

Maosong Sun. Red alarm for pre-trained models: Univer-

sal vulnerability to neuron-level backdoor attacks. Machine
Intelligence Research, 2023. 1

[47] Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Pre-

activation distributions expose backdoor neurons. Proc.
NeurIPS, pages 18667–18680, 2022. 2

[48] Liuwan Zhu, Rui Ning, Cong Wang, Chunsheng Xin, and

Hongyi Wu. Gangsweep: Sweep out neural backdoors by

gan. In Proc. ACMMM, pages 3173–3181, 2020. 2

24573

