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Abstract

Leveraging few-shot datasets in prompt learning for
Vision-Language Models eliminates the need for manual
prompt engineering while highlighting the necessity of ac-
curate annotations for the labels. However, high-level or
complex label noise challenges prompt learning for Vision-
Language Models. Aiming at this issue, we propose a
new framework for improving its robustness. Specifically,
we introduce the Joint Adaptive Partitioning for Label
Refurbishment (JoAPR), a structured framework encom-
passing two key steps. 1) Data Partitioning, where we dif-
ferentiate between clean and noisy data using joint adap-
tive thresholds. 2) Label Refurbishment, where we correct
the labels based on the partition outcomes before retrain-
ing the network. Our comprehensive experiments confirm
that JoAPR substantially enhances the robustness of prompt
learning for Vision-Language Models against label noise,
offering a promising direction for future research.

1. Introduction

Vision-Language Pre-Trained Models(VL-PTMs) [18, 33,
48] have garnered significant attention in the field of com-
puter vision due to their image understanding and process-
ing capabilities. CLIP [33], as a representative model in
VL-PTMs, excels at comprehending the intricate relation-
ship between images and text, going beyond traditional
classification tasks. It leverages a vast dataset of over 400
million image-text pairs for pre-training. The pre-trained
text encoder and image encoder are instrumental in obtain-
ing embeddings for text and images, enabling the fusion of
textual and visual information in downstream tasks. The
abundance of data equips CLIP with remarkable transfer
learning capability.

Specifically, CLIP formulates a description text for
each class, referred to as a prompt (e.g. “A photo of a
[CLASS]”), which is then fed into the pre-trained text en-
coder to generate corresponding embeddings. Simultane-
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Figure 1. Accuracy vs. Noise Ratio on two datasets. The graph
depicts the impact of synthetic label noise (Symflip and Pairflip)
on the CoOp’s accuracy. CoOp maintains a certain degree of per-
formance at lower noise ratios, indicating some resilience to mild
noise conditions. However, with an increase in the noise ratio,
there is a clear downward trend in model accuracy for both types
of noise, with Pairflip leading to a more pronounced degradation
in performance. This finding highlights the limited robustness of
prompt learning for VL-PTMs.

ously, the image to be recognized is processed by the pre-
trained image encoder to extract image features. The sim-
ilarity between these text and image embeddings is calcu-
lated to achieve the task of image recognition. Recently,
Zhou et al. [55] shed light on one of the primary challenges
in developing large visual models: the design of appropri-
ate prompts. They discover that even minor changes to the
prompt significantly impact the model’s performance. Man-
ual prompt design, however, is time-consuming and find-
ing the best prompt is impractical. To address this, they
introduce prompt learning into VL-PTMs, known as CoOp.
This model requires only a few-shot dataset to learn suitable
prompts and has substantially improved the transferability
of large vision-language models to downstream tasks.

Despite the enhanced transfer learning capability of
prompt learning for VL-PTMs, a critical issue in its de-
velopment has been overlooked by many researchers: how
to handle label noise in the few-shot dataset. Despite eas-
ier acquisition of massive datasets today, accurate annota-
tion remains costly, often leading to label noise that im-
pairs model performance. Prompt learning for VL-PTMs
is no exception, motivating us to explore ways to make it
more robust. Recently, Wu et al. [41] observe the presence
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of label noise in prompt learning. However, their research
primarily focuses on why prompt learning for VL-PTMs is
more robust compared to traditional transfer learning meth-
ods, falling short in investigating the effects of higher noise
levels and more complex noise on prompt learning for VL-
PTMs. While prompt learning for VL-PTMs is indeed more
robust than traditional transfer learning methods, this ro-
bustness is far from sufficient. As depicted in Fig. 1, the
model’s performance significantly degrades under condi-
tions of high label noise and complex label noise. In this
paper, drawing inspiration from sample-selection methods
in Learning with Label Noise (LNL), we propose JoAPR,
which leverages the network’s memorization effects to han-
dle noisy data. Considering CLIP’s inherent prior knowl-
edge and powerful zero-shot learning ability, we adopt a
strategy utilizing label refurbishment to combat label noise.
Due to the small number of samples in few-shot dataset,
it is a difficult problem to accurately divide the clean data
and noise data. JoARP employs a two-component Gaussian
Mixture Model(GMM) to model the loss values of the data
and utilizes joint adaptive thresholds to distinguish clean
data from noisy data. Subsequently, we refurbish the labels
of the data and retrain the model on the revised dataset.

Our contributions can be summarized as
(1) We unveil the inadequacy of prompt learning for VL-

PTMs in coping with higher noise ratios or more complex
noise.

(2) We introduce JoAPR, the first systematic solution
to tackle label noise in prompt learning for VL-PTMs,
markedly boosting their robustness. Our model enables
prompt learning for VL-PTMs to sustain exceptional per-
formance, even under harsh conditions with extremely high
noise levels or complex noise patterns.

(3) We design joint adaptive thresholds for clean and
noisy data, effectively removing the need for manual hyper-
parameter tuning and significantly enhancing classification
accuracy. Simultaneously, we address performance degra-
dation due to misclassified noisy data by implementing a
strategy to control the probability of clean label refurbish-
ment. This dual approach enables our model to excel in
few-shot learning scenarios.

(4) We conduct extensive experiments on ten datasets
with varying noise ratios and different types of label noise
to validate and illustrate the robust performance of our
model. Additionally, numerous supplementary experiments
are conducted to further show JoAPR.

2. Related work
Prompt Learning for VL-PTMs Regarding the textual
description input for the text encoder, known as the prompt,
CLIP [33] initially employs the manually defined format “A
photo of a [CLASS]”. However, Zhou et al. [55] point out
that even slight changes in wording could have a profound

impact on performance. Manually discovering the optimal
prompt proves to be a non-trivial task. To address this
challenge, they pioneer the introduction of prompt learn-
ing to the realm of VL-PTMs and devise the CoOp model.
CoOp utilizes a few-shot labeled dataset to train the prompt
learning module, enabling the automatic identification of
the most effective prompt. CoOp maintains the frozen
text encoder and image encoder of CLIP, significantly en-
hancing CLIP’s adaptability to downstream tasks with re-
markable efficiency. Building upon the foundations laid by
CoOp, CoCoOp [54] extends its capabilities by addressing
the limitation of CoOp’s context generalization. CoCoOp
introduces a lightweight network to incorporate information
from visual cues into the prompt, enhancing context learn-
ing and allowing for broader generalization across unseen
categories within the same dataset. KAPT [19] introduces
the incorporation of external knowledge into prompt learn-
ing. It leverages accurate descriptions of concepts and their
contextual relationships to further enhance the generaliza-
tion of prompt learning.

Learning with Noise Labels Deep Neural Networks
(DNNs) trained with extensive data have showcased their
formidable capabilities across various fields. The quality
of data has emerged as a cornerstone for DNNs perfor-
mance. While large-scale datasets are readily available,
the manual labeling cost associated with them can be pro-
hibitively high. Using mislabeled data can lead DNNs to
overfit to noisy labels, significantly compromising model
performance. Consequently, addressing label noise and en-
suring robust model performance in its presence have be-
come pivotal areas of research. To tackle this challenge,
researchers have proposed a series of approaches, includ-
ing the following. (1) Incorporating robust network struc-
tures specially designed to adapt to noise [6, 13, 21, 45, 46].
(2) Employing robust regularization tools to combat label
noise [12, 17, 26, 40, 43, 51]. (3) Designing robust loss
functions capable of tolerating noise present in the dataset
[10, 11, 24, 25, 39]. (4) Correcting the loss through the
utilization of an estimation matrix [4, 16, 31, 42, 47]. (5)
Leveraging sample selection or meta learning techniques to
distinguish noisy data within the dataset and rectify erro-
neous labels [23, 30, 34, 36, 37, 49, 53].

Label Noise in Prompt Learning for VL-PTMs Re-
cently, Wu et al. [41] have investigated the impact of label
noise on prompt learning for VL-PTMs. Their primary fo-
cus, however, is on understanding why prompt learning for
VL-PTMs is more robust to noisy labels compared to tradi-
tional transfer learning approaches, like model fine-tuning
and linear probes. While they emphasize prompt learning’s
increased robustness, it is still unclear whether this level of
robustness is sufficient for effectively handling label noise.
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Additionally, Wu et al. have not explored the effects of
higher noise ratios or more intricate forms of label noise
on prompt learning for VL-PTMs. As illustrated in Fig. 1,
it becomes evident that the performance of prompt learn-
ing for VL-PTMs is significantly compromised in scenarios
characterized by high levels of noise or complex noise pat-
terns that are more challenging to manage.

3. Preliminary
Noise generation Before introducing our method, let’s
establish some fundamental definitions. We define the clean
dataset as D : {(Xi, Yi)}Ni=1, where Xi represents the input
image, and Yi ∈ (1, 2, ..., L) represents the corresponding
label. Here, (0, 1)L denotes the one-hot vector represen-
tation of Yi. The noisy dataset, affected by label noise, is
denoted as D : {(Xi, Y i)}Ni=1. Furthermore, we introduce
the concept of an artificially generated noise transition ma-
trix, defined as Tij(X) = P (Y = j|Y = i,X). This
matrix represents the probability that a label Y = i is in-
correctly labeled as Y = j. We artificially generate two
types of label noise. The first type is Symflip noise, where
noisy labels are randomly drawn from other categories in
the dataset. The second type is Pairflip noise, where noisy
labels are exclusively selected from labels adjacent to the
current label. This latter type of noise is more challenging
to address and can significantly impact model performance,
serving as a more stringent test of model robustness.

Context Optimization (CoOp) Instead of using the
conventional “a photo of a [CLASS]” prompt, CoOp
introduces M learnable context vectors denoted as
t = [V ]1[V ]2...[V ]M [CLASS], where each [V ]M (m ∈
{1, ...,M}) is a vector with the same dimension as word
embeddings, and [CLASS] represents the word embed-
ding(s) for the class name. With g(·) as the text encoder,
the prediction probability is calculated as follows.

p(Y = i|X) =
exp(cos(g(ti),X)/τ)∑L
j=1 exp(cos(g(tj),X)/τ)

. (1)

The training process utilizes cross-entropy loss as the opti-
mization objective and keeps the base model of CLIP frozen
throughout.

4. Methodology
In this section, we delve into the specifics of our method-
ology, with the JoAPR architecture thoroughly delineated
in Figs. 2a and 2b and algorithm provided in the Sup-
plementary Material. The memorization effect observed
in DNNs is crucial for sample selection, which describes
DNNs initial learning of simpler patterns, preceding their
advancement to memorize and overfit noisy data. Conse-
quently, clean data generally shows a lower loss value than

[V] 𝟏 [V] 𝟐 [V] 𝐌···

Learnable context

[CLASS] ·

strawberrybutterflypanda ···

False label True label

Image encoder

Text encoder

Image 
features

··· Text
features

··· Similarity
scores

Label 
correction

Maximize the score Maximize the score

X √

(a) Overall robust prompt learning for VL-PTMs framework.
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data

Noisy
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𝜽𝟏 and initial 𝜽𝟐

Epoch 1

Retrain Divide

𝜽𝟏 and new 𝜽𝟐

· · ·

Epoch 2

Refurbish

(b) The pipeline of JoAPR.

Figure 2. (a) shows how our approach makes prompt learning
more robust. (b) illustrates the iterative process of JoAPR, starting
with a warmup phase followed by epochs that separate clean data
from noisy data for label refurbishment and model retraining.

noisy data, a finding corroborated by [1, 2, 35]. Drawing
on the insights from [1, 23], our strategy utilizes the small-
loss rule to distinguish clean data from noisy data. We
specifically adopt the Expectation-Maximization (EM) al-
gorithm to model the network output loss distribution via
a two-component GMM. Throughout each training epoch,
we employ joint adaptive thresholds to differentiate clean
data from noisy data. Following this separation, all labels
undergo a process of label refurbishment, after which the
data is retrained to improve the model’s accuracy.

4.1. Warmup

Warmup techniques are extensively employed in DNNs to
expedite model convergence and mitigate oscillation. How-
ever, within the context of sample selection, Warmup may
prematurely adapt models to noisy samples, complicating
the divide and label refurbishment process. Addressing this,
[23] implements an additional penalty loss to encourage
more uniform predictions, thus reducing the risk of over-
fitting to noisy data. In the Warmup phase, the objective
function comprises the sum of cross-entropy loss and a con-
fidence penalty −H as defined in [32].

LWarmup = LCE + α1(−H)

H = −
N∑
i=1

Pmodel(Xi)log(Pmodel(Xi))
(2)
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Here, α1 is a hyperparameter controlling the penalty’s
intensity, and Pmodel(·) represents the model’s output.
Nonetheless, our findings indicate that employing a confi-
dence penalty can introduce additional challenges. When
using cross-entropy for segregating clean and noisy data
in datasets with limited samples and high noise levels, the
penalty term may lead to overly uniform predictions. This
can result in a discrete or overly overlapping LDivide dis-
tribution between clean and noisy samples, as illustrated in
Figs. 3a and 3b, thereby increasing data division errors. To
mitigate this and encourage a more distinct aggregation of
loss values for clean and noisy data, we incorporate a com-
pensation term alongside cross-entropy in evaluating each
sample’s loss value for the data partitioning as

LDivide = LCE +H (3)

The penalty and compensation terms differ only in sign. As
evidenced in Figs. 3c and 3d, introducing the compensa-
tion term clusters the loss value distribution more tightly,
and reducing overlap between clean and noisy data in high-
noise, few-shot datasets with limited samples. In practice,
though, in few-shot datasets with a larger sample size, the
tendency of the compensation term to centralize LDivide

values may increase this overlap, thus affecting data par-
titioning. For a detailed description of this phenomenon,
please refer to the Supplementary Material. We also
propose the JoAPR* framework, which omits compensa-
tion terms. Notably, due to the smaller size of the few-shot
dataset compared to the regular dataset, attempts to reduce
overlap are only partially successful. As depicted in Figs. 3c
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Figure 3. 62.5% of Pairflip is added to the EuroSAT. Blue repre-
sents clean data and red represents noisy data. (a) and (b) show
the probability density distribution of cross-entropy loss values at
epoch=10 and epoch=30 respectively. (c) and (d) show the proba-
bility density distribution of loss values after adding the compen-
sation term at epoch=10 and epoch=30 respectively.
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Figure 4. A schematic representation of Gaussian functions fitted
to clean and noisy data separately.

and 3d, significant overlap persists even with the compensa-
tion term. Rest assured, this issue will be further addressed
in Sec. 4.3.

4.2. Divide

This subsection discusses utilizing a GMM with two com-
ponents to fit the LDivide. Traditional methods, which in-
volve setting the partitioning threshold as a hyperparameter
and manually adjusting it for data division, can be time-
consuming and challenging in finding the optimal threshold.
In contrast, our approach employs two adaptive thresholds,
aiming to streamline the process and enhance partitioning
accuracy. For enhanced convergence stability, we calculate
the average LDivide over the last five epochs.

LDivide =

∑t
i=t−4 Li

Divide

5
(4)

4.2.1 Threshold θ1

We fit the loss with GMM each epoch. The Gaussian func-

tions for clean data fclean(x) = 1
σc

√
2π

e
− (x−µc)

2

2σ2
c and noisy

data fnoisy(x) = 1
σn

√
2π

e
− (x−µn)2

2σ2
n are defined respectively.

Two Gaussian functions are illustrated in Fig. 4. To identify
the optimal threshold, we seek θ1 that minimizes the shaded
area’s overlap as

min F (θ1) =

∫ +∞

θ1

fclean(x) dx+

∫ θ1

−∞
fnoisy(x) dx

(5)

s.t. θ1 > 0

The optimal θ1 is derived using differentiation, as shown in
Eq. (6).

4.2.2 Threshold θ2

Employing the EM algorithm, each sample is fitted to a
two-component GMM to obtain the posterior probability
p(gclean|L). Here, gclean denotes the Gaussian component
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θ1 =
−2µnσ

2
c + 2µcσ

2
n +

√
(2µnσ2

c − 2µcσ2
n)

2 − 4(σ2
n − σ2

c )[(µcσn)2 − (µnσc)2 + 2(σcσn)2 ln
σc

σn
]

2σ2
n − 2σ2

c

(6)

with a smaller mean (representing clean samples), and L
is short for LDivide. A sample is deemed clean if its pos-
terior probability exceeds a certain threshold. We dynam-
ically adjust this threshold based on the previous epoch’s
partitioning results, rather than manually tuning it as a hy-
perparameter. Specifically, it is defined as

θt2 =
N − card({(Xi, Y i) | p(gclean|L) > θt−1

2 })
N

(7)

where N is the total sample count, and card(·) represents
the size of set. This approach is akin to a positive feed-
back process: if fewer clean samples are identified in the
last epoch, the current epoch’s noise ratio is considered
higher, and θ2 is increased to make clean sample identifi-
cation stricter, and vice versa. The initial value of θ2 is set
to 0.5.

4.2.3 Joint Adaptive Partitioning

Sec. 5.7 confirms that using both θ1 and θ2 improves par-
titioning accuracy. Using these thresholds, we divide the
original dataset D into clean Dc and noisy Dn subsets.

Dc : {(Xc
i , Y

c
i ) | L < θ1 or p(gclean|L) > θ2}Nc

i=1

Dn : {(Xn
i ) | L > θ1 and p(gclean|L) < θ2}Nn

i=1

4.3. Refurbish

Following the joint adaptive partitioning, we obtain the
clean dataset Dc and the noisy dataset Dn. Note that we
discard the original labels of the noisy data. Initially, we ap-
ply K data augmentations to these datasets that align with
CoOp. {

(Xc
i,a)

K
a=1 = Augment(Xc

i )

(Xn
i,a)

K
a=1 = Augment(Xn

i )
(8)

Subsequently, we refurbish the labels of these datasets as

Ŷ c
i = piY

c
i + (1− pi)P

c
model,i

Ŷ n
i = Pn

model,i

P c
model,i =

∑k
a=1 Pmodel(X

c
i,a)

K

Pn
model,i =

∑k
a=1 Pmodel(X

n
i,a)

K

(9)

where Pmodel(·) is the model’s predicted output, and pi is
the probability that the current data belongs to the clean la-
bel(or alternatively referred to as the label’s confidence).

We refurbish clean labels, recognizing that, despite the
more accurate division achieved through joint adaptive par-
titioning, misclassification of noisy labels as clean is in-
evitable, which can be observed in Fig. 3. Therefore, the
clean label is refurbished with the probability pi, which is
determined by

pi = p(gclean|L) · psoftmax(Y
c
i ) (10)

In this equation, p(gclean|L) is the posterior probability of
belonging to the clean dataset, as derived from the EM al-
gorithm, while psoftmax(Y

c
i ) is the softmax layer’s pre-

dicted probability for the model output at the label Y c
i .

Early in training, as the model is yet to fully fit the sam-
ples, psoftmax(Y

c
i ) is often significantly less than 1. No-

tably, for noisy labels mistakenly categorized as clean, this
value is lower compared to true clean samples, as noise
samples are more challenging to fit. Consequently, even
with a high p(gclean|L), the overall pi value will be low,
leading to a preference for the model’s predicted label over
the original label during label refurbishment. As training
progresses, psoftmax(Y

c
i ) for genuine clean samples ap-

proaches 1, while remaining low for misclassified noisy
samples. This disparity ensures that misclassified sam-
ples continue to rely more on the model’s predicted label,
thereby mitigating robustness reduction caused by the mis-
classification of clean and noisy data. Note that for the ini-
tial epoch, we set pi = p(gclean|L) to stabilize the model.
The refurbished dataset is represented as follows.

D̂c : {(Xc
i,a, Ŷ

c
i ); i ∈ (1, ..., Nc), a ∈ (1, ...,K)}

D̂n : {(Xn
i,a, Ŷ

n
i ); i ∈ (1, ..., Nn), a ∈ (1, ...,K)}

D̂ = Concat(D̂c , D̂n)

4.4. Retrain

Following the label refurbishment, we acquire the dataset
D̂. Before retraining, D̂ undergoes data augmentation us-
ing MixMatch [3], a technique that fuses pseudo-labels with
Mixup [50] and is prevalent in semi-supervised learning.
This method of integrating semi-supervised learning tech-
niques into label noise management, pioneered by [23], has
been adapted in our approach as well. Let Ŷ represent a
label from the dataset D̂, initially sharpened to bring the
generated pseudo-label closer to the true one-hot vector.

Ỹ = Sharpen(Ŷ , T )

Sharpen(ŷi, T ) :=
ŷTi∑L
j=1 ŷ

T
j

(11)
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Here, ŷi is the i-th element of the one-hot vector form of Ŷ ,
T , the temperature constant set to 2, and L is the total num-
ber of categories in D̂. The resulting dataset after sharpen-
ing is denoted as D̃. Next, we select a pair of samples (X̃1,
X̃2) where X̃1 is from D̃ and X̃2 from Shuffle(D̃), along
with their corresponding label pair (Ỹ1, Ỹ2). Then, we apply
the Mixup as

λ ∼ Beta(β, β), (12)

λ
′
= max(λ, 1− λ), (13)

X̃
′
= λ

′
X̃1 + (1− λ

′
)X̃2, (14)

Ỹ
′
= λ

′
Ỹ1 + (1− λ

′
)Ỹ2, (15)

where Beta(·) denotes the Beta distribution and β is set
to 0.001. Eq. (13) ensures (X̃

′
, Ỹ

′
) is closer to (X̃1, Ỹ1).

Mixup results in the dataset D̃
′
. [1] highlights that un-

der high noise levels, network predictions tend to guide
most samples towards the same class to minimize loss. To
counter this, a regularization term used in [36] is added to
encourage the model to make more uniform predictions as

LRetrain = LCE + α2LR

LR =
∑
L

1

L
log(

1

L

∑
X̃′∈D̃′ Pmodel(X̃

′
)

KN
)

(16)

where α2 serves as a hyperparameter managing the regu-
larization strength, K represents the number of data aug-
mentations, fixed at 1, and N is the number of samples in
the original dataset D. The objective is now to maximize
P (Ỹ

′ |X) instead of P (Y |X) via LRetrain.

5. Experiments
We conduct extensive experiments to ascertain the efficacy
of our proposed model under complex and high-noise con-
ditions. The following sections and Supplementary Mate-
rial detail these experiments.

5.1. Datasets and Baseline

We employ ten diverse datasets covering generic objects
classification, texture classification, fine-grained classifica-
tion, scene recognition, action recognition, and satellite im-
agery recognition. Among these, Food101N [22] is in-
cluded as a real-world noisy dataset. Given that there is
no previous approach to tackle label noise in prompt learn-
ing for VL-PTMs, our baseline is CoOp, the most influen-
tial work in the domain. Following CoOp’s methodology,
we sample a 16-shot training set from each dataset, em-
ploying the original test set for evaluation. We introduce
Symflip and Pairflip noise at varying intensities—12.5% to
75.0%—into these datasets. The results reported are aver-
ages over three experimental runs, with the highest accura-
cies highlighted in bold for emphasis.

5.2. Training Details

In our experiments, we follow the same setup as CoOp to
keep the comparison fair. We utilize the same SGD op-
timizer, initiating with a learning rate of 0.002 and em-
ploying cosine annealing. The maximum epoch is set to
200, except for ImageNet, where it is 50. Our model back-
bone aligns with CoOp, employing the CLIP model with a
ResNet-50[14] as visual encoder and a 63M parameter text
Transformer[38] as text encoder. We utilize 16 context to-
kens shared across all categories and place the class token
at the end. The hyperparameter α2 is set to 0.5 for Cal-
tech101 and 1.0 for other datasets. Warmup epochs and
α1 settings are available in the Supplementary Material.

5.3. Comparison with CoOp

Tabs. 1 and 2 illustrates the performance of the original
CoOp and CoOp using JoAPR/JoAPR* across ten datasets.
With compensation term added, JoAPR surpasses JoAPR*
on EuroSAT, but on other datasets, JoAPR and JoAPR*
each show strengths in different scenarios. The CoOp
enhanced with JoAPR/JoAPR* shows greater robustness
across all datasets, except at a 12.5% noise ratio on Ima-
geNet. CoOp demonstrates robustness at lower noise lev-
els and improves as the sample size increases, evident in
datasets like SUN397 and ImageNet. This phenomenon
suggests that a larger dataset size makes CoOp less prone
to overfitting noisy labels. However, as the noise ratio in-
creases, CoOp’s performance is significantly impacted. In
scenarios with 75% Pairflip noise, CoOp achieves less than
20% accuracy on most datasets, highlighting the substantial
effect of high or complex noise on its performance. Sur-
prisingly, CoOp with JoAPR/JoAPR* performs remarkably
well under extreme noise conditions. This is particularly
evident in datasets like Caltech101 and OxfordPets, where
performance is only minimally affected even at a challeng-
ing 75% Pairflip noise. Notably, on the extensive ImageNet
dataset, CoOp with JoAPR/JoAPR* excels regardless of the
noise level, showcasing its resilience in any noisy situation.
This observation holds true for other datasets as well.

5.4. Comparison with Robust Loss

Numerous robust loss functions have been proposed. In
investigating why prompt learning exhibits greater robust-
ness than traditional fine-tuning, Wu et al. [41] show that

Table 1. Comparison with CoOp on Food101N.

Method Accuracy

CoOp 69.50

CoOp+JoAPR 72.57

CoOp+JoAPR* 73.87
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Table 2. Comparison with CoOp on nine datasets.

Dataset Noise Type Symflip Pairflip
Method\Noise Ratio 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0%

ImageNet [8]
CoOp 62.47 61.23 60.17 58.53 55.03 50.47 62.17 59.13 53.97 45.47 34.33 20.33
CoOp+JoAPR 60.87 61.07 60.70 60.30 58.77 55.60 60.00 59.97 59.23 57.90 56.43 53.67
CoOp+JoAPR* 61.23 61.30 60.70 60.33 59.00 55.13 60.73 60.67 60.07 58.53 56.67 53.53

SUN397 [44]
CoOp 66.30 63.37 60.07 56.63 50.73 40.27 64.73 57.17 47.53 34.90 21.30 10.37
CoOp+JoAPR 67.23 68.13 67.33 67.03 64.77 60.90 66.97 66.30 64.90 61.50 55.90 48.83
CoOp+JoAPR* 67.47 67.47 67.07 66.70 63.87 58.03 66.80 66.77 65.23 63.10 57.87 51.10

Caltech101 [9]
CoOp 79.03 70.60 65.70 57.57 47.20 36.67 82.97 73.20 59.27 43.47 30.30 16.23
CoOp+JoAPR 88.50 89.07 88.47 89.03 87.67 84.87 88.80 89.17 88.80 88.27 86.17 84.43
CoOp+JoAPR* 89.20 89.30 89.60 88.83 87.10 85.20 89.47 89.47 89.57 89.13 86.07 84.27

Flowers102 [27]
CoOp 86.13 81.07 74.93 68.47 55.50 39.37 86.47 76.43 63.07 45.20 27.10 12.40
CoOp+JoAPR 90.13 88.13 84.47 82.13 75.60 75.13 89.80 88.83 84.73 73.27 71.03 62.87
CoOp+JoAPR* 88.50 88.33 85.93 82.70 77.33 75.50 89.67 89.17 84.63 76.47 73.80 58.87

StanfordCars [20]
CoOp 66.37 59.00 54.23 47.70 36.93 24.70 65.67 57.03 46.47 33.10 20.70 11.30
CoOp+JoAPR 68.60 67.63 65.77 63.53 58.97 51.53 67.00 64.47 61.20 54.87 47.20 36.57
CoOp+JoAPR* 68.33 67.57 66.23 63.00 58.57 51.80 67.67 65.53 63.43 58.50 52.33 43.83

OxfordPets [29]
CoOp 77.67 69.23 58.73 48.37 35.37 22.37 76.40 65.70 51.87 37.00 25.90 14.17
CoOp+JoAPR 85.20 85.40 85.27 85.67 85.30 83.77 85.97 86.93 86.07 85.87 82.77 76.93
CoOp+JoAPR* 85.93 86.13 85.17 86.27 84.53 83.10 87.13 87.50 87.37 86.53 85.33 81.17

UCF101 [28]
CoOp 68.73 64.43 58.37 51.83 43.67 30.30 68.83 61.27 49.37 38.80 24.63 13.73
CoOp+JoAPR 73.90 73.17 72.77 70.00 67.10 65.40 72.93 72.43 70.43 66.27 61.80 52.77
CoOp+JoAPR* 73.37 73.83 71.40 70.30 66.83 63.80 73.03 72.40 69.77 69.10 63.40 56.23

EuroSAT [15]
CoOp 77.77 71.27 62.13 54.90 45.53 26.73 78.77 67.37 55.73 42.83 28.33 18.70
CoOp+JoAPR 78.33 79.37 78.33 72.23 66.20 49.37 80.00 78.57 73.03 63.03 58.47 39.47
CoOp+JoAPR* 79.30 80.53 78.07 67.33 59.20 34.45 78.23 78.50 69.43 58.23 40.85 25.90

DTD [7]
CoOp 55.50 49.27 43.83 36.00 27.23 19.77 55.43 46.77 37.40 27.53 18.87 10.17
CoOp+JoAPR 58.83 57.67 55.70 53.07 50.67 46.30 57.33 55.13 55.03 48.53 45.00 32.53
CoOp+JoAPR* 56.63 56.63 56.77 53.07 49.40 46.83 55.60 57.03 55.30 53.27 41.17 31.70

Generalized Cross Entropy (GCE) [52] may further enhance
this robustness. Our investigation evaluates how CoOp per-
forms when integrated with GCE in the presence of label
noise. As presented in Fig. 5, CoOp utilizing GCE instead
of CE demonstrates improved robustness. Nonetheless,
when compared to our JoAPR/JoAPR* approach, GCE’s
robustness falls short in high-noise scenarios or with com-
plex noise type. Notably, on the EuroSAT and DTD datasets
with 75% Pairflip noise, CoOp augmented with GCE under-
performs even the baseline CoOp that uses CE.

5.5. Comparison with Sample Selection

Considering that the idea of JoAPR originates from sample
selection in LNL, DivideMix [23], which addresses label
noise in a semi-supervised manner and excels in this do-
main, is chosen for comparison with JoAPR. The results
are depicted in Fig. 5. Analyzing the outcomes, we ob-
serve that CoOp combined with DivideMix is more robust
than CoOp with GCE in most cases. However, DivideMix
performs considerably worse than JoAPR/JoAPR*. It
should be noted that on the Caltech101 dataset injected
with Symflip noise, DivideMix even performs worse than
CoOp with GCE. This outcome underscores that tradi-
tional methods for handling label noise are not particularly
effective in enhancing the robustness of prompt learning
with few-shot datasets and further validates the efficacy of
JoAPR/JoAPR* in mitigating the impact of label noise.

5.6. The Generalization of JoAPR

To assess the generalization of our proposed method, we
extend our evaluation to CoOp’s subsequent iteration, Co-
CoOp [54]. CoCoOp exhibits superior generalization to un-
seen classes within the same dataset compared to CoOp.
Consequently, when comparing with CoCoOp, our focus
remains on testing classes not present in the training set.
The results are presented in Tab. 3. From the table, it is ev-
ident that the impact of noise on CoCoOp does not exhibit
a negative correlation as observed in CoOp. This discrep-
ancy arises because, even if CoCoOp overfits to noisy la-
bels, its performance is unaffected when tested on new and
unknown categories. However, it’s crucial to note that noise
labels themselves introduce incorrect knowledge learned by
CoCoOp, leading to a notable impact, especially with the
addition of Pairflip noise. Incorporating JoAPR/JoAPR*,
CoCoOp excels across all scenarios, echoing the robust per-
formance observed in CoOp.

Table 3. Comparison with CoCoOp on EuroSAT.

Noise Type Method\Noise Ratio 12.5% 25.0% 37.5% 50.0% 62.5% 75.0%

Symflip
CoCoOp 61.30 55.83 46.77 60.40 43.20 32.77
CoCoOp+JoAPR 62.20 61.90 58.43 63.93 59.37 63.90
CoCoOp+JoAPR* 60.27 59.30 58.70 59.93 58.83 60.07

Pairflip
CoCoOp 56.90 54.43 54.03 32.47 34.67 24.97
CoCoOp+JoAPR 62.43 61.77 61.47 61.53 60.30 59.67
CoCoOp+JoAPR* 56.50 59.07 59.60 61.43 60.90 52.73

28701



30.0

40.0

50.0

60.0

70.0

80.0

90.0

25.0 37.5 50.0 62.5 75.0

A
cc

u
ra

cy
()

%

Noise Ratio(%)

CoOp

CoOp+JoAPR

CoOp+JoAPR*

CoOp+GCE

CoOp+DivideMix

Caltech101 Sysflip(a) Caltech101-Symflip

20.0

30.0

40.0

50.0

60.0

70.0

80.0

25.0 37.5 50.0 62.5 75.0

A
cc

u
ra

cy
()

%

Noise Ratio(%)

CoOp

CoOp+JoAPR

CoOp+JoAPR*

CoOp+GCE

CoOp+DivideMix

Eurosat Sysflip(b) EuroSAT-Symflip

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

25.0 37.5 50.0 62.5 75.0

A
cc

u
ra

cy
()

%

Noise Ratio(%)

CoOp

CoOp+JoAPR

CoOp+JoAPR*

CoOp+GCE

CoOp+DivideMix

DTD Sysflip(c) DTD-Symflip

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

25.0 37.5 50.0 62.5 75.0

A
cc

u
ra

cy
()

%

Noise Ratio(%)

CoOp

CoOp+JoAPR

CoOp+JoAPR*

CoOp+GCE

CoOp+DivideMix

Oxford_pets Sysflip(d) OxfordPets-Symflip

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

25.0 37.5 50.0 62.5 75.0

A
cc

u
ra

cy
()

%

Noise Ratio(%)

CoOp

CoOp+JoAPR

CoOp+JoAPR*

CoOp+GCE

CoOp+DivideMix

Caltech101 Pairflip(e) Caltech101-Pairflip

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

25.0 37.5 50.0 62.5 75.0

A
cc

u
ra

cy
()

%

Noise Ratio(%)

CoOp

CoOp+JoAPR

CoOp+JoAPR*

CoOp+GCE

CoOp+DivideMix

Eurosat Pairflip(f) EuroSAT-Pairflip

5.0

15.0

25.0

35.0

45.0

55.0

25.0 37.5 50.0 62.5 75.0

A
cc

u
ra

cy
()

%

Noise Ratio(%)

CoOp

CoOp+JoAPR

CoOp+JoAPR*

CoOp+GCE

CoOp+DivideMix

DTD Pairflip(g) DTD-Pairflip

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

25.0 37.5 50.0 62.5 75.0

A
cc

u
ra

cy
()

%

Noise Ratio(%)

CoOp

CoOp+JoAPR

CoOp+JoAPR*

CoOp+GCE

CoOp+DivideMix

Oxford_pets Pairflip(h) OxfordPets-Pairflip

Figure 5. Performance of CoOp using GCE, DivideMix, CE and JoAPR/JoAPR* on four datasets respectively.

5.7. Ablation Study

Ablation studies on EuroSAT (Tab. 4) confirm the signifi-
cance of each constituent in JoAPR’s framework. Compo-
nent omission led to performance deterioration, emphasiz-
ing their collective contribution to the model’s overall ef-
ficacy. (1) Omitting Warmup hinders quick, stable model
convergence. Warmup’s confidence penalty term prevents
overfitting to noisy labels, so its removal disrupts subse-
quent stages. (2) Using either θ1 or θ2 alone reduces the
accuracy of the partitioning, leading to diminished model
performance. (3) psoftmax prevents early-stage overfitting
to misclassified noise labels. (4) Label refurbishment, our
method’s ultimate goal, involves correcting mislabeled la-
bels. As shown in our ablation study, model performance
degrades more significantly when noisy labels are unrefur-
bished compared to clean labels, aligning with our expec-
tations. (5) Mixmatch serves dual purposes: data augmen-
tation and entropy reduction in refurbished pseudo-labels
through Sharpen, making them more akin to one-hot labels.

5.8. Further Analysis

In order to see how powerful JoAPR really is, we conduct
a highly challenging experiment introducing 100% noise to
both the Caltech101 and OxfordPets, meaning that all train-

Table 4. Ablation studies on EuroSAT.

Noise Type Symflip Pairflip
Method\Noise Ratio 25.0% 50.0% 75.0% 25.0% 50.0% 75.0%

JoAPR 79.37 72.23 49.37 78.57 63.03 39.47
JoAPR w/o Warmup 74.00 48.77 33.20 73.60 61.83 27.53
JoAPR w/o θ1 52.43 61.23 21.23 78.30 61.37 20.07
JoAPR w/o θ2 75.07 63.13 43.47 75.87 60.50 35.57
JoAPR w/o psoftmax 79.15 65.17 33.07 76.10 54.50 23.03
JoAPR w/o clean refurbishment 78.37 67.57 37.00 76.13 55.13 19.13
JoAPR w/o noise refurbishment 69.40 56.07 25.80 66.87 41.47 19.00
JoAPR w/o MixMatch 58.70 43.30 39.37 66.07 44.73 10.53

Table 5. Test results on datasets with all mislabeled labels.

Dataset Method\Noise Type Symflip Pairflip

Caltech101
CoOp 1.30 0.60
CoOp+JoAPR 81.50 84.90
CoOp+JoAPR* 84.80 84.10

OxfordPets
CoOp 4.70 1.40
CoOp+JoAPR 72.60 76.90
CoOp+JoAPR* 72.40 70.40

ing data is mislabeled. We conduct three rounds of exper-
iments and select the best-performing one. The results, as
depicted in Tab. 5, are remarkably surprising! With the as-
sistance of JoAPR, CoOp demonstrates exceptional perfor-
mance in both Symflip and Pairflip scenarios. In contrast,
CoOp without JoAPR assistance becomes virtually non-
functional. This suggests that for prompt learning, metic-
ulously annotated datasets may no longer be a requirement.
Consequently, this will significantly reduces the cost and
time involved in dataset production or collection.

6. Conclusion
In this study, we uncover the vulnerability of prompt learn-
ing for VL-PTMs to label noise and propose a new method
that uses joint adaptive thresholds to effectively separate
clean from noisy data, aiding in label correction. This is,
to our understanding, the first in-depth approach specifi-
cally designed to address label noise in VL-PTMs’ prompt
learning. Our broad experimental testing verifies that this
approach considerably enhances the models’ robustness to
both simulated and authentic noise scenarios.
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