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Abstract

Learning joint and coordinated features across modali-

ties is essential for many audio-visual tasks. Existing pre-

training methods primarily focus on global information,

neglecting fine-grained features and positions, leading to

suboptimal performance in dense prediction tasks. To ad-

dress this issue, we take a further step towards region-aware

audio-visual pre-training and propose CrossMAE, which

excels in Cross-modality interaction and region alignment.

Specifically, we devise two masked autoencoding (MAE)

pretext tasks at both pixel and embedding levels, namely

Cross-Conditioned Reconstruction and Cross-Embedding

Reconstruction. Taking the visual modality as an exam-

ple (the same goes for audio), in Cross-Conditioned Re-

construction, the visual modality reconstructs the input

image pixels conditioned on audio Attentive Tokens. As

for the more challenging Cross-Embedding Reconstruction,

unmasked visual tokens reconstruct complete audio fea-

tures under the guidance of Learnable Queries implying

positional information, which effectively enhances the in-

teraction between modalities and exploits fine-grained se-

mantics. Experimental results demonstrate that CrossMAE

achieves state-of-the-art performance not only in classifica-

tion and retrieval, but also in dense prediction tasks. Fur-

thermore, we dive into the mechanism of modal interaction

and region alignment of CrossMAE, highlighting the effec-

tiveness of the proposed components.

1. Introduction

Visual and auditory perception are the fundamental abili-

ties of humans to understand the world. Similarly, for intel-

ligent machines, a well-trained audio-visual model can be

leveraged in a myriad of applications, such as video pars-

*Corresponding author.

GT CAV-MAE CrossMAEAudio-CLIP GT CAV-MAE CrossMAEAudio-CLIP

Figure 1. Audio-visual source localization results. It can be ob-

served that existing pre-trained models perform poorly on down-

stream tasks involving dense audio-visual predictions. However,

CrossMAE, due to its ability to concentrate on fine-grained local

features of tokens and cross-modal interactions, exhibits outstand-

ing performance in audio-visual source localization tasks.

ing [41, 46], sound source localization [15, 30, 38, 51], nav-

igation [3, 4], sound separation [9, 42, 43], and environment

perception [35]. To make audio-visual models strong, vari-

ous pre-training strategies [11, 12, 14, 17, 20, 44] have been

widely used [15, 25, 26, 32, 37, 40, 45].

Specifically, Audio-CLIP [17] and CAV-MAE [14], pri-

marily focus on aligning global features of two modalities,

yielding superior results in tasks such as audio-visual clas-

sification and retrieval. However, dense prediction audio-

visual tasks, such as audio-visual source localization and

segmentation, require a nuanced understanding of fine-

grained object details and temporal-frequency characteris-

tics of sound, aspects that prior methodologies have largely

overlooked. Considering this, a natural question is whether

these models can handle dense prediction tasks like audio-

visual source localization?

To answer this question, we evaluated the performance

of several pre-trained models [14, 17] in audio-visual source

localization [6, 15, 16, 29, 30, 38, 50]. However, as shown
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in Fig. 1, it is evident that they are unable to localize the re-

gions of the sounding objects, which indicates that relying

solely on global features for dense prediction tasks yields

poor performance. We attribute this gap primarily to the

pre-training phase, where models are trained to match the

entire image with its paired audio clip without considering

the alignment between specific local images and audio re-

gions. So, how can we incorporate fine-grained information

to a pre-trained strategy can reason about regions?

In this paper, we take a further step towards region-aware

audio-visual pre-training and aim to propose an audio-

visual pre-trained model that can achieve region alignment

and effective cross-modality interaction. Although there is

a natural correspondence between the visual images and

audio in videos, aligning regions between visual images

and audio spectrograms is challenging without annotations.

Moreover, how to effectively enable the model to under-

stand and interact with local information at the object level

or even token level has provoked our thoughts.

To address these challenges, we propose CrossMAE,

which fully explores cross-modal interaction and captures

fine-grained region alignment. In this approach, we im-

prove upon masked autoencoders (MAE) [18] to enable ef-

fective cross-modal interaction and concentrate on the rich

fine-grained positional information encoded by tokens. As

described in Fig. 2, we introduce dual levels of MAE tasks

in the pixel and embedding space. Firstly, at the pixel level,

we enhance the naive MAE by introducing a cross-modal

interaction process. Taking the visual modality as an exam-

ple, unmasked visual tokens are conditioned on Audio At-

tentive Tokens during the reconstruction of the original in-

put image, namely Cross-Conditioned Reconstruction. Ad-

ditionally, we propose a more challenging reconstruction

task to enhance the model’s perception of region features

and modal interaction. At the embedding space level, audio

features are directly reconstructed from the visual modality.

To achieve region-aware feature learning, we draw inspira-

tion from DETR [2] and introduce Learnable Queries. In

DETR, different Learnable Queries represent different ob-

jects, while in our approach, different queries represent dif-

ferent positions. During this training phase, audio queries

contain positional information of audio features and effec-

tively guide the feature transformation from visual to au-

dio, enabling more effective representation learning of the

visual encoder, namely Cross-Embedding Reconstruction.

Besides, we also employ contrastive loss to ensure indis-

pensable global alignment.

In CrossMAE, region-aware learning and contrastive

training mutually boost each other. Contrastive learning ef-

fectively aligns two modalities globally. Attentive Tokens

enable the model to concentrate more on aligning regional

tokens across modalities, while Cross-Embedding Recon-

struction promotes greater attention to positional semantics.

They jointly compensate for the limitation of contrastive

learning, which only focuses on the discrimination between

positive and negative samples globally but neglects the fine-

grained semantics.

In summary, we contribute in the following aspects:

• We propose a versatile audio-visual pre-trained model

called CrossMAE, which excels in effective cross-

modality interaction and achieves region-aware represen-

tation by employing masked autoencoders (MAE).

• A key advantage of our approach lies in the devised dual-

level masked autoencoder, including Cross-Conditioned

and Cross-Embedding Reconstruction, which facilitates

region alignment and modal interaction steered by pro-

posed Attentive Tokens and Learnable Queries.

• CrossMAE achieves state-of-the-art performance in vari-

ous audio-visual tasks such as classification, retrieval, and

dense prediction tasks, which showcases its capability to

enhance both single- and cross-modal representation.

2. Related Works

Masked Autoencoders for Single Modality. Vision

Transformers [7] treat an image as a sequence of patch to-

kens and perform encoding computation on these tokens.

The masking image modeling strategy [18] randomly masks

patches of an image and utilizes the remaining tokens to re-

construct the original pixel values. This approach facilitates

the learning of image representations by encouraging the

model to comprehend the underlying structure and features

of the image through pixel-level recovery. For example, Dy-

namic ViTs [36] employ token removal to achieve efficient

image classification. Similarly, Masked Autoencoder [18]

randomly masks 75% of tokens, leading to substantial ac-

celeration and enhancement of self-supervised visual repre-

sentation pre-training. Taking inspiration from this, MAE-

AST [1, 13], AudioMAE [19] introduce the masking strat-

egy to the audio domain by converting audio into spec-

trogram and treating it as a whole image for reconstruc-

tion, achieving state-of-the-art performance on multiple au-

dio classification tasks. In this paper, we extend masked

autoencoders to both visual and audio modalities and en-

hance them with dual-level reconstruction, which endows

the model with region alignment capabilities.

Audio-Visual Pre-Training. Pre-training plays a crucial

role in extracting coordinate features and establishing a

foundation for various downstream tasks. However, there

is minimal research on audio-visual pre-training. Morgardo

proposed employing multiple instances as superior positive

sets for contrastive learning and audio-visual representation

learning [33]. CAV-MAE [14] was the pioneering work

to integrate mask modeling into audio-visual pre-training.

By combining contrastive learning with masked autoen-

coders, it achieved promising results in audio-visual classi-

26722



random

masking

random

masking

Visual EncoderAudio Encoder

Cross-Cdt

Reconstruct

Cross-Emd

Reconstruct

Cross-Cdt

Reconstruct

Cross-Emd

Reconstruct

learnable

queries

audio attentive

tokens

full visual

features

full audio

features

learnable

queries

visual attentive

tokens

unmasked

visual tokens
unmasked

audio tokens

(a) Model Overview (b) Cross-Cdt Reconstruct

(c) Cross-Emb Reconstruct

full audio

features

unmasked

visual tokens

Cross-Attention

Self-Pixel Decoder

audio attentive 

tokens

Cross-Cdt Recon Loss

conditioned

visual tokens

Q

K, V

Cross-Cdt Recon LossCross-Emb Recon Loss Cross-Emb Recon Loss

Contrastive

Loss

Self-Attention

Cross-Attention

FFN

learnable

queries

unmasked

visual tokens

reconstructed

audio features

K, V

Q, K, V

Q

reconstructed

self-modal pixels

×NA Cross-Modality

Decoder Layer

reconstruct 

targets

Audio
Encoder

cross-emb reconstruction loss

original

feature

Figure 2. Overview of the proposed CrossMAE. (a): Overall learning process of CrossMAE, which employs dual-level masked data model-

ing, including Cross-Conditioned and Cross-Embedding Reconstruction. (b): At the Cross-Conditioned Reconstruction level, we propose

a task of reconstructing self-pixels with supervision from the Attentive Tokens of counterpart modality. (c): At the Cross-Embedding

Reconstruction level, we propose reconstructing the complete features of the counterpart modality using Learnable Queries with a cross-

attention module. We take the visual modality as an example to illustrate (b) and (c), and the same applies to the audio modality.

fication tasks. Subsequently, AV-MAE[11] and MAViL[20]

explored the utilization of masked autoencoding to under-

stand the correlation between two modalities, which bears

similarities to our approach. We delineate three princi-

pal distinctions between CrossMAE and previous methods.

(1)Alignment. They explore MAE only for global align-

ment, while we emphasize region alignment. (2)Method-

ology. We explore dual-level cross-modal reconstruction

with a separate structure and end-to-end pre-training, differ-

ing from the joint masked autoencoding or two-stage train-

ing of AV-MAE and MAViL. (3)Tasks. Beyond their focus

on global tasks like classification and recognition, we ad-

ditionally realize region or dense prediction tasks. In ad-

dition to these approaches, there are other multimodal pre-

trained models such as Audio-CLIP [17], Image-Bind [12],

and ONE-PEACE [44], which incorporate visual, audio and

other modalities. However, these methods primarily focus

on global features and overlook the rich spatial, semantic,

and frequency information in region features. As a result,

they struggle with dense prediction tasks and often require

dataset-specific fine-tuning, limiting generalization. In con-

trast, CrossMAE pays greater attention to region informa-

tion in both modalities, leading to excellent performance in

downstream tasks, especially dense prediction tasks.

Task Specific Audio-Visual Learning. Audio-visual

downstream tasks broadly fall into global classification and

dense prediction tasks. Global tasks emphasize global fea-

tures like retrieval and classification, while dense predic-

tion tasks utilize local features and positional information

from images or audio. For instance, audio-visual source

localization [6, 15, 16, 24, 29, 30, 38, 50] involves cal-

culating similarity based on audio and visual features at

different positions to generate a final localization map.

AVS [28, 32, 51, 52] mainly outputs a pixel-level map of the

object(s) producing sound at the time of the image frame.

Additionally, there are tasks like AVE [23, 27, 40, 47],

AVQA [22, 48, 49], etc. These tasks rely on capturing

audio-visual semantics. Moreover, existing methods em-

ploy task-specific frameworks, lacking generalization abil-

ities. Considering this, One-AVM [31] proposed a unified

model that combines several tasks, achieves unity at the task

level and significantly motivates us. In this paper, we pro-

pose a region-aware audio-visual pre-trained model that ex-

tracts features applicable to both global classification and

dense prediction tasks, demonstrating better generalization

capabilities.

3. CrossMAE

Overview. In this section, we present the structure and

pre-training strategy of CrossMAE, as illustrated in Fig. 2.

The pre-training strategy consists of two main components:

masked data modeling (MDM) and audio-visual contrastive

learning (Sec. 3.1). Specifically, MDM is divided into two
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levels of reconstruction. For Cross-Conditioned Recon-

struction (Sec. 3.2), unmasked tokens from a single modal-

ity reconstruct self-pixels conditioned on Attentive Tokens

from the other modality. For Cross-Embedding Reconstruc-

tion (Sec. 3.3), the Learnable Queries are employed to guide

the unmasked tokens to reconstruct complete features of

the other modality. Additionally, CrossMAE employs con-

trastive loss (Sec.3.4) to map the features of both modalities

into the same space and achieve global alignment. Further-

more, we further explain the meaning and importance of

regions of two modalities in Sec. 3.5.

3.1. Preliminary

Videos not only exhibit natural audio-visual correspon-

dence but are also widely accessible in existing network en-

vironments. To effectively exploit this natural consistency

and facilitate mutual supervision for representation learn-

ing between audio and visual modalities, we employ audio-

visual contrastive learning and MDM as pre-training strate-

gies. Audio-visual contrastive learning aims to achieve

global alignment between two modalities, while MDM em-

phasizes local features and inter-modality interaction.

Audio-Visual Contrastive Learning. Contrastive learn-

ing is an effective self-supervised learning approach. It

maximizes the similarity between frames and their corre-

sponding audio clips (positive samples) while minimizing

the similarity among unpaired ones (negative samples).

Lcontrst = −E(ai,vi)

[

log
exp(s(ai, vi)/τ)

∑n

j=1 exp (s (ai, vj) /τ)

+ log
exp(s(vi, ai)/τ)

∑n

j=1 exp (s (vi, aj) /τ)

]

,

(1)

where a and v represent the global features of the audio and

visual modalities, respectively. The function s(·) denotes

the consistency matching criterion, typically using cosine

similarity. Through this approach, the model not only learns

effective audio-visual correspondence but also maps the vi-

sual and audio features into the same space, thereby reduc-

ing the semantic gap between modalities.

Masked Data Modeling (MDM). MDM is another

widely used pre-training approach. It divides the input

image into multiple patches and randomly masks these

patches. The remaining tokens, which are not masked, are

then used to reconstruct the original image tokens. Sev-

eral models have been proposed based on this criterion, and

Masked Autoencoders is one of the simple yet highly effec-

tive methods among them.

Masked Autoencoders (MAE). MAE primarily utilizes

the non-masked tokens to reconstruct the original image

pixels [18], thereby enhancing the correlation between im-

age patches and aiding the model’s spatial awareness.

Lrecon(v̂, v) =
1

N

∑

∥v̂ − v∥22, (2)

where v̂ is the reconstructed patches, and v is the original

pixel patches. Currently, MAE is widely employed in vari-

ous unimodal and multimodal representation learning tasks,

achieving impressive results. In this paper, we extend the

naive MAE to a dual-level reconstruction, enabling mutual

supervision between two modalities to strengthen the corre-

lation between them.

3.2. CrossConditioned Reconstruction

To ensure self-representation capabilities in both modali-

ties, we allow them to reconstruct their modal pixels. To

enhance the consistency between modalities, we improve

the single-modal MAE by introducing Cross-Conditioned

Reconstruction, which allows each modality to reconstruct

its own pixels conditioned on the tokens with the highest

attention from the other modality.

Random Masking. Given a batch of N unlabeled audio-

visual pairs, we first transform the raw audio waves into

spectrograms as the model inputs {(Ai, Vi), i = [1, N ]}.

Before entering the Encoder, we tokenize the frame V and

spectrogram A separately, add two-dimensional position

embedding, and randomly mask them with a high mask ra-

tio (always 75%).

Ai[vis] = MASK(Patch.Emb(Ai) + Ea
pos), (3)

Vi[vis] = MASK(Patch.Emb(Vi) + Ev
pos), (4)

Where Ai[vis] and Vi[vis] represent the unmasked tokens

in the frame and spectrogram of the i-th sample, respec-

tively. MASK(·) denotes the random masking operation ap-

plied to the patches. Subsequently, we input the unmasked

patches Ai[vis], Vi[vis] into the encoder and obtain their

features ai[vis] and vi[vis].

Attentive Tokens. Here, we select the tokens with the

highest attention to the [CLS] token in each modality as

Attentive Tokens, which will guide the pixel reconstruction

of the other modality. We output the attention of different

tokens in the last layer block of the encoder and sort them.

Then, we select the top 25% of tokens as Attentive Tokens

ai[attn], vi[attn]:

ai[attn] = topK(sim([CLS]a
i ,ai[m])), k), (5)

vi[attn] = topK(sim([CLS]v
i ,vi[n])), k), (6)

where ai,vi are feature tokens obtained from encoders, and

m and n represent the number of visual and audio patches,

respectively. topK(x, k) refers to selecting the top k tokens

from x, where k is equal to 25% of the patch number.
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Conditioned Reconstruction. Finally, we allow each

modality to reconstruct its image (spectrogram) pixels con-

ditioned on the Attentive Tokens of the other modalities. We

introduce a cross-attention layer into the decoder to encode

the Attentive Tokens into features themselves:

ai[cdt] = CrossAttn(ai[vis],vi[attn],vi[attn]), (7)

vi[cdt] = CrossAttn(vi[vis],ai[attn],ai[attn]), (8)

where ai[cdt], vi[cdt] represents token features that have
been updated by Attentive Tokens from the counterpart
modality. Afterwards, we pass the ai[cdt], vi[cdt] through

the decoder to obtain reconstructed pixel Âi, V̂i. Then, we

calculate the reconstruction loss between Âi, V̂i, and the
unmasked original pixels Ai, Vi using formula 2.

Lcross-cdt = Lrecon(Âi[vis], Ai[vis]) + Lrecon(V̂i[vis], Vi[vis]),
(9)

where [vis] represents only calculating the reconstruc-

tion loss for the image patches that have not been masked.

Through Cross-Conditioned Reconstruction, the model not

only improves the representation capability of each modal-

ity individually but also complements the contrastive loss,

strengthening the region modeling between the two modal-

ities, which can be demonstrated in Sec. 4.3.

3.3. CrossEmbedding Reconstruction

To further enhance the model’s cross-modal region model-

ing capability, we propose a more challenging task: Cross-

embedding reconstruction. This task requires the non-

masked tokens, guided by Learnable Queries, to gener-

ate complete features of the other modality. We hope

that this task can serve as a supportive role for the Cross-

Conditioned Reconstruction task. Taking the visual modal-

ity as an example in this task, we set it at the embedding

level. By setting Learnable Queries with the same dimen-

sionality as the audio modality that needs to be restored,

audio queries are enabled to imply positional information

of audio features, guiding the visual modality’s unmasked

tokens in feature transformation effectively. The same ap-

proach applies to the audio modality.

Learnable Queries. For the visual modality, we draw in-

spiration from the principles of DETR [2]. In DETR, differ-

ent queries represent different objects. In this case, differ-

ent Learnable Queries represent various positions, aiming

to leverage structural information from the audio features

to facilitate the conversion of visual unmasked tokens into

complete audio features. We set the visual and audio Learn-

able Queries as qv and qa, respectively, where the dimen-

sion of qv is the same as the visual feature dimension, and

the same applies to qa.

Cross-Embedding Decoder. We develop a Cross-

Embedding Reconstruction decoder that combines the

Learnable Queries with the modality-specific features

to generate complete features of the other modality.

Structurally, each decoder consists of several blocks,

which contain the self-attention and cross-attention layer

to combine the Learnable Queries and features, and a

feed-forward network (FFN) layer. The final cross-modal

reconstructed features are obtained as follows:

âi = Dec(CrossAttn(qa,vi[vis],vi[vis])), (10)

v̂i = Dec(CrossAttn(qv,ai[vis],ai[vis])), (11)

where Dec(·) represents decoder, CrossAttn(Q,K, V ) is

the cross-attention layer in the decoder. In each block of the

decoder, there is a self-attention layer (which is not explic-

itly represented in the formula), a cross-attention layer, and

a feedforward layer. Finally, we minimize the mean square

error between the reconstructed features and the normalized

complete original features.

Lcross-emb = Lrecon(âi,ai) + Lrecon(v̂i,vi). (12)

By completing this challenging cross-modal feature genera-

tion task, the model not only generates features for the other

modality but also gains a more comprehensive understand-

ing of the positional and semantic information of its own

modality. This, in turn, promotes the learning of joint and

coordinated features in our pre-trained model.

3.4. Overall Learning Objectives

In addition to aligning region features, we also employ

audio-visual contrastive learning loss Lcontrst, as shown in

Eq. 1, to ensure the fundamental representation capabilities

and global alignment of both modalities. Therefore, we can

finally get the overall learning objectives LCrossMAE as:

LCrossMAE = λLcontrst + Lcross-cdt + Lcross-emb. (13)

3.5. Further Explanation of Regions

We need to clarify the significance of region features for

both modalities. In the visual modality, regions correspond

to the positions and semantics of different objects in frames,

enabling tasks like localization. In the case of the audio

modality, audio is typically transformed into spectrograms,

where the horizontal axis represents time and the vertical

axis represents frequency. From a signal perspective, the

spectrogram reflects the energy distribution and temporal

changes in different frequency bands of the audio signal,

while regions indicate specific information within certain

time or frequency segments, providing a certain correspon-

dence to sound sources or events. Therefore, region features

are crucial for the perception of fine-grained visual and au-

dio characteristics.
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Table 1. Performance of audio-visual classification on three fine-tuned datasets. For the AudioSet dataset, we report mAP while accuracy

for VGGSound. SL = supervised learning; SSL = self-supervised learning; IN = ImageNet; IN21K = ImageNet-21K; AS = AudioSet-2M;

VGG = VGGSound. ⋆ denotes non-standard pre-trained datasets, like ImageNet-21K (much larger than ImageNet) or VGGSound.

Methods Pre-training
AudioSet-20K AudioSet-2M VGGSound-200K

A V A-V A V A-V A V A-V

(a) Audio-CLIP [17] - 25.4 12.8 35.4 34.1 25.2 41.2 49.7 44.2 55.8
(b) Perceiver [21] - - - - 38.4 25.7 44.2 - - -
(c) Attn AV [8] SL + IN - - - 38.4 25.7 46.2 - - -
(d) MBT⋆ [34] SL + IN21K 31.3 27.7 43.9 44.3 32.3 52.1 52.3 51.2 64.1
(e) CAV-MAE [14] SSL + IN, AS 37.7 19.8 42.0 46.6 26.2 51.2 59.5 47.0 65.5
(f) AV-MAE⋆ [11] SSL + IN, AS/VGG - - - 46.6 31.1 51.8 57.2 50.3 65.0

(g) CL-AV SSL + IN, AS 31.9 16.6 38.2 43.8 23.8 46.1 54.7 45.3 57.1
(h) SelfMAE SSL + IN, AS 29.8 14.9 36.5 42.5 23.6 39.6 47.5 43.6 49.8
(i) CL-SelfMAE SSL + IN, AS 32.6 17.1 41.3 44.2 24.4 48.2 55.9 46.1 61.7
(j) CL-CrossCdtMAE SSL + IN, AS 33.6 17.8 44.9 45.3 25.3 51.9 57.1 46.9 62.9
(k) CL-CrossEmbMAE SSL + IN, AS 36.9 19.0 47.7 46.4 26.5 54.4 59.3 47.5 64.4
(l) CrossMAE (ours) SSL + IN, AS 39.2 20.4 48.2 47.1 27.2 55.3 61.1 48.2 67.0

4. Experiments

With the dual-level reconstruction, under the same experi-

mental setup (Sec. 4.1), CrossMAE not only achieves ex-

cellent single- and cross-modal representations, but also

demonstrates strong region alignment (Sec. 4.3) compared

to different baseline variants (Sec.4.2). Especially, we fo-

cus our attention on the following issues in our Ablation

and Further Analysis in Sec. 4.4 and validate them:

• What about the scalability of CrossMAE?

• How do global and region alignment promote each other?

• What is the key to the effectiveness of Attentive Tokens?

• Why are the Learnable Queries quite indispensable?

4.1. Experimental Setup

Datasets. We utilized three datasets: AudioSet [10],

VGGSound [5], and Flickr-SoundNet [38, 39]. Au-

dioSet [10] consists of YouTube videos that cover 527 dif-

ferent sound events. VGGSound [5] comprises 200K 10-

second YouTube video clips annotated with 309 classes.

FlickrSoundNet [38, 39] and VGG-SoundSource [6] con-

tains 5,000 and 5,158 bounding-box annotations, respec-

tively. We pre-trained CrossMAE on AudioSet-2M. For

event classification, we fine-tuned models on AudioSet

and VGGSound-200K. For retrieval and AVSL, we utilized

Flickr-SoundNet and VGG-SoundSource for the evaluation.

More details are in the Appendix.

Implementation Details. For the visual and audio ar-

chitectures, we follow the settings of MAE [18] and Au-

dioMAE [19], respectively. Our framework utilizes a ViT-

B/16 model [7] as the backbone by default. Models are pre-

trained for 30 epochs with a batch size of 512. For input, the

image is 224×224, and the spectrogram is 1024×128. Patch

size is 16×16. We set λ = 0.1 to scale the gradients from

Table 2. Different variants (baselines) of CrossMAE.

Variants contrastive vanilla visual vanilla audio cross-condition cross-embedding

loss recon loss recon loss recon loss recon loss

CL-AV ✓

SelfMAE ✓ ✓

CL-SelfMAE ✓ ✓ ✓

CL-CrossCdtMAE ✓ ✓

CL-CrossEmbMAE ✓ ✓

CrossMAE ✓ ✓ ✓

losses into a comparable range to improve training stability.

Moreover, following MAE, we set 0.75 for random masking

ratio, and 0.25 for Attentive Tokens’ top ratio.

4.2. Baseline Variants of CrossMAE

To validate the effectiveness of CorssMAE, we consider the

following baseline variants as below (Table 2).

• CL-AV: Only audio-visual contrastive learning.

• SelfMAE: Self-modality MAE reconstruction.

• CL-SelfMAE: Audio-visual contrastive learning and

self-modality MAE reconstruction.

• CL-CrossCdtMAE: Audio-visual contrastive learning

and Cross-Conditioned Reconstruction.

• CL-CrossEmbMAE: Audio-visual contrastive learning

and Cross-Embedding Reconstruction.

• CrossMAE: Full version as described in Section 3.

4.3. Comparison With Stateoftheart Methods

Significant improvement in single- and cross-modal rep-

resentations. We evaluate the performance of CrossMAE

on single- and multi-modal classification and compare it

with previous methods. We fine-tuned the model with ran-

domly initialized linear classification heads. Specifically,

we evaluate the performance of audio-visual event classifi-

cation tasks using three different datasets: (1) with similar

distribution but different samples (AudioSet-20K), (2) with

the same distribution and identical samples (AudioSet-2M),
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Table 3. Performance of audio-visual source localization on

Flickr-SoundNet and VGG-SoundSource.

Methods
Flickr VGG-SoundSource

CIoU AUC CIoU AUC

(a) CAV-MAE [14] 50.80 30.83 25.20 19.09

(b) CL-AV 65.60 32.08 30.80 22.36

(c) SelfMAE 33.40 21.30 17.77 13.03

(d) CL-SelfMAE 67.20 38.93 31.08 22.28

(e) CL-CrossCdtMAE 68.53 39.72 37.60 25.45

(f) CL-CrossEmbMAE 69.11 40.62 38.20 25.94

(g) CrossMAE (ours) 73.20 42.61 39.80 27.13

Table 4. Scaling experiments on different model/batch sizes.

Backbones batch size
Audio-Visual Visual-Audio AVSL

R@1 R@5 R@10 R@1 R@5 R@10 CIoU AUC

ViT-B/16 256 20.4 52.8 63.4 18.6 51.8 57.2 38.06 25.62

ViT-B/16 512 22.8 56.6 70.8 21.3 54.4 60.5 39.80 27.13

ViT-L/16 256 36.4 69.2 78.4 32.8 67.6 77.2 41.68 29.60

ViT-L/16 512 37.2 70.8 80.0 30.4 65.2 79.4 43.04 30.92

and (3) with a different distribution (VGGSound-200K).

We fine-tuned the model using audio-only, video-only, and

audio-visual data to evaluate its performance in both single-

modal and multi-modal scenarios. The experimental re-

sults are shown in the Table 1. Compared to prior meth-

ods (a-f), CrossMAE (l) significantly improves both single-

modal and cross-modal representations. Notably, against

naive global interactions from contrastive learning (g, i), our

proposed region interactions like Cross-Conditioned and

Cross-Embedding Reconstruction (j-l) remarkably enhance

model representation capability, highlighting the effective-

ness of our method.

Stronger regional-aware representations in dense pre-

diction tasks. We evaluated various pre-training methods

on audio-visual source localization and reported Consen-

sus Intersection over Union (CIoU) and Area Under Curve

(AUC) metrics. In Fig. 1 and Table 3, prior pre-training

methods struggle to accurately localize sounding objects. In

contrast, CrossMAE improves AUC by 11.78% on Flickr.

Both Attentive Tokens and Cross-Embedding Reconstruc-

tion contribute significant improvements to CrossMAE. We

attribute this to the fact that both components guide the

model’s attention to valuable tokens and enable the capture

of fine-grained positions.

4.4. Ablation and Further Analysis

What about the scalability of CrossMAE? We con-

ducted scaling experiments with different model sizes and

batch sizes. Results in Table 4 show that the performance

gains of CrossMAE increase with larger batch size, and are

more obvious when the backbone is expanded from ViT-

B/16 to ViT-L/16, which shows that CrossMAE is a scalable

pre-training scheme.

Table 5. Performance of audio-visual retrieval results on Flickr-

SoundNet. We report R@1, R@5, and R@10 results.

Audio → Visual Visual → Audio

R@1 R@5 R@10 R@1 R@5 R@10

(a) CAV-MAE [14] 12.2 26.0 38.2 18.2 28.8 42.5

(b) CL-AV 10.4 24.4 40.4 7.6 22.8 38.4

(c) SelfMAE 2.0 3.6 12.8 1.8 3.2 12.0

(d) CL-SelfMAE 11.8 26.0 42.8 8.4 24.0 38.0

(e) CL-CrossCdtMAE 13.6 34.8 46.4 13.2 36.0 50.8

(f) CL-CrossEmbMAE 14.2 39.6 53.4 13.6 32.8 52.8

(g) CrossMAE (ours) 16.8 45.2 64.0 18.2 46.4 60.8

How do global and region alignment promote each

other? (1) We first analyze the impact of global align-

ment by studying the effect of contrastive learning. Table 3

of audio-visual source localization reveals that solely us-

ing self-modality MAE (g) is weaker than (f,h) about 6.5%

and 8.6%. The results highlight that contrastive learning

unifies two modalities within a shared feature space, which

is fundamental for further local alignment and feature re-

construction. (2) Regarding the influence of local align-

ment, we conducted experiments on audio-visual retrieval

without fine-tuning. Table 5 demonstrates that region align-

ment from Attentive Tokens and Cross-Embedding Recon-

struction (e-g) significantly enhances global alignment (b,

d). We attribute these performance improvements to the

fact Attentive Tokens enable the model to concentrate more

on aligning regional tokens across modalities, while Cross-

Embedding Reconstruction promotes greater attention to

positional and semantics. They jointly compensate for the

limited global alignment of contrastive learning.

What is the key to the effectiveness of Attentive Tokens?

To delve deeper into the Attentive Tokens, we conducted

ablations on the formulation of Attentive Tokens. We re-

placed the Attentive Tokens with empty vectors and ran-

dom tokens and evaluated their performance in retrieval and

audio-visual source localization tasks. As shown in Table 6,

empty tokens did not improve performance, while random

tokens limited performance owing to containing much ir-

relevant information. Attentive tokens, as the most attended

part of the [CLS] tokens, carrying rich positional seman-

tics, could largely enhance modality interaction.

For more clarity, we visualize visual Attentive Tokens of

some images (the same goes for audio) and find they primar-

ily highlight the sounding objects, depicted as red tokens in

Fig. 3. These tokens help the reconstruction of audio spec-

trograms under the guidance of fine-grained visual informa-

tion of the sounding objects, integrating local visual details

into audio and thereby achieving effective region alignment.

Why are the Learnable Queries quite indispensable?

To analyze the key to the success of Cross-Embedding Re-

construction, we replaced Learnable Queries with various
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(a).  Attentive Tokens (Red Tokens) (c). Visual Queries Focus on Image Region(b).  Audio Queries Focus on Locations of Spectrogram

Figure 3. Qualitative analysis: visualization results of Attentive Tokens and Learnable Queries. (a) Red tokens represent Attentive Tokens,

which predominantly cover sounding objects. (b) Audio Learnable Queries, where different queries focus on various positions of audio

features. (c) Visual Learnable Queries, where different queries focus on different salient regions in the image.

Table 6. Detailed ablations of Attentive Tokens on several tasks.

Methods
Audio → Visual Visual → Audio AVSL

R@1 R@5 R@10 R@1 R@5 R@10 CIoU AUC

CL-CrossEmbMAE 19.4 48.6 61.2 18.8 47.2 59.6 38.22 25.94

+ zero vectors 19.2 48.8 60.9 18.6 46.8 59.2 38.24 25.92

+ random tokens 19.6 49.6 62.6 19.2 50.8 63.4 38.96 26.27

+ Attentive Tokens 22.8 56.6 70.8 21.3 58.4 67.8 39.80 27.13

counterparts. Table 7 reveals that using tokens from the

other modality no longer works in this case, because these

tokens introduce a large amount of information about the

reconstruction target, which significantly reduces the dif-

ficulty of the pretext task and makes it ineffective. How-

ever, when replacing the tokens with queries containing

less information helps alleviate this issue. Unlike empty

queries, Learnable Queries maintain useful information and

help feature transformation.

Furthermore, we delved deeper into what information

Learnable Queries acquire and what role they play in Fig. 3.

We visualized each query and summarized three key points:

(1). Queries guide the generation of audio features at

specific locations. As illustrated in Fig. 3(b), we visu-

alize the attention maps of queries and the reconstructed

audio features, finding that different queries focus on var-

ious specific locations, which do not change with sample

variations. (2). Queries uncover region-aligned informa-

tion between two modalities. Fig. 3(c) displays attention

maps of queries and original visual features, showing differ-

ent queries focus on various principal regions of the image.

Combined with (1), we observe that queries mainly focus

on similar positions in the spectrogram, and tend to target

the same subject objects in the image. (3). Queries pre-

define and guide the dimension of cross-modal feature

reconstruction, addressing the issue of differing quantities

of visual and audio tokens.

Table 7. Detailed ablations of Learnable Queries on several tasks.

Methods
Audio → Visual Visual → Audio AVSL

R@1 R@5 R@10 R@1 R@5 R@10 CIoU AUC

CL-CrossCdtMAE 15.2 42.4 52.8 14.0 41.2 51.6 37.60 25.45

+ Attentive Tokens 15.8 43.6 54.6 15.4 42.8 52.4 37.80 25.83

+ empty query 17.6 45.2 60.0 17.2 44.0 59.2 38.20 26.60

+ Learnable Queries 22.8 56.6 70.8 21.3 58.4 67.8 39.80 27.13

5. Conclusion

In this paper, we propose a region-aware universal audio-

visual pre-trained model, namely CrossMAE, which pos-

sesses excellent modality interaction and region align-

ment capabilities. We introduce two proxy tasks, Cross-

Conditioned Reconstruction and Cross-Embedding Recon-

struction, to enhance the interaction between the two modal-

ities and effectively capture fine-grained positional and se-

mantic information. As a result, our model achieves out-

standing performance on classification tasks such as audio-

visual classification and audio-visual retrieval, particularly

excelling in dense prediction tasks like audio-visual source

localization. Moreover, we investigate the improvement in

audio-visual representation learning through modality inter-

action and region alignment, demonstrating the effective-

ness and training efficiency of our model.

We hope this work will help draw more attention to

audio-visual pre-training, and provoke a reconsideration

of modality interaction and region-perception, to stimulate

more research in this challenging yet significant task.
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