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InstructPix2Pix

“What if she were in an anime?
And put on a pair of sunglass. 

Then put her in a suit.”

“What if she were in an anime?”

最新版

“Add cherry blossoms. 
And make it in sunset. 

Then insert two sailboats.”

“Add cherry blossoms.”

InstructPix2Pix + FoIInput image InstructPix2Pix InstructPix2Pix + FoI

Figure 1. Models like InstructPix2Pix (IP2P) [7] can edit images with given instruction. Yet, they face challenges like over-editing and
wrong editing areas, especially with multi-instruction. Our FoI utilizes inherent grounding capability of IP2P to identify precise editing
regions, then focuses on them, enabling effective editing. Notably, FoI does not require extra training or test-time optimization.

Abstract

Recently, diffusion-based methods, like InstructPix2Pix

(IP2P), have achieved effective instruction-based image

editing, requiring only natural language instructions from

the user. However, these methods often inadvertently alter

unintended areas and struggle with multi-instruction edit-

ing, resulting in compromised outcomes. To address these

issues, we introduce the Focus on Your Instruction (FoI),
a method designed to ensure precise and harmonious edit-

ing across multiple instructions without extra training or

test-time optimization. In the FoI, we primarily empha-

size two aspects: (1) precisely extracting regions of inter-

est for each instruction and (2) guiding the denoising pro-

cess to concentrate within these regions of interest. For the

first objective, we identify the implicit grounding capability

of IP2P from the cross-attention between instruction and

image, then develop an effective mask extraction method.

For the second objective, we introduce a cross attention

modulation module for rough isolation of target editing re-

gions and unrelated regions. Additionally, we introduce a

mask-guided disentangle sampling strategy to further en-

sure clear region isolation. Experimental results demon-

strate that FoI surpasses existing methods in both quanti-

tative and qualitative evaluations, especially excelling in

multi-instruction editing task. The code is available at

https://github.com/guoqincode/Focus-on-
Your-Instruction.

1. Introduction
Large-scale Text-to-Image (T2I) diffusion models [5, 12,
34, 42, 44, 46–48, 64] have achieved remarkable diversity
and realism in image generation, garnering widespread at-
tention. Trained on extensive image-text datasets [49], these
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“clock” “flower”

“smile”“sitting”

“Eiffiel”

“giving”“boom”

“grass”

“purple”

“pray”

Figure 2. Visualization of cross-attention maps in the initial de-
noising step illustrates the fine-grained implicit grounding capa-
bility of IP2P [7] for nouns, as well as verbs and adjectives.

advanced T2I models excel in various generation tasks.
However, their direct application to image editing is lim-
ited, often lacking the necessary precision for controlling
specific objects or attributes within images.

When editing images, a visual creator typically be-
gins by identifying the regions to be edited and then fo-
cuses on modifying these regions. For multiple edits, en-
suring the collective result is cohesive is crucial. De-
spite recent remarkable advances in text-based image edit-
ing [7, 10, 17, 25, 31, 33, 34, 39, 54, 57, 67], the precisely
editing of targeted areas without affecting unrelated regions
remains a significant challenge. These methods often strug-
gle to accurately pinpoint the editing areas, leading to un-
intended modifications in non-targeted areas and resulting
in suboptimal outcomes. Furthermore, they typically strug-
gle to simultaneously execute edits in multiple directions,
further limiting their utility in complex editing tasks.

IP2P [7] offers an intuitive and fidelity-preserving ap-
proach for instruction-based image editing, bypassing the
need for extensive descriptions of input and output images.
However, as shown in Fig. 1, IP2P has a propensity for over-
editing, which is also indicated in recent studies [21, 32]. In
our analysis of IP2P, we unveil its powerful implicit ground-
ing ability developed through training on a synthetic pair-
wise dataset. As shown in Fig. 2, in the cross-attention
map of initial denoising step, we can observe precise align-
ment between keywords and their spatial locations in the
image. This effective grounding extends to even adjectives
and verbs. This sharply contrasts with the evolving atten-
tion maps in models like Stable Diffusion [2, 9, 17, 52].
However, as depicted in Fig. 3, while IP2P effectively lo-
cates items like a “hat”, other instruction words may inad-
vertently affect unrelated areas, leading to unintended ed-
its. To our knowledge, no existing methods have harnessed
IP2P’s potent grounding ability to enhance its editing abil-
ity.

To address the limitations of current image editing meth-
ods and align with the editing paradigm of visual creators,
we introduce Focus on Your Instruction (FoI), a method
developed atop the IP2P framework. FoI is specifically de-

Figure 3. Visualization of cross attention maps obtained from
IP2P [7], associated with different words. Two key observations:
(a) the placement of “hat” is accurately identified early on, and
(b) the attention maps for adjectives “black” and “elegant” are
excessively disperse, leading to over-editing.

signed for precise and harmonious multi-instruction editing,
and notably, it achieves this without requiring additional
training or test-time optimization. First, we utilize IP2P’s
implicit grounding ability to identify the areas of interest for
each instruction. Then, we introduce cross-condition atten-
tion modulation, leveraging null-instruction cross-attention
to modulate the cross-attention calculation with instruction,
focusing each instruction on its corresponding area and
implicitly reducing interference between different instruc-
tions. Finally, we propose a mask-guided disentangle sam-
pling strategy, aimed at accurately separating editing and
non-editing regions, disentangling the overall editing di-
rection from preserving the original image’s direction, and
enhancing the model’s robustness in hyperparameter selec-
tion. Experimental results demonstrate that FoI outperforms
existing methods in both quantitative and qualitative evalu-
ations, especially in multi-instruction editing tasks.

Our contributions can be summarized as follows:
• We introduce FoI, a method that leverages the ground-

ing ability of IP2P for precise and harmonious multi-
instruction editing, without the need for extra training or
test-time optimization.

• We propose cross-condition attention modulation to en-
sure each instruction is focused on its corresponding
area, thereby reducing interference. This method em-
ploys cross-attention with null-instruction to modulate the
cross-attention calculation with instruction.

• Development of a mask-guided disentangle sampling
strategy, isolating editing regions and distinguishing be-
tween editing and preserving directions.

• Demonstrated excellence of FoI in experiments, outper-
forming existing methods quantitatively and qualitatively,
particularly in multi-instruction editing tasks.

2. Related Work
Text-guided Image Editing. Early methods mainly relied
on Generative Adversarial Networks (GANs) [13, 15, 30,
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40, 63], excelling in specific domains like faces and flow-
ers, but with limited generality. Recently, methods based on
diffusion models [19, 50] have showcased unprecedented
prowess in image generation and editing [5, 34, 42, 44,
46, 48, 64]. SDEdit [31] leverages these models in a two-
step process of noise addition and denoising to align with
prompts. Imagic [25] fine-tunes the diffusion model for
each image, focusing on generating variants for objects.
Prompt2Prompt(P2P) [17] and PnP [54] explore attention
and feature injection for improving image editing perfor-
mance. Compared to P2P, PnP can directly edit real im-
ages. To adapt P2P for real image editing, Null-Text Inver-
sion (NTI) [33] proposes updating the null text embedding
for precise reconstruction and editing [18]. Blended Diffu-
sion [3, 4] achieves local editing using user-designed masks
and prompts. IP2P [7] streamlines image editing by directly
applying instructions, removing the need for detailed de-
scriptions or masks. This approach not only bypasses recon-
struction flaws in inversion-based methods [10, 17, 51] but
also avoids lengthy test-time optimization [33, 39, 54, 57],
enhancing image fidelity.
Locating the Targeted Editing Area. Precise editing areas
localization is crucial to prevent unintended image changes.
Text2Live [6] utilizes CLIP [43] for optimizing additive
image layers. FEAT [20] and CoralStyleCLIP [45] lever-
age StyleGAN’s latent codes for domain-specific local edit-
ing. Diffedit [10] and Watch Your Steps [32] generate
masks by contrasting different noise predictions. InstructE-
dit [59] and OIR [65] use text-conditioned segmentation
models [26, 29] for identifying existing objects specified
for editing but struggle with fine-grained editing. LPM [41]
clusters self-attention maps to pinpoint objects based on
cross-attention values, primarily focusing on object-level
shape variations. However, most open domain visual edit-
ing works face challenges in detailed editing and preserv-
ing the original image’s fidelity. For instance, with an in-
struction like “put a Disney headband on her.”, the aim
is to simply add the headband, yet typical methods often
alter identity features or other image areas. By leverag-
ing IP2P’s implicit grounding ability, our method accurately
targets the most relevant areas for each instruction, achiev-
ing finer granularity than prior methods, with only a mini-
mal increase in computational overhead.
Multi-instruction Image Editing. A key challenge in-
volves effectively guiding models to target specific editing
areas for each instruction, while minimizing interference
among instructions to ensure harmonious multi-instruction
outcomes. Recent work such as EMILIE [21] focuses
on iterative multi-instruction editing but overlooks IP2P’s
over-editing issues, mainly addressing image quality de-
cline in successive edits. Existing instruction-based meth-
ods [7, 11, 14, 66, 68] often struggle with multi-instruction
tasks. Contemporary methods [58, 65] in multi-object edit-

ing, using inversion-based techniques [51], focus mainly on
object-level replacement. These methods, requiring com-
plex optimization, struggle with fine-grained editing and
tend to be time-consuming. In contrast, our approach avoids
additional training or test-time optimization, and can be eas-
ily integrated with existing instruction-based models.

3. Preliminaries
InstructPix2Pix. Given an image I , IP2P edits it follow-
ing given editing instruction T . IP2P undergoes super-
vised training on a dataset synthesized using P2P [17] and
GPT-3 [8]. Each entry in the dataset includes the origi-
nal image I , the editing instruction T , and the correspond-
ing edited result Ie. IP2P is constructed upon on the Sta-
ble Diffusion framework [46], employing a VQ-VAE [55]
with an encoder E and a decoder D to enhance efficiency
and quality. For training, noise ✏ ⇠ N (0, 1) is added to
z = E(Ie) to create noisy latent zt, with the noise level set
by a random timestep t 2 T . The denoiser, ✏✓, initially
with Stable Diffusion weights [46], is fine-tuned to mini-
mize EIe,I,✏,t

⇥
k✏ � ✏✓(zt, t, I, T )k22

⇤
. Conditions are inter-

mittently omitted during training [28] by setting I = ;I or
T = ;T . The vanilla IP2P score estimate is as follows:

✏̃✓(zt, t, I, T ) = ✏✓(zt, t, ;I , ;T )
+ sI

�
✏✓(zt, t, I, ;T )� ✏✓(zt, t, ;I , ;T )

�

+ sT
�
✏✓(zt, t, I, T )� ✏✓(zt, t, I, ;T )

�
(1)

Studies [7, 16, 32] highlight the importance of balancing
image guidance sI and text guidance sT . An increase in sI
preserves image details but reduces the impact of instruc-
tions, while an increase in sT poses risks of over-editing.
Consequently, ✏✓(zt, t, I, ;T ) estimates scores for image
preservation, and ✏✓(zt, t, I, T ) for applying edits.
Cross Attention in InstructPix2Pix. IP2P incorporates
textual features in image editing through a cross-attention
mechanism [56]. This process generates cross-attention
maps At 2 Rr⇥r⇥N at each denoising step t for every to-
ken (N tokens tokenized using CLIP [43]’s tokenizer) in the
input instruction, where r 2 {64, 32, 16, 8} [2, 9, 17]. Be-
cause IP2P integrates the original image into the input chan-
nels of its U-Net, the behavior of its attention mechanism
exhibits distinctions compared to Stable Diffusion [46]. We
denote the cross attention map in ✏✓(zt, t, I, T ) as At,ins.

4. Method
Given the input image I and the composite instruction T ,
composed of k sub-instructions {T1, T2, . . . , Tk}, our goal
is to edit I with (1) precise execution of each sub-instruction
in T , and (2) harmonious execution of T as a whole. We be-
lieve the core challenge here is how to precisely directing
instructions towards their corresponding areas of interest.
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Figure 4. Framework of FoI. FoI is designed to perform precise single-instruction edits and coordinated multi-instruction edits, all
within a single forward pass. Firstly, a unique mask for each sub-instruction is extracted at the start of the denoising step, as described
in Sec. 4.1. Next, we use cross-condition attention modulation to focus each instruction on its interest area and reduce interference,
elaborated in Sec. 4.2(the bottom figure illustrates the cross-attention map before and after attention modulation). Finally, a disentangle
sample method isolates editing areas, detailed in Sec. 4.3.

To solve this challenge, we propose FoI, with overall frame-
work illustrated in Fig. 4. In this section, we first discuss
how to find precise area of interest for each sub-instruction
(Sec. 4.1). Then, we introduce how to guide the denois-
ing process to proper direction where each instruction fo-
cus on its own interest area, with cross-attention modulation
(Sec. 4.2) and disentangle sampling strategy (Sec. 4.3).

4.1. Extracting Instruction-Based Masks
Inspired by the segmentation capabilities of large-scale dif-
fusion models [23, 53, 60, 61], our analysis of IP2P un-
covers its precise location-finding ability in early denoising
steps, evident from cross-attention maps in Fig. 2. Demon-
strated in Fig. 3, IP2P quickly identifies where objects, like
“hat” should be placed. We harness this robust grounding
capability to extract areas of interest for each instruction
from IP2P’s cross-attention maps.

Previous studies [2, 9, 17, 62] have shown that attention
maps with a resolution of 16⇥ 16 capture the most detailed
semantic information. Accordingly, we use attention maps
with a resolution of r = 16 for extracting masks.

In each sub-instruction Ti, we identify a keyword ei,
which represents either the target object for editing, an ob-
ject to be added, or an object inferred from the context, as
specified in the sub-instruction. We begin by applying a
Gaussian filter [9] to the corresponding cross-attention map

At[ei] 2 Rr⇥r. This step ensures that each patch in the
map is a linear combination of its neighboring patches in
the original map. We then use a direct and effective al-
gorithm for mask extraction, enhancing the cross-attention
map At[ei] iteratively. The algorithm operates through a
sequence of operations, repeated � times. In each cycle, the
map is squared and then normalized via min-max scaling to
the [0, 1] range. This iterative approach is designed to incre-
mentally heighten the contrast between target regions and
surrounding areas, as detailed in the following equation:

At[ei] = norm
⇣

norm
�
· · · norm

�
At[ei]

2
�
· · ·

�2⌘2

| {z }
� times

(2)

Here, norm denotes the min-max normalization process,
scaling the values within the map to a [0,1] range. Upon
completing the � iterations, we apply a threshold ⌧ to com-
pute the mask Mei = (At[ei] � ⌧). This mask, denoting
the area of interest for the i-th sub-instruction, has dimen-
sions 2 Rr⇥r. Fig. 4 displays the effective results of our
method in extracting masks for each sub-instruction.

4.2. Cross Condition Attention Modulation
For fine-grained editing, confining each instruction within
its mask is essential. We introduce the cross-condition at-
tention modulation. This method utilizes the cross-attention
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map with null-instruction to modulate the cross-attention
calculation with instruction, thereby reducing the impact
of instruction on irrelevant areas and decreasing interfer-
ence between different instructions when multiple instruc-
tions are present. To be specific, we preserve the masked re-
gion’s attention in the computation of ✏✓(zt, t, I, T ), while
substituting attention in the external regions with that from
✏✓(zt, t, I, ;T ). The modified cross attention function is de-
fined as:

A0
t,ins = softmax

✓
(X +�X )�M+ Y � (1�M)p

d

◆

(3)
Here, d represents the latent projection dimension. The
terms are defined as follows:

X = QI,TK
T
I,T , (4)

Y = QI,;T
KT

I,;T
, (5)

�X = ↵� ⇠(t)� (max(QI,TK
T
I,T )�QI,TK

T
I,T ) (6)

where QI,T and KI,T are the query and Key in
✏✓(zt, t, I, T ) respectively, and QI,;T

and KI,;T
are the

query and key in ✏✓(zt, t, I, ;T ) respectively. The atten-
tion mask M is constructed by initially broadcasting the
mask Mei of each keyword across its corresponding sub-
instruction Ti. Subsequently, these broadcasted masks are
concatenated for all sub-instructions, resulting in an initial
dimension of M being R(r⇥r)⇥N . This mask is then adap-
tively interpolated across each cross-attention layer.

We employ �X to subtly enhance attention values
within the mask. This allows for precise control over the rel-
ative strengths of different sub-instructions, enabling fine-
grained control over the intensity of each sub-instruction.
This is achieved by selectively adjusting the values in the
coefficient vector ↵, which is initially set to all ones.
Through strategic modifications to specific values within
↵, we can finely tune the intensity of each sub-instruction.
This method directs attention within the mask and enables
flexible adjustment of each sub-instruction’s relative inten-
sity, ensuring focused and controlled effects during the edit-
ing process.

In Eq. (6), the timestep-related weight term is:

⇠(t) = 0.05 ⇤ t4 (7)

and the timestep t 2 [0, 1] has been normalized.
After mask extraction, we apply cross-condition atten-

tion modulation across all remaining denoising steps. The
bottom part of Fig. 4 illustrates the cross-attention maps be-
fore and after the application of cross-condition attention
modulation. It’s observable that compared to before mod-

ulation, each sub-instruction becomes more concentrated
within its respective area of interest.

4.3. Mask Guided Disentangle Sample

While restricting the area of interest at the cross-attention
level is useful, it is insufficient for fine-grained editing due
to the low resolution of semantically rich layers in cross
attention [9, 56, 62]. Additionally, disentangling the differ-
ent noise estimates in Eq. (1) is challenging, leading to a
lack of robustness in the arbitrary selection of sI and sT .
Therefore, we suggest modifying the noise estimation to
isolate the editing area from irrelevant regions during the
sampling process and disentangle the directions of editing
and preserving the original image. To achieve this, we first
combine the masks corresponding to all sub-instructions to
obtain Munion:

Munion = Upsample(
_

i

Mei) (8)

where Upsample denotes the operation of upsampling the
mask to match the resolution of the latent space. Following
this, new score estimates are formulated:

✏̃✓(zt, t, I, T ) = ✏✓(zt, t, ;I , ;T )
+ sI

�
✏✓(zt, t, I, ;T )� ✏✓(zt, t, ;I , ;T )

�

+ sT
�
✏✓(zt, t, I, T )� ✏✓(zt, t, I, ;T )

�
�Munion (9)

We refer to the sampling using the above score estimates
as disentangle sampling. In practice, we employ the disen-
tangle sampling for the initial 75% steps, and switch to the
standard IP2P sampling for the remaining 25%,.

5. Experiments
5.1. Experimental Settings

Dataset. For single-instruction editing, we filter 5,000 lo-
calized edit-type images from the IP2P dataset [7] using
GPT4 [35], each tagged with specific object edits. For
multi-instruction editing, we gather 100 real images. For
each image, GPT-4V(ision) [1, 35, 36] is used to create 2-4
instructions, along with original and target descriptions, and
marking the objects to edit.
Metrics. For evaluation, we use CLIP image similar-

ity [43] and Dinov2 image similarity [37] to measure the
cosine similarity between edited and original images. CLIP

text-image direction similarity [13] evaluates how image
changes correspond with changes in their captions. Addi-
tionally, PickScore [27] evaluates image fidelity based on
learned human preferences.
Baseline models. We make comparisons with the
state-of-the-art (SOTA) image editing methods, including
Diffedit [10], NTI+P2P [33], IP2P [7], MagicBrush [66],
and InstructDiffusion (InsDiff) [14]. Diffedit identifies re-
gions for editing based on the differences between the noise
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Input
image

IP2P

NTI+P2P

Diffedit

Ours

“Give her a 
Disney headband”

"Put a pair of 
sunglasses on the 
dog, and turn the 
grass into a sandy

beach."

"Color the tie
purple."

“Give her red 
lipstick, and make 

her eyes blue"

"Change the season 
to autumn, and 

transform the tower
like the Leaning 
Tower of Pisa."

"Move WALL-E to 
desert, and Put 

WALL-E in a 
space suit."

MagicBrush

InsDiff

Instruction

(a) (b) (c) (d) (e) (f)

Figure 5. Qualitative comparisons. We provide all baselines with their desired input formats. From top to bottom: input image,
our method, Diffedit [10], NTI+P2P [33], IP2P [7], MagicBrush [66], InsDiff [14]. The texts at the top of the images represent edit
instructions. Inputs for Diffedit and NTI+P2P include the original and target captions. Additionally, we present masks that highlight the
regions of interest identified by FoI and Diffedit, located on the lower right side of the results, organized in accordance with the sequence
of sub-instructions. Compared with baseline models, FoI can accurately edit regions of interest.

predictions of original and target prompts. NTI+P2P ex-
tends P2P [17] to realize the editing of real images, rep-
resenting inversion-based image editing methods. IP2P is
the basic model of instruction-based editing methods. Mag-
icBrush fine-tunes IP2P on its own high-quality constructed
dataset. InsDiff uses the same model structure as IP2P but
trains a generalist model on multiple datasets. The closely
related Watch Your Steps [32] lacks an available implemen-

tation, precluding direct comparison.
Implementation details. In all our experiments, we utilize
the pretrained IP2P model [7] with freeze weight. We use
the Euler ancestral sampler [24] with a total of 100 denois-
ing steps. The default settings of sI = 1.5 and sT = 7.5
are used unless specified otherwise. For mask extraction
described in Sec. 4.1, it is only performed during the first
denoising step. The threshold ⌧ is randomly sampled from
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the range [0.4, 0.7], and the hyperparameter � is set to 3.
Following previous work [32], the initial noise is generated
by adding 80% noise to the original image, thus the actual
number of denoising steps is 80 in FoI.

5.2. Main Results
Qualitative evaluation. We show some qualitative experi-
mental results in Fig. 5, From our experiments, we observe
the following: Firstly, Diffedit and NTI+P2P often over-
look sub-tasks in complex editing scenarios. For example,
in Fig. 5 (d), the tower edit is ignored; in Fig. 5 (e), WALL-E
remains in water instead of desert; and in Fig. 5 (f), the grass
does not change to a sandy bench. These models also lead
to unwanted modifications within the editing areas, such as
over-modification of Mona Lisa’s facial features (Fig. 5 (a)),
incorrect facial edits (Fig. 5 (b)), and excessive changes to
the dog in Fig. 5 (f). Secondly, instruction-based methods
like IP2P, MagicBrush, and InsDiff tend to over-edit. This
is observable as IP2P and MagicBrush modify beyond the
intended headband area in Fig. 5 (a), affecting Mona Lisa’s
identity. In Fig. 5 (b), they alter the entire image to purple
and in Fig. 5 (c), they change the background to blue. Over-
editing is also evident in Fig. 5 (d) and (e) by MagicBrush
and InsDiff, while IP2P misses the tower edit in Fig. 5
(d). All three methods cause excessive edits to WALL-E
in Fig. 5 (e), leading to a significant departure from the orig-
inal image. IP2P and MagicBrush fail to appropriately add
sunglasses to the dog in Fig. 5 (f), and InsDiff creates an
incomplete additional dog head wearing sunglasses. De-
spite the instruction only requesting the glass to change to
a sandy bench, IP2P, MagicBrush, and InsDiff also modify
the background.

Compared to Diffedit, our method extracts masks for the
area of interest with greater precision and detail, ensuring
higher quality and more fine-grained editing. This further
evidences the implicit grounding capability of IP2P in en-
hancing fine-grained editing.

Our method provides more nuanced editing capabilities
and does not affect unrelated areas, outperforming baseline
models, especially in scenarios with multi-instruction.
Quantitative evaluation. As illustrated in Tab. 1, in single-
instruction and multi-instruction evaluations, we achieve
state-of-the-art results in CLIP image similarity, Dinov2
image similarity and PickScore, demonstrating that our
method best aligns with human perception in terms of fi-
delity to the original and edited images. Notably, our
method shows vastly improved performance over baseline
models for the multi-instruction editing task, demonstrat-
ing the superiority of our method when faced with complex
editing instructions.

In the CLIP direction similarity metric, our method
scores lower than MagicBrush [66] and InsDiff [14]
because they tend towards over-editing, making larger

Method CLIP-I Dino-I CLIP-D PickScore

Single-
Instruction

Diffedit [10] 0.8627 0.7916 0.0844 0.0639
NTI+P2P [33] 0.8522 0.7928 0.0981 0.0951
IP2P [7] 0.8605 0.8264 0.1685 0.1353
MagicBrush [66] 0.9178 0.8702 0.1934 0.1780
InsDiff [14] 0.8755 0.8612 0.2064 0.1377
FoI (ours) 0.9402 0.9277 0.1699 0.3901

Multi-
Instruction

Diffedit [10] 0.8505 0.7529 0.0629 0.0616
NTI+P2P [33] 0.8560 0.7526 0.0865 0.0332
IP2P [7] 0.8769 0.8369 0.1605 0.1059
MagicBrush [66] 0.8609 0.8291 0.1807 0.1591
InsDiff [14] 0.8439 0.7938 0.1785 0.1325
FoI (ours) 0.9255 0.9159 0.1685 0.5077

Table 1. Quantitative comparisons. We compare our model with
baseline models in terms of CLIP image similarity, Dinov2 image
similarity, CLIP direction similarity, and PickScore. Our method
achieves state-of-the-art results in image similarity and PickScore.
Because our method aims to minimize over-editing, the CLIP di-
rection similarity is lower than MagicBrush [66] and InsDiff [14],
which tend to over-edit.

Single-Instruction Multi-Instruction
Instruction Image Instruction Image

Align Align Align Align
Diffedit [10] 9.42% 10.42% 0.75% 3.08%
NTI+P2P [33] 9.5% 16.58% 0.42% 4.25%
IP2P [7] 12.83% 10.92% 3.08% 3.92%
MagicBrush [66] 23.17% 22.83% 9.42% 4.75%
InsDiff [14] 21.92% 11.75% 5.50% 2.67%
FoI (ours) 23.17% 27.5% 80.83% 81.33%

Table 2. Human preference study. FoI outperforms baseline
models in both instruction- and image-alignment, and achieves a
huge advantage in multi-instruction measures.

changes to the input image in the direction of the instruc-
tions, whereas our method focuses on necessary edits and
minimizes effects on irrelevant areas. CLIP [43] itself has
difficulty perceiving fine-grained changes [38], so this also
proves that we perform more fine-grained editing. Over-
editing would lead to reduced CLIP image similarity and
Dinov2 image similarity, and increased CLIP direction sim-
ilarity. Our method balances the preservation of details in
the original image and execution of editing instructions.
Human Preference Study. For single and multi instruc-
tion edits, we conduct a human preference study using 20
images for each category, comparing our FoI with Diffedit,
NTI+P2P, IP2P, MagicBrush, and InsDiff. The study in-
cludes 60 participants. For instruction alignment, partic-
ipants are asked to choose the method that best matched
the editing effect of the instruction. For image alignment,
they select the method that best preserved the original im-
age details (i.e., no changes occurred in unrelated areas).
As indicated in Tab. 2, our FoI method is favored over the
baseline methods for both single and multi instruction ed-
its, with a significant preference gap observed in the multi-
instruction editing scenarios, over 80% of participants per-
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(c) Results of disentangle sample end in different denoising steps Denoising steps

(b) Results of cross condition attention modulation end in different denoising steps Denoising steps
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And make the chair
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“Fill the canvas
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(d) Results of different text guidance
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Figure 6. Ablation study of different components. The editing effect within the red box is poor. (a) Editing results and corresponding
mask of mask extraction at different denoising steps. (b) Results of ending cross condition attention modulation at different denoising
steps. (c) Results of ending disentangle sampling at different denoising steps. (d). Robustness of our method compared to IP2P with fixed
sI across various sT values. For (b) and (c), the mask extracted for the editing area are displayed to the right of each instruction.

ceive the editing quality and fidelity of FoI to surpass that
of the baseline models. This underscores the superiority of
FoI in precise and high-quality editing tasks.

More results are available in Appendix C.

5.3. Ablation Study

Mask Extraction Steps. As illustrated in Fig. 6 (a), search-
ing for the mask over extended time steps does not enhance
the outcomes; rather, it results in the inadvertent editing of
unrelated areas in more denoising steps, and also diminishes
the effectiveness within the intended editing regions.
Cross Condition Attention Modulation. As shown
in Fig. 6 (b), halting cross-attention modulation at various
denoising steps can have different effects. Early termination
might cause instructions to affect unrelated areas, particu-
larly in multi-instruction scenarios, where it can also dis-
rupt other instructions. Notably, the effectiveness of sub-
instructions increases with the number of steps conducted.
Disentangle Sample. As illustrated in Fig. 6 (c), even with
the application of cross-attention modulation, the use of
broad adjectives can inadvertently result in minor modifi-
cations to irrelevant areas. The Disentangle Sample method
alleviates the issue of insufficient granularity in attention
modulation, effectively separating the editing areas from ir-
relevant regions. However, using disentangle sampling for

all steps can lead to suboptimal outcomes. For instance,
at step 80 in Fig. 6 (c), the “Make it sunset.” instruction
creates a more fragmented effect compared to the smoother
result at step 60. Moreover, as demonstrated in Fig. 6 (d),
where we set sI = 1.5 and progressively increase sT , unlike
previous methods [7, 16, 21, 32] that require precise tuning
of the balance between sI and sT , our approach maintains
this balance with greater robustness.

Quantitative evaluation and analysis from our ablation
study will be detailed in Appendix A.

6. Conclusion
We propose FoI, a tuning-free method that empowers the
pretrained IP2P model to execute precise single-instruction
edits as well as multi-instruction edits. We discover the
IP2P model’s implicit grounding capability and extract
masks corresponding to each instruction. Furthermore, we
utilize these masks for cross-condition attention modula-
tion, which confines instructions within their respective
masks while reducing interference between different in-
structions. Finally, we introduce disentangle sampling, de-
signed to isolate editing areas from irrelevant regions and
disentangle the directions of editing and preserving the orig-
inal image. Our approach demonstrates exceptional perfor-
mance in both qualitative and quantitative experiments.
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