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Abstract

Stereo matching is a core task for many computer vi-
sion and robotics applications. Despite their dominance in
traditional stereo methods, the hand-crafted Markov Ran-
dom Field (MRF) models lack sufficient modeling accuracy
compared to end-to-end deep models. While deep learning
representations have greatly improved the unary terms of
the MRF models, the overall accuracy is still severely lim-
ited by the hand-crafted pairwise terms and message pass-
ing. To address these issues, we propose a neural MRF
model, where both potential functions and message passing
are designed using data-driven neural networks. Our fully
data-driven model is built on the foundation of variational
inference theory, to prevent convergence issues and retain
stereo MRF’s graph inductive bias. To make the inference
tractable and scale well to high-resolution images, we also
propose a Disparity Proposal Network (DPN) to adaptively
prune the search space of disparity. The proposed approach
ranks 1st on both KITTI 2012 and 2015 leaderboards among
all published methods while running faster than 100 ms.
This approach significantly outperforms prior global meth-
ods, e.g., lowering D1 metric by more than 50% on KITTI
2015. In addition, our method exhibits strong cross-domain
generalization and can recover sharp edges. The codes at
https://github.com/aeolusguan/NMRF.

1. Introduction
Stereo matching is a critical component in computer vision,
mimicking human binocular vision to cognize 3D informa-
tion within the field of view [37]. Given a pair of images, it
aims to determine the horizontal displacement of individual
pixels in one image to align with the other. Stereo matching
has been applied to many fields like 3D reconstruction [49],
autonomous navigation [53], and augmented reality [59],
bridging the gap between digital imagery and real-worlds.

Among the various methodologies employed in stereo
matching, Markov Random Field (MRF) [50] stands out as
one of the most widely used and effective models. MRFs

*Corresponding author: Yun-Hui Liu

1.6 1.7 1.8 1.9
KITTI2015 D1-all (%)

1.0

1.1

1.2

1.3

K
IT

T
I2

01
2

O
ut

-N
oc

(%
)

LEAStereo
IGEV-Stereo
PCWNet
CREStereo
GANet-deep
RAFT-Stereo
CFNet
Ours

5.0 5.5 6.0 6.5
KITTI2015-train D1-all (%)

4.5

5.0

5.5

6.0

K
IT

T
I2

01
2-

tr
ai

n
D

1-
al

l(
%

)

DSMNet
CFNet
PCWNet
RAFT-Stereo
CREStereo++
IGEV-Stereo
Ours

(a) (b)

Figure 1. (a) Comparison with state-of-the-art stereo meth-
ods [11, 27, 30, 42, 43, 55, 61] on KITTI 2012 and 2015 leader-
boards. (b) Cross-domain generalization comparison with current
robust methods [21, 30, 42, 43, 55, 62]. All methods are only
trained on the synthetic SceneFlow dataset [33] and evaluated on
KITTI2012/2015 trainsets with fixed parameters.

leverage a probabilistic model to explain observed image
features and enforce spatial coherence, producing piecewise
smooth disparity maps. Due to their ability to reduce match-
ing ambiguities in challenging regions [46], MRF and its
variants [1, 20, 47, 60] have dominated the field before deep
neural networks [22, 30, 58] emerged, according to Middle-
bury [37], a popular benchmark for stereo matching.

Although MRFs have achieved promising results, they
are still often faced with difficulties because of hand-crafted
potential functions and message passing procedures. Typi-
cally, an MRF’s potential function comprises a unary term
that evaluates the similarity in intensity/gradient of match-
ing pixels/features; and a pairwise term that penalizes so-
lutions that violate certain spatial smoothness criteria [46].
However, such hand-crafted approaches cannot fully model
all scenarios, e.g., carefully designed models for object oc-
clusion may not be able to model abrupt changes in dispar-
ity at object boundaries. This inadequacy often results in an
over-smoothed disparity map. Moreover, hand-crafted mes-
sage passing may also struggle to handle complex pairwise
relationships. This limitation can often lead to difficulties
such as inaccurate disparity estimations or convergence is-
sues. Despite the unary terms have been greatly improved
by deep feature representations [8, 24, 25, 32, 44], the over-
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all accuracy of MRFs is still severely limited by the hand-
crafted pairwise potential and message passing functions.

To tackle the above problems, we propose a Neural MRF
(NMRF) model to learn the complicated pixel relation-
ships in a data-driven manner, mitigating the inefficacy of
manual design. The mean-field variational inference the-
ory is leveraged to design neural modules that perform as
unary/pairwise potential terms and message passing. Ad-
ditionally, to make our NMRF tractable and scale well to
high-resolution images, we propose a Disparity Proposal
Network (DPN) which significantly prunes the search space
of disparity with little sacrifice of performance. To the best
of our knowledge, NMRF is the first fully data-driven stereo
MRF model while retaining its strong graph inductive bias
to handle uncertainty and ambiguity in image data.

Our NMRF model reports state-of-the-art accuracy on
SceneFlow [33] and ranks 1st on KITTI 2012 [15] and
2015 [34] leaderboards among all published methods while
running faster than 100 ms. Compared with previous global
stereo networks, NMRF outperforms with a substantial
margin, e.g., reducing the D1-bg outlier ratio by more than
50% on KITTI 2015, 1.28% (Ours) vs. 2.85% (LBPS [25]).
NMRF also exhibits state-of-the-art cross-domain gener-
alization ability. When trained only on synthetic Scene-
Flow dataset, NMRF performs very well on real datasets
KITTI [15, 34], Middlebury [38], and ETH3D [39]. Fur-
thermore, NMRF is able to recover sharp depth boundaries,
as shown in Fig. 2a, which is key to downstream tasks, such
as 3D reconstruction and object detection.

In summary, our contributions include:
• We introduce a novel fully data-driven MRF model for

stereo matching that can effectively learn complicated re-
lationships between pixels from data.

• We develop a search space pruning module that largely
reduces the computation load of neural MRF inference,
which is also valuable in other dense matching tasks.

• Our architecture achieves state-of-the-art results on popu-
lar benchmarks in terms of both accuracy and robustness.

2. Related Work
Since MC-CNN [58], deep learning has been leveraged for
unary matching cost computation [8, 19, 24, 32, 57, 58],
cost volume aggregation [6, 10, 11, 17, 22, 42, 43, 54, 56,
61, 62], and iterative disparity refinement [5, 21–23, 27, 29,
30, 33, 48, 52, 55, 56]. Laga et al. [26] give a thoroughly
survey on deep techniques for stereo matching. This section
focuses on MRF-related stereo networks.
Stereo MRF networks. MRFs formulate stereo match-
ing as a pixel-labeling problem, and assign every pixel o a
disparity label zo. The set of all pixel-label assignments is
denoted by {zo}. We write MRFs’ probabilistic model as:

p({zo}, {xo}) ∝
∏
o

Φ(zo,xo)
∏
(o,p)

Ψ(zo, zp), (1)

where Φ and Ψ are non-negative unary and pairwise poten-
tial functions, respectively; (o, p) represents a pair of neigh-
boring pixels; and xo is the observed pixel features. The
Maximum A Posterior (MAP) estimate of {zo} is equiva-
lent to energy minimization by taking log of Eq. (1).

Typically, Φ and Ψ are hand-crafted based on stereo
domain knowledge, e.g., intensity constancy and piece-
wise coplanar [2, 47]. The pioneering MC-CNN [58]
generalizes manually designed unary potential Φ with a
siamese network, which performs feature extraction from
image patches and computes unary costs based on a fully-
connected DNN. Chen et al. [8] achieved 100× speed-up
compared to MC-CNN by replacing the fully-connected
DNN with a dot product layer at the cost of little perfor-
mance drop. Instead of independent predictions on pairs of
image patches, Luo et al. [32] compared a patch in the left
image with a horizontal stripe in the right image to extract
marginal distributions over all possible disparities. How-
ever, these methods still leverage the hand-crafted pairwise
potential and message passing of SGM [20]. Considering
the difficulty of tuning SGM parameters (P1, P2) to accu-
rately penalize disparity discontinuities for different cases,
Seki et al. [41] trained a neural network to provide adaptive
parameters P1(o) and P2(o) for every pixel o. Similarly,
PBCP [40] set them based on the disparity confidence map
estimated with a CNN. Hybrid CNN-CRF [24] performed
feature matching on complete images, and this setting firstly
enabled end-to-end joint learning of SGM message passing
and the unary/pairwise CNNs. Moreover, GANet [61] pro-
posed a differentiable approximation of SGM by replacing
user-defined parameters with learned guidance weight ma-
trix. Recently, LBPS [25] adapted Belief Propagation (BP)
to learning formulation through a differentiable loss defined
on marginal distributions, making graphical models fully
compatible with deep learning. However, the application
of hand-crafted message passing functions didn’t achieve
top performance1 due to its limited ability to handle com-
plicated pairwise relationships.
Neural message passing. Gilmer et al. [16] demonstrated
that neural message passing (NMP) is the cornerstone of
recent successful models on graph-structured data. Specifi-
cally, it exchanges vector messages between nodes and up-
dates node embeddings using neural networks. In computer
vision tasks, it has been employed to exchange descrip-
tor information among keypoints in sparse feature match-
ing [36, 45] and solve the maximum network flow formula-
tion of multiple object tracking [3]. Dai et al. [12] noted
that neural message passing can be derived through cer-
tain embedded inference on probabilistic graphical models
(PGM) [18]. This observation motivates us to build our

1The overall accuracy of GANet [61] mainly owing to 3D convolutional
cost aggregation. Approximate SGM aggregation alone didn’t achieve sat-
isfactory accuracy, as evidenced by its ablation studies.
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Figure 2. (a) Stereo point cloud comparison between LEAStereo [11] and our method on KITTI test set. Notice how our approach notably
alleviates flying pixels near object boundaries, which is well-known as over-smoothing problem [7]. Please zoom in for more details. (b)
Left column: left image (top) and disparity estimation (bottom), Right column: color-coded error map of pixelwise best proposal (top) and
disparity estimation (bottom). This method even recovers from proposal failure (marked with red) in the large textureless region.

neural message passing function on the foundation of vari-
ational inference theory, to prevent convergence issues of
MRF optimization. Given that Transformer [13, 31] is also
a form of message passing technique, we incorporate key
elements of Transformer into our message passing function
while retaining the graph inductive bias of stereo MRF.
Label space pruning. Many algorithms devoted to prun-
ing MRF label space due to tractability or efficiency reason.
Menze et al. [35] pruned two-dimensional flow space using
descriptor matching. To prune the disparity search space,
DeepPruner [14] designed a differentiable PatchMatch-
based pruner to predict a confidence range for each pixel.
CFNet [42] and UCSNet [9] gradually narrowed down the
disparity search space in the cascaded multi-scale manner,
where next scale’s search range is generated based on the
disparity estimate of current scale. The unimodal search
range [lo, ro] outputted by these popular methods [9, 14, 42]
for each pixel o, however, may be susceptible to local opti-
mum. In contrast, the proposed Disparity Proposal Network
(DPN) has the ability to predict multi-modal proposals.

3. Methodology
Given an image pair (IL, IR), we propose to estimate the
disparity map via a Neural Markov Random Field (NMRF)
model. An overview of the approach is presented in Fig. 3.

This approach consists of two stages. The first stage em-
ploys a NMRF model to infer disparities on the coarse level
(1/8) features (Sec. 3.2). To make NMRF efficient, a Dispar-
ity Proposal Network is proposed to prune candidate space
(Sec. 3.3). The next stage performs disparity refinement on
the fine level (1/4) features (Sec. 3.4). A local feature CNN
provides the coarse and fine level features for both stages.
Local feature CNN. To extract multi-level features from
the pair of images, we employ a siamese convolutional net-
work, which comprises a stack of residual blocks, instance
normalization and downsampling layers. The coarse level
features at 1/8 of the original image resolution are denoted
as F̃L and F̃R, while the fine-level features at 1/4 of the
original image resolution are denoted as F̂L and F̂R.

3.1. Neural MRF Formulation
We start by formulating the NMRF model for stereo match-
ing before implementing it in Sec. 3.2. Given a discrete
candidate label (disparity) set Lo ⊂ R+ for every pixel
o, hand-crafted MRFs center on a carefully designed en-
ergy function over pixel-label assignments {zo|zo ∈ Lo}.
However, the pairwise terms typically depend only on label
difference |zo − zp| while overlooking image content [46].
In order to incorporate additional information, such as 3D
geometry and visual context, into potential functions, our
NMRF represents each label with an embedding zv ∈ Rd.

A graph G = (V, E) defines the discrete neural MRF as:

p({xv}, {zv}) ∝
∏
v∈V

Φ(xv, zv)
∏

(u,v)∈E

Ψ(zu, zv), (2)

where each node v corresponds to a candidate label, and the
edge (u, v) connects a pair of labels from neighbor pixels
within a M×M image window. Intuitively, Φ(xv, zv) indi-
cates the data likelihood of observed label feature xv given
its latent embedding zv , while Ψ(·, ·) controls the penalty of
pairwise label assignments. Given observed label features
{xv}, our goal is to infer the latent embeddings {zv}, from
which the disparity estimation will be deduced.

As shown in the 3rd part of Fig. 3, this graph has two
types of edges. Intra-pixel edges, or self edges, Eself, con-
nect labels v to all other labels of the same pixel. Inter-pixel
edges, or neighbor edges, Eneigh, connect labels v to all la-
bels of neighbor pixels. Self edges are usually overlooked in
hand-crafted stereo MRFs. In contrast, this paper accounts
for self edges either, but uses different potential functions,
i.e., Ψneigh and Ψself, for the two types of edges. Intuitively,
Ψneigh allows compatible label pairs to support each other,
whereas Ψself expects labels of the same pixel to compete
with each other. Table 5 shows that this inductive bias for
pairwise potential will bring considerable improvements.

In hand-crafted MRF settings, Φ and Ψ are typically de-
signed based on stereo domain knowledge. In our neural
MRF, however, we do not specify the exact form of poten-
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Figure 3. Overview of the proposed method. It has four components: 1. A local feature CNN extracts the coarse and fine-level feature
maps from the input image pair. 2. A disparity proposal network prunes space of disparity. For every pixel, the top k disparity modals
are identified, and then updated using Np neural message passing, resulting in a sparse label set Lo. 3. The MRF factorizes into a
probabilistic graph, where each node corresponds to a candidate label and each edge connects a label pair from neighbor pixels. Different
potential functions are used for intra- and inter-pixel label pairs respectively. The inferred latent embedding zv is then decoded to posterior
probability and offset. The winner label is selected as the coarse prediction. 4. Disparity refinement also leverages a neural MRF model
but with only one label per pixel for efficiency. The inferred latent embeddings are decoded into disparity residuals.

tial functions Φ and Ψ. Instead, we will seek to implicitly
learn these potential functions by inferring latent embed-
dings {zv} that can explain the ground truth disparity map.
Observed label feature. The observed feature of a candi-
date label must integrate matching cues from both left and
right views. Given the coarse level features F̃L and F̃R,
we compute the observed feature xv of a candidate label
positioned at pv := (i, j, z) using a warping function w.r.t.
F̃L(i, j) and F̃R(i − z, j). We leave the formal definition
of the warping function in the supplementary material.

3.2. Neural MRF Inference
Preliminaries: Embedding mean-field inference [12, 18].
Exact computation of posterior p({zv}|{xv}) is intractable,
even if Φ and Ψ are known and well-defined. The mean-
field theory assumes that the posterior over latent variables
can be factorized into V independent marginals qv(zv), i.e.,
p({zv}|{xv}) ≈

∏
v qv(zv). The optimal marginals {qv}

under the mean-field assumption are obtained by minimiz-
ing the Kullback-Leibler (KL) divergence between the ap-
proximation posterior and the true posterior. Hamilton [18]
shows that the optimal solution needs to satisfy the follow-
ing fixed point equation for all v ∈ V:

log(qv(zv)) = cv + log(Φ(xv, zv))+∑
u∈N (v)

∫
Rd

qu(zu) log(Ψ(zu, zv))dzu, (3)

where cv is a normalization constant and N (v) denotes
the neighbor set of node v. It implies that marginal
distribution qv(zv) is a function of node feature xv and
neighbor marginals qu(zu),∀u ∈ N (v), i.e., qv(zv) =

f(zv,xv, {qu}u∈N (v)). Supposing an injective feature map
ϕ, each marginal qv(zv) maps to an embedding µv =∫
Rd qv(zv)ϕ(zv)dzv ∈ Rd. The solution of fixed point

Eq. (3) in the embedding space could be approximated by
iteratively evaluating

µt
v = f̃(xv, µ

t−1
v , {µt−1

u }u∈N (v)), (4)

where f̃ is a vector-valued function and has complicated
nonlinear dependencies on the potential functions Φ, Ψ, as
well as the feature map ϕ.
Inference with neural message passing. Currently, mean-
field inference is only tractable for restrictive potential func-
tions, e.g., those from the exponential family. In our setting,
it’s hard to work out f̃ in Eq. (4) since potential functions
Φ, Ψ, and the feature map ϕ are unknown and need to be
learned from data. To address this dilemma, we parameter-
ize f̃ to be a neural network that retains the inductive bias
of mean-field inference. Notice that f̃ exactly corresponds
to some message passing operation as it aggregates infor-
mation from neighbor embeddings (i.e., {µu}u∈N (v)) and
updates the node’s current representation (i.e., µt−1

v ).
The initial representation (0)µv for label v is initialized

with xv . Let (ℓ)µv be the intermediate embedding for label
v at layer ℓ. The message mEℓ→v is the outcome of embed-
ding aggregation along edges Eℓ, where Eℓ ∈ {Eself, Eneigh}.
The message passing update is formally defined as:

(ℓ+1)µ̂v = (ℓ)µv +mEℓ→v

(ℓ+1)µv = MLP
(
(ℓ+1)µ̂v

)
+ (ℓ+1)µ̂v,

(5)

where the MLP conceptually corresponds to the unary po-
tential function Φ since it controls the embedding update,
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as shown in Eq. (3). Furthermore, we observe that poten-
tial function Ψ controls the weight to aggregate informa-
tion from neighbor embeddings. Intuitively, pairwise po-
tential Ψ(·, ·) measures affinity between connected labels.
This observation, together with the success of Transformer,
motivates us to leverage self-attention for the embedding
aggregation. A fixed number of Ni layers are chained and
alternatively aggregate along the neighbor and self edges.
Attentional aggregation. To aggregate embedding along
the neighbor edges Eneigh, a label v first extracts relevant in-
formation from all neighbors {u : (u, v) ∈ Eneigh}, and then
sums them up weighted by the affinity score. The message
computation could be formulated as:

mEneigh→v
=

∑
(u,v)∈Eneigh

αuv(vu + rvu−v)

αuv = softmaxu(q
⊤
v ku + q⊤

v r
k
u−v + k⊤

u r
q
u−v)︸ ︷︷ ︸

content-adaptive positional bias

,
(6)

where qv,kv,vv are the query, key and value get by a linear
projection of the embedding (ℓ)µv , and rqu−v, r

k
u−v, r

v
u−v

are encodings of the relative position pu−pv in three differ-
ent subspaces. Adding relative positional encoding rvu−v to
the value vector, messages will become position-dependent.
This will benefit disparity aggregation in ambiguous areas,
where the relative position is important. The query qv and
key ku could contain information about where to focus in
the neighborhood. Thus, their dot product with the relative
positional encodings are utilized as content-adaptive pos-
tional bias of self-attention. STTR [28] has found similar
positional bias is beneficial for stereo matching.

The 3D relative position pu − pv consists of pixel co-
ordinate difference (∆i,∆j), and disparity difference ∆z.
In our setting, however, it is memory unaffordable to di-
rectly encode pu − pv in the sinusoidal format or through
a small network [63] due to the quadratic pairwise combi-
nation. Thus, we pursue an approximate encoding method.
Given that label v and u come from a pair of pixels within a
M × M window, the pixel coordinate difference (∆i,∆j)
will take integer values in the range [−M + 1,M − 1]
along each axis. With this in mind, we retrieve the posi-
tion encoding of (∆i,∆j) from a learnable embedding table
P ∈ R3×(2M−1)×(2M−1)×D, where the leading dimension
3 is for query, key and value respectively, and D is the num-
ber of channels. For the encoding of relative disparity ∆z,
we approximate with sinusoidal encoding of absolute dis-
parity. Specifically, we concatenate it with embedding (ℓ)µv

before the linear projection to get query, key and value.
For embedding aggregation along self edges Eself, the

pixel coordinate difference (∆i,∆j) are always zero, and
thus we omit the related position encoding terms in Eq. (6).
Disparity estimation. After Ni layers’ neural message
passing, we estimate disparity map by decoding the inferred

latent embedding {(Ni)µv}. For every pixel on the coarse
level, the latent embedding of each candidate label is de-
coded into 8×8 disparity offsets and 8×8 probabilities. The
8 × 8 disparity offsets w.r.t. the candidate label are used to
compute disparity hypotheses for the 8×8 pixels in the orig-
inal image. As a result, we produce k, the number of can-
didate labels, scored (with probability) disparity hypotheses
for every pixel in the input image. We estimate the disparity
using the winner-takes-all strategy, as depicted in Fig. 3.

3.3. Disparity Proposal Network
To ensure tractable neural MRF inference, we propose a
Disparity Proposal Network (DPN) to provide each pixel o
with a small candidate label space Lo. The DPN first identi-
fies the top k disparity modals in the range [0, zmax]. Then, it
updates them by leveraging the inherent spatial coherence,
resulting in k candidate labels for each pixel.
Top k label seeds. At pixel o = (i, j), the initial match-
ing score for integer disparity z ∈ [0, zmax] is computed us-
ing the inner product ⟨F̃L(i, j), F̃R(i, j − z)⟩. We identify
the disparity modals, i.e., the integer disparities with locally
maximum matching scores, using a 1D max pooling along
the disparity dimension. The kernel size is set to 3 so as
to detect the local maximum within the vicinity of [−1, 1].
Then a topk operation identifies the best k modals. Each
modal is characterized by its position p and matching fea-
ture d (details in supplementary). We refer to them jointly
(p,d) as the label seed. The position consists of i and j
coordinates as well as the disparity z, i.e., pv := (i, j, z).
Label seeds propagation. The top k label seeds may fail
to capture the true disparities, particularly in the textureless
or occluded regions. Even so, good label seeds still make
up the majority in the entire image field. Our intuition is to
rectify erroneous label seeds using the information from de-
pendent good label seeds. To facilitate this, we also utilize a
message passing network to exchange matching features be-
tween label seeds. It is well-known that long-range depen-
dency is critical for tackling occlusion and large textureless
regions. To efficiently exchange matching features with dis-
tant label seeds, we implement message aggregation using a
cross-shaped window self-attention [13]. In contrast to neu-
ral MRF inference, DPN ignores self edges since intra-pixel
competition does not make sense in the proposal extraction
stage. The enhanced matching features of each label seed
is decoded into residuals w.r.t. the initial integer disparity.
More details about the cross-shaped attentional message ag-
gregation are provided in the supplementary material.

3.4. Disparity Refinement
Thus far, the neural MRF inference on the coarse level fea-
tures already exhibits competitive performance (Tab. 5). It
can be further improved by performing Nf neural message
passing on the fine level features for detailed structure re-
finement. For efficiency, we use only one candidate label for
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Methods PSMNet [6] GANet-deep [61] AANet [56] LEAStereo [11] ACVNet [54] IGEV-Stereo [55] Ours

EPE [px] 1.09 0.78 0.87 0.78 0.48 0.47 0.45
Bad 1.0 [%] 12.1 8.7 9.3 7.82 5.02 5.35 4.50

Table 1. Quantitative evaluation on SceneFlow test set. Our method achieves state-of-the-art performance on both metrics. Bold: Best.

every pixel on the fine level. The candidate label is obtained
by reducing the coarse disparity estimation using a strided-
4 median pooling with kernel size 4×4. Because of a single
candidate label, the refinement differs from coarse inference
(Sec. 3.2) in two aspects: 1) the graph is free of self edges,
2) posterior probability branch is no longer needed.

3.5. Loss Functions
To generate ground truth for proposal extraction at 1/8 reso-
lution, we propose a superpixel-guided disparity map down-
sample operator, which reduces each non-overlapping 8×8
patch to multiple modals (details in supplementary).
Proposal loss. We expect candidate labels will identify all
ground truth disparity modals {z∗k}. To measure this, our
loss finds an optimal bipartite matching between candidate
labels and ground truth modals, and then optimizes the one-
to-one matching. The candidate label set of pixel o, denoted
by Lo = {ẑk}, is associated with proposal loss as:

Lprop =
∑
k

SmoothL1

(
z∗k − ẑσ̂(k)

)
(7)

where σ̂(k) is the index of candidate labels that has been
matched with z∗k . This loss is inspired by DETR [4], a pio-
neering work in Transformer-based object detection.
Disparity loss. Given the ground truth disparity z∗, the
disparity loss is formulated as:

Ldisp =
∑
z′

p(z′)|z′ − z∗|, (8)

where {z′} and {p(z′)} are the disparity hypotheses and
posterior probabilities inferred by neural MRF.

4. Experiments
We evaluate the proposed stereo models on two widely used
datasets, SceneFlow [33] and KITTI [15, 34]. SceneFlow
is a synthetic dataset which provides 35,454 training and
4,370 testing pairs of size 960 × 540 with accurate ground
truth disparity maps. KITTI 2012 and 2015 are real-world
datasets with sparse LIDAR ground truth disparities for the
training set. KITTI 2012 includes 194 training and 195 test-
ing pairs, while KITTI 2015 has 200 training and 200 test-
ing pairs. Additionally, we use the training pairs of KITTI,
Middlebury 2014 [38] and ETH3D [39] to evaluate zero-
shot generalization ability.

4.1. Implementation Details
We implement our model using the PyTorch framework on
NVIDIA RTX 3090 GPUs. The AdamW optimizer is used

in conjunction with a one-cycle learning rate scheduler for
all training. On the SceneFlow dataset, we train models on
384×768 random crops for 300k steps with a batch size of 8
and set the maximum learning rate to 0.0005. Following the
standard protocol, we exclude all pixels with ground truth
disparity greater than 192 from the evaluation. For our sub-
missions to the KITTI benchmark, the model pre-trained on
SceneFlow is fine-tuned on the mixed KITTI 2012 and 2015
training sets for another 39k steps with a batch size of 4. We
randomly crop images to 304 × 1152 and use a maximum
learning rate of 0.0002 for fine-tuning. More implementa-
tion details are provided in the supplementary material.
4.2. Benchmark Evaluation
We compare our stereo models with the published state-of-
the-art methods on SceneFlow “finalpass”, KITTI 2012 and
KITTI 2015 datasets. The evaluation metrics on the Scene-
Flow test set are average end point errors (EPE) and bad
pixel ratio with 1 pixel threshold (Bad 1.0). Table 1 illus-
trates that our model achieves state-of-the-art performance
on both metrics. Our method outperforms LEAStereo [11]
and ACVNet [54] by 42.5% and 10.4% on the outlier ratio
under 1 pixel threshold (Bad 1.0), respectively. These two
are current state-of-the-art local methods [37] that regular-
ize cost volume using 3D convolution networks.

We also evaluate our method on the test set of KITTI
2012 and 2015, and the results are submitted to the online
leaderboard. At the time of writing, our method ranks 1st

on both datasets among all published methods while run-
ning faster than 100 ms. As shown in Tab. 2, we achieve
the best performance for almost all metrics on KITTI 2012
and 2015. Compared to prior leading global stereo meth-
ods, e.g., PBCP [40] and LBPS [25], our method signifi-
cantly outperforms them by more than 50%. We present
some qualitative results in Fig. 4. Our method performs
well in large textureless and detailed regions. In addition,
we compare the point clouds generated by our approach and
the top-performing LEAStereo [11]. As depicted in Fig. 2a,
our approach can greatly alleviate bleeding artifacts [51]
and produce sharp disparity estimates near discontinuities.
4.3. Zero-shot Generation
Generalizing from synthetic training data to unseen real-
world datasets is crucial because collecting large-scale real-
world datasets for training is challenging and expensive. In
this evaluation, we use the model trained only on synthetic
SceneFlow dataset, i.e., that reports the accuracy of Tab. 1,
and directly test it on the KITTI, Middlebury and ETH3D
training sets. Table 3 compares our approach with current
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KITTI 2012 KITTI 2015

Methods bad 2.0 bad 3.0 EPE BG FG ALL Runtime

noc [%] all [%] noc [%] all [%] noc [px] All Areas [%] [s]

GCNet [22] 2.71 3.46 1.77 2.30 0.6 2.21 6.16 2.87 0.9
PSMNet [6] 2.44 3.01 1.49 1.89 0.5 1.86 4.62 2.32 0.41
GwcNet [17] 2.16 2.71 1.32 1.70 0.5 1.74 3.93 2.11 0.32

GANet-deep [61] 1.89 2.50 1.19 1.60 0.4 1.48 3.46 1.81 1.8
CSPN [10] 1.79 2.27 1.19 1.53 - 1.51 2.88 1.74 1.0

RAFT-Stereo [30] 1.92 2.42 1.30 1.66 0.4 1.58 3.05 1.82 0.38
LEAStereo [11] 1.90 2.39 1.13 1.45 0.5 1.40 2.91 1.65 0.3
ACVNet [54] 1.83 2.35 1.13 1.47 0.4 1.37 3.07 1.65 0.2

IGEV-Stereo [55] 1.71 2.17 1.12 1.44 0.4 1.38 2.67 1.59 0.18
PCWNet [43] 1.69 2.18 1.04 1.37 0.4 1.37 3.16 1.67 0.44

PBCP [40] 3.63 5.01 2.36 3.45 0.7 2.58 8.74 3.61 68
LBPS [25] - - - - - 2.85 6.35 3.44 0.39

Ours 1.59 2.07 1.01 1.35 0.4 1.28 3.13 1.59 0.09

Table 2. Quantitative evaluation on KITTI 2012 and 2015. For KITTI 2012, we report the outlier ratio with error greater than x pixels
(bad x) in both non-occluded (noc) and all regions (all), as well as the overall EPE in non-occluded pixels. For KITTI 2015, we report D1
metric in background regions (BG), foreground regions (FG), and all. Bold: Best, Underline: Second best.

Methods KITTI-12 KITTI-15 Middlebury ETH3D

DSMNet [62] 6.2 6.5 8.1 6.2
RAFT-Stereo [30] 4.7 5.5 9.4 3.3
CREStereo++ [21] 4.7 5.2 - 4.4
IGEV-Stereo [55] 5.2 5.7 8.8 4.0

Ours 4.2 5.1 7.5 3.8

Table 3. Zero-shot generalization evaluation. All methods are
only trained on SceneFlow and evaluated based on the outlier ratio
with error greater than the specific threshold. We use the standard
thresholds: D1 for KITTI, 2px for Middlebury, 1px for ETH3D.

robust methods2. It turns out that our approach even sur-
passes DSMNet [62] and CREStereo++ [21], both of which
are specifically designed for cross-domain generalization.
Fig. 5 shows some qualitive results for zero-shot generation
on ETH3D [39] and Middlebury [38].

4.4. Ablation Studies
Effectiveness of disparity proposal network. The upper
limit of our architecture is determined by the quality of can-
didate labels. In this study, we evaluate the recall and ac-
curacy of candidate labels. Two metrics are used: x-pixels
recall, the percent of pixels with ground truth identified by
candidate labels under the threshold x pixels; and the av-
erage end point errors (EPE) between the best label and
ground truth, as visualized in Fig. 2b. Tab. 4 indicates that
the DPN attains a recall of 99.8% on popular datasets with
8-pixel threshold, which is equivalent to 1 pixel at the coarse
level features. Moreover, the EPE metric of candidate labels
is substantially lower than that of final estimation, e.g., 0.22

2IGEV-Stereo [55] uses a non-standard evaluation protocol. This paper
reevaluates it using the standard protocol to compare with other methods.

candidate labels label seeds

Datasets 3px 8px EPE 8px 16px
[%]↑ [%]↑ [px]↓ [%]↑ [%]↑

SceneFlow-test 99.29 99.77 0.22 91.94 94.85
KITTI-12 val 98.88 99.72 0.31 93.87 95.89
KITTI-15 val 99.66 99.95 0.21 93.91 95.92

Table 4. Quantitative evaluation of disparity proposal. The val-
idation set of KITTI 2012 and 2015 both contain 40 image pairs.
We report EPE and the x-pixel recall rate. The extracted candidate
labels have significantly better quality than initialized label seeds.

vs. 0.45 in SceneFlow. It implies that the DPN is not the
performance bottleneck of our proposed architecture.
Number of candidate labels. The results in Tabs. 1 to 4 are
all achieved with the number of candidate labels k = 4. We
investigate the impact of the number of candidate labels on
model accuracy, generalization ability, and inference time
vary with. As shown in Fig. 6a, the proposed architecture is
not sensitive to the number of candidate labels. Our method
even achieves competitive performance with only one can-
didate label. Furthermore, our neural MRF is robust to oc-
casional DPN failures (Fig. 2b). More candidate labels do
not always result in better performance, since it increases
the risk of choosing an incorrect hypothesis. As Fig. 6a
suggests, k = 2 may be a good choice for real time stereo
matching with marginal sacrifice of performance.
Self edges. Message passing along self edges is usually
overlooked in hand-crafted stereo MRF and convolutional
cost aggregation. This paper uncovered its significance in
neural MRF inference. As shown in Fig. 6b, direct informa-
tion exchange along self edges makes the winner label more
prominent, such that the loss in Eq. (8) is more focused on
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Figure 4. Qualitative results on SceneFlow [33] and KITTI [15, 34] benchmarks. The leftmost two columns show results on SceneFlow,
while the middle two and the rightmost two columns show results on KITTI 2012 and KITTI 2015, respectively. Our method exhibits
outstanding performance in large textureless and detailed regions, compared with the top-performing LEAStereo [11].
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Figure 5. Zero-shot generalization on ETH3D and Middlebury.

EPE[px] Bad1.0[%] Time[s]

baseline 0.58 5.96 0.064
w/ adaptive bias 0.57 5.80 0.067
w/ position aggregation 0.57 5.53 0.072
w/ shared self edge 0.56 5.48 0.072
w/ self edge 0.53 5.24 0.081
w/ refinement 0.45 4.50 0.101
w/ refinement ×2 0.43 4.13 0.121

Table 5. Ablation studies to investigate the effect of individual
components on SceneFlow test. The baseline uses a fixed 2D rel-
ative positional bias [31]. The 2nd last row is our full model.

the disparity estimation of the winner label. This brings
considerable improvements, e.g., lowering the EPE metric
by 7% (0.53 vs. 0.57), detailed in Tab. 5. We employ sepa-
rate potential functions for self and neighbor edges. We val-
idate this design by comparing it with the variant that uses
the same function, denoted as shared self edges in Tab. 5.
Our design consistently outperforms the alternative.
Attentional aggregation components. We ablate adaptive
bias and position aggregation in Tab. 5. They both consid-
erably reduce outliers. Adaptive positional bias performs
better for edge pixels. We conjecture it brings benefits to
the sharp depth boundaries shown in Fig. 2a. By injecting
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Figure 6. (a) Tradeoff between time, accuracy, and generalization.
From left to right, the number of candidate labels are 1,2,3,4,5,6,
respectively. (b) Histogram of probabilities of winner labels. Mes-
sage passing along self edges makes the winner more prominent.
The statistics are based on 4.5M uniformly sampled pixels.

positional encoding to value, position aggregation results in
superior estimation in large textureless regions (see Fig. 4).
Refinement. Among all components in Tab. 5, refinement
contributes the most, as the fine level (1/4) features would
offer valuable information for detailed structures and pix-
els near boundaries. If we cascade two refinement modules
together, better performance can be achieved with the com-
promise of generalization ability. This enables users to bal-
ance performance and generalization based on their needs.

5. Conclusion
We proposed a novel Neural MRF (NMRF) formulation for
stereo matching and demonstrated its strong performance
and generalization ability. It is distinct from the learning ar-
chitectures currently in use, e.g., convolutional cost aggre-
gation and iterative recurrent refinement. We hope our new
perspective will provide a new paradigm for stereo match-
ing and can be extended to similar tasks, e.g., optical flow.
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Portion of Shenzhen-Hong Kong Science and Technol-
ogy Innovation Cooperation Zone under HZQB-KCZYB-
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Săftescu, Alex Bewley, Emil Jonasson, and Paul Newman.
Large-scale outdoor scene reconstruction and correction with
vision. The International Journal of Robotics Research, 41
(6):637–663, 2022. 1

5468



[50] Tappen. Comparison of graph cuts with belief propagation
for stereo, using identical mrf parameters. In Proceedings
Ninth IEEE International Conference on Computer Vision,
pages 900–906. IEEE, 2003. 1

[51] Fabio Tosi, Yiyi Liao, Carolin Schmitt, and Andreas Geiger.
Smd-nets: Stereo mixture density networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8942–8952, 2021. 6

[52] Stepan Tulyakov, Anton Ivanov, and Francois Fleuret. Prac-
tical deep stereo (pds): Toward applications-friendly deep
stereo matching. Advances in neural information processing
systems, 31, 2018. 2

[53] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hari-
haran, Mark Campbell, and Kilian Q Weinberger. Pseudo-
lidar from visual depth estimation: Bridging the gap in 3d
object detection for autonomous driving. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8445–8453, 2019. 1

[54] Gangwei Xu, Junda Cheng, Peng Guo, and Xin Yang. Atten-
tion concatenation volume for accurate and efficient stereo
matching. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12981–
12990, 2022. 2, 6, 7

[55] Gangwei Xu, Xianqi Wang, Xiaohuan Ding, and Xin Yang.
Iterative geometry encoding volume for stereo matching. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 21919–21928, 2023. 1,
2, 6, 7

[56] Haofei Xu and Juyong Zhang. Aanet: Adaptive aggrega-
tion network for efficient stereo matching. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1959–1968, 2020. 2, 6

[57] Sergey Zagoruyko and Nikos Komodakis. Learning to com-
pare image patches via convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4353–4361, 2015. 2

[58] Jure Zbontar, Yann LeCun, et al. Stereo matching by training
a convolutional neural network to compare image patches. J.
Mach. Learn. Res., 17(1):2287–2318, 2016. 1, 2

[59] Nadia Zenati and Noureddine Zerhouni. Dense stereo match-
ing with application to augmented reality. In 2007 IEEE In-
ternational Conference on Signal Processing and Communi-
cations, pages 1503–1506. IEEE, 2007. 1

[60] Chi Zhang, Zhiwei Li, Yanhua Cheng, Rui Cai, Hongyang
Chao, and Yong Rui. Meshstereo: A global stereo model
with mesh alignment regularization for view interpolation. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 2057–2065, 2015. 1

[61] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and
Philip HS Torr. Ga-net: Guided aggregation net for end-
to-end stereo matching. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
185–194, 2019. 1, 2, 6, 7

[62] Feihu Zhang, Xiaojuan Qi, Ruigang Yang, Victor Prisacariu,
Benjamin Wah, and Philip Torr. Domain-invariant stereo
matching networks. In Europe Conference on Computer Vi-
sion (ECCV), 2020. 1, 2, 7

[63] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 16259–16268, 2021. 5

5469


