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Abstract

In this paper, we present LiDAR-Net, a new real-scanned
indoor point cloud dataset, containing nearly 3.6 billion
precisely point-level annotated points, covering an expan-
sive area of 30,000m2. It encompasses three prevalent dai-
ly environments, including learning scenes, working scenes,
and living scenes. LiDAR-Net is characterized by its non-
uniform point distribution, e.g., scanning holes and scan-
ning lines. Additionally, it meticulously records and an-
notates scanning anomalies, including reflection noise and
ghost. These anomalies stem from specular reflections on
glass or metal, as well as distortions due to moving per-
sons. LiDAR-Net’s realistic representation of non-uniform
distribution and anomalies significantly enhances the train-
ing of deep learning models, leading to improved general-
ization in practical applications. We thoroughly evaluate
the performance of state-of-the-art algorithms on LiDAR-
Net and provide a detailed analysis of the results. Crucial-
ly, our research identifies several fundamental challenges
in understanding indoor point clouds, contributing essen-
tial insights to future explorations in this field. Our dataset
can be found online: http://lidar-net.njumeta.com.

1. Introduction

Owing to its reliability and accuracy, Light Detection And
Ranging (LiDAR) technology becomes increasingly popu-
lar, finding broad applications in autonomous vehicles for
perception and localization [23, 26, 54] as well as expand-
ing its applications in consumer electronics [3, 34, 37]. In-
troduced in 2020, the LiDAR scanner on the iPhone has en-
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Figure 1. LiDAR-Net comprises 3.6 billion real-scanned points,
each annotated with semantic and instance labels. Points of
LiDAR-Net have real-scanned characteristics including scanning
holes, scanning lines, and anomalies such as ghosts (indicated by
red points) caused by moving persons. These characteristics sig-
nificantly enhance the ability of trained deep models to generalize
to real-world applications.

abled a multitude of innovative applications in virtual reali-
ty (VR) and 3D measurements. Deep learning has achieved
remarkable success in computer vision, particularly in an-
alyzing and understanding 3D scenes [35, 36, 49, 56].
Datasets undoubtedly have played a critical role in this
process, since training a deep models usually requires ex-
tensive annotated datasets, especially for supervised learn-
ing [2, 8, 11, 19, 42, 53]. In the domain of 3D computer vi-
sion for indoor scenes, the most widely recognized datasets
in the academic community are S3DIS [2], ScanNet [11],
and the recent ScanNet++ [53], etc. S3DIS and ScanNet
have been used to train models for various 3D scene un-
derstanding tasks, such as 3D object detection, along with
semantic and instance segmentation. S3DIS and ScanNet
collect RGB-D images, and then reconstruct and annotate
textured meshes. ScanNet++ relies on a scanner to cap-
ture point clouds, however, the provided annotations are at-
tached to the Poisson reconstruction instead of raw points.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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#Name #Year #Spatial size #Classes #Points # Raw points # Anomalies #Sensors
S3DIS [1] 2017 6×103m2 13 273M % % Matterport

ScanNet [11] 2017 3.4×104m2 20 242M % % RGB-D
ScanNet++ [53] 2023 1.5×104m2 1000+ 446M % % TLS

LiDAR-Net (Ours) 2023 3.0×104m2 24 3619M " " MLS

Table 1. In comparison with well-known indoor scene datasets, LiDAR-Net exceeds both S3DIS and ScanNet++ regarding spatial size
and resolution. Although ScanNet covers a larger spatial size than ours, we provide points with annotations at a higher resolution. TLS is
Terrestrial Laser Scanning system. MLS is Mobile Laser Scanning system.

Original points Original pointsSemantic labels Semantic labels

Figure 2. Illustration of reflection noise. These noise points usu-
ally suspends in the air. Purple highlights reflection noise in the
semantic label figures

The 3D accuracy of these datasets is inferior to that of raw
point clouds directly collected using laser scanners. Anno-
tated data in existing datasets also lack characteristic dis-
tributions of real-scanned points, including scanning lines
and scanning holes, as illustrated in Fig. 1. Consequently,
deep models trained on these datasets tend to perform poor-
ly when applied to actual, real-scanned point cloud data,
significantly impeding their practical applicability.

In this paper, we contribute a new dataset, LiDAR-Net,
to the academic community. Distinct from existing indoor
scene datasets, LiDAR-Net is captured by real laser scan-
ners and contains precise semantic and instance annotations
for each raw point. LiDAR-Net encompasses three common
daily scenes: learning, working, and living environments. It
contains 3.6 billion 3D points, covering 30, 000m2 of in-
door space. Using professional LiDAR scanning systems,
the 3D point clouds the dataset ensures the high authentic-
ity of its 3D point clouds. Detailed information about the
data collection process is provided in Section 3. Across all
scenes, each point is carefully annotated and classified into
24 semantic categories, such as floor, ceiling, and window.

Compared to previous indoor scene datasets primarily
collected using RGB-D cameras or annotated on recon-
structed meshes, LiDAR-Net offers several advantages:
• Firstly, LiDAR-Net distinguishes itself by its authentical-

ly captured point cloud data, which leads to non-uniform
point distributions, characterized by scanning holes and
lines, as depicted in Fig. 1.

• Secondly, LiDAR-Net includes comprehensive annota-
tions of scanning anomalies including reflection noises
(purple points in Fig. 2) and ghosts caused by moving
objects, particularly persons (red points in Fig. 1).

• Thirdly, LiDAR-Net covers corridors and stairs connect-
ing each room, creating seamless and complete spaces

crucial for integrated tasks across entire areas.
Table 1 presents a comparative analysis with other popu-
lar indoor scene datasets. While many outdoor point cloud
datasets [43, 44] contain real-scanned data, the significant
disparity in scene characteristics presents challenges for
adapting outdoor datasets to indoor tasks. Moreover, out-
door point clouds generally show a higher level of sparsity
and incompleteness compared to LiDAR-Net.

Using LiDAR-Net, we recognize several challenges and
conduct studies on them, as outlined in Section 5. We
first investigate the process of annotating a large indoor
point cloud dataset. Then, we discuss the significance of
real-scanned point cloud data for semantic learning, em-
phasizing the advantages of raw LiDAR-based point clouds
over those from depth cameras or from reconstructed mesh-
es. Additionally, we investigate the imbalance of semantic
classes in indoor environments. While this paper does not
provide exhaustive solutions, it introduces these challenges
for further exploration by the research community. Our dis-
cussion on the complexities of multi-task learning in indoor
3D point clouds aims to spur developments in fields such as
intelligent home systems, digital twins, indoor robotic nav-
igation, asset management in extensive indoor infrastruc-
tures, and smart construction sites, etc. To summarize, our
work makes the following contributions:
• We introduce LiDAR-Net, a comprehensive large-scale

3D point cloud dataset. This dataset is equipped with
point-level semantic and instance annotations, making it
ideal for multi-task training and testing.

• LiDAR-Net is characterized by its distinct features such
as non-uniform point distributions, scanning anomalies,
and seamless spatial coverage. These attributes notably
enhance the generalization capabilities of trained deep
models for real-world applications.

• We assess the efficacy of current algorithms within real-
scanned point cloud environments and identify key chal-
lenges in this field.

2. Related Work
Booming deep learning-based 3D scene understanding
methods desire various 3D scene datasets. Guo et al. [15]
give a comprehensive survey on this topic. We briefly sum-
mary 3D scene datasets and 3D point cloud scene under-
standing methods below.
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2.1. 3D Scene Datasets

According to the application scenario, existing 3D datasets
can be divided into three categories: (i) 3D objects, (ii) in-
door scenes, (iii) outdoor scenes.

3D objects. ModelNet [50] and ShapeNet [9] are both
3D synthetic mesh datasets for shape classification. Mo et
al. [32] propose PartNet containing hierarchical labels for
part segmentation. ABC dataset [22] contains 1M CAD
models with structure information. Deitke et al. [12] pro-
pose Objaverse-XL, which is a universe of 10M+ 3D ob-
jects.

Indoor scenes. Early indoor 3D datasets are acquired
by using commodity short-range depth scanners such as
NYUv2 [41] and SUN RGB-D [42], comprising short
RGB-D sequences with limited resolution. While Sce-
neNN [19] and PiGraphs [39] provide reconstructed and la-
beled scenes, their scene counts are restricted. Armeni et
al. [2] propose S3DIS, which is a widely used benchmark in
many tasks, by collecting RGB-D images and reconstruct-
ing 3D textured mesh model for each scene. The colored 3D
point clouds in S3DIS are densely and uniformly sampled
from the textured meshes. ScanNet [11] also provide 3D re-
constructions captured by an iPad equipped with a structure
sensor, accompanied by annotations. Matterport3D [8] gen-
erates low-resolution meshes from panoramic RGB-D im-
ages. ARKitScenes [5] offers high-resolution ground truth
geometry by using laser scans, but it only provides bound-
ing box annotations. Novel view synthesis methods, such
as neural radiance fields (NeRFs) [31], development rapid-
ly in recent years [4, 28]. Yeshwanth et al. [53] propose
ScanNet++, containing 460 scenes with DSLR images and
iPhone RGB-D frames. They obtain each scene by using
the Faro Focus Premium laser scanner and implementing
Poisson reconstruction [20, 21] to obtain meshes. Then
the meshes are annotated. Comparing to S3DIS [2], Scan-
Net [11], and ScanNet++ [53], LiDAR-Net provides anno-
tated raw points, which can be directly employed for train-
ing deep models specializing in 3D point cloud scene un-
derstanding. LiDAR-Net meticulously preserves the char-
acteristics of raw point clouds captured by sensors, encom-
passing non-uniform distributions like scanning holes and
lines, as well as anomalies like reflection noises and ghosts.

Outdoor scenes. These datasets are usually captured
by static Terrestrial Laser Scanners (TLS), Mobile Laser
Scanners (MLS), and Airborne Laser Scanners (ALS). The
representative datasets in this domain comprise roadway-
level datasets, such as KITTI [14], Paris-rue-Madame [40],
IQmulus [46], Semantic3D [16], Paris-Lille-3D [38], Ar-
goverse [10], SemanticKITTI [6], SemanticPOSS [33],
Toronto-3D [44], nuScenes [7], and Waymo dataset [43].
Additionally, urban-level aerial 3D point cloud datasets in-
clude DublinCity [57], DALES [47], LASDU [52], Cam-
pus3D [24], and SensatUrban [18].

2.2. Deep Learning on 3D Scene Understanding

Pioneered by PointNet [35], neural networks are used to
process the unordered point cloud data [25, 36, 49, 56],
leading to numerous innovative applications [13, 27, 30,
55]. We choose three representative tasks to evaluate
LiDAR-Net dataset. 1) Semantic segmentation. Thomas
et al. [45] propose Kernel Point Convolution (KPConv) op-
erators for 3D point clouds using a set of learnable ker-
nel points. Hu et al. [17] propose RandLA-Net utiliz-
ing random point sampling to achieve remarkably high ef-
ficiency. 2) Instance segmentation. ASIS [48] uses a
feature fusion structure to enhance both semantic and in-
stance branches by leveraging information from each oth-
er. Yang et al. [51] propose a single-stage and anchor-
free network called 3D-BoNet for instance segmentation.
3) Object detection. VoteNet [37] implements a unique
voting scheme among points to infer object bounding box
centers. GroupFree3D [29] leverages a sophisticated atten-
tion mechanism that obviates the need for point candidate
grouping, enabling direct inference of object instances.

3. Dataset Acquisition and Annotation

3.1. Point Cloud Acquisition

Acknowledging the marked advantages of LiDAR technol-
ogy in securing authentic three-dimensional data over tra-
ditional RGBD data acquisition methods, our research uti-
lizes Leica BLK2GO, a device combining dual-axis Li-
DAR technology. The BLK2GO is equipped not only with
a commercial dual-axis LiDAR and a 12-megapixel detail
camera but also with a 4.8-megapixel, 3-shot panoramic
camera. This integration enables stable collection of point
cloud data with an accuracy of ±3mm@10m and a cap-
ture speed of 420,000 points/second within a 0.5 ∼ 25m
range, while simultaneously obtaining high-resolution col-
or images. Significantly, the BLK2GO implements Grand-
SLAM dual-positioning technology, seamlessly blending
laser SLAM and visual SLAM. This approach involves us-
ing point cloud from LiDAR and inertial navigation from
IMU for one aspect of positioning, and determining the cur-
rent position and orientation by analyzing disparities be-
tween consecutive frames captured by the panoramic cam-
era. For the LiDAR-Net, all data acquisition routes are
meticulously pre-planned by professional surveyors, ensur-
ing comprehensive and consistent coverage of the targeted
area. To mirror the various interferences typical in real-
world point cloud acquisition scenarios, all data are man-
ually collected by human surveyors. Due to the device’s
battery capacity constraints, each data collection session is
strategically limited to approximately one hour. To encom-
pass the entire area, data from multiple individual sessions
are manually integrated.
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Figure 3. Semantic and instance labels. LiDAR-Net provides point-level annotations directly associated with each raw data point.

3.2. Point Cloud Annotation

In the dataset, we address three sub-tasks: semantic seg-
mentation, instance segmentation, and object detection.
The categorization criteria are based on two key principles:
1) Each category should possess a distinct and unambiguous
semantic meaning, aligning with both academic research
and practical business applications. This alignment facili-
tates advanced visual tasks such as 3D reconstruction, point
cloud completion, and applications in virtual reality, build-
ing upon baseline tasks. 2) The categories should exhib-
it significant geometric or appearance differences, ensuring
clear distinction across different groups. We provide a Point
Cloud AnnoTation system (PCAT system) to annotate all
point clouds in the LiDAR-Net with both semantic and in-
stance labels. Subsequently, object detection labels, in the
form of bounding boxes, are derived from these instance

labels. The PCAT system is set to be released, allowing
users to easily modify or subdivide labels according to their
specific requirements. Each label in LiDAR-Net is rigor-
ously manually annotated and verified, ensuring the con-
sistency and high quality of the semantic categories. The
entire dataset labeling consumes approximately 550 work-
ing hours. Illustrative examples of our annotations are dis-
played in Fig. 3.

We annotate various indoor components, including
floors, stairs, and ceilings, as well as a wide range of fur-
niture and fixtures such as tables, chairs, and sofas. Addi-
tionally, we carefully annotate anomalies captured by Li-
DAR, encompassing reflection noises and ghosts, as they
introduce inaccuracies into the data and present challenges
in data analysis. Specular reflections from smooth surfaces
like glass or metal can disrupt LiDAR systems, resulting
in reflection noise points. LiDAR systems would capture
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incomplete and repetitive ghosts when persons or other ob-
jects move in front of the scanner. These anomalies, com-
monly encountered in real-world applications like robotics
and consumer electronics, are accurately recorded in our
LiDAR-Net dataset to aid in training deep learning models
capable of handling these challenges.

3.3. Benchmark

LiDAR-Net contains classrooms, study lounges, seminar
rooms, auditoriums for learning scenes, offices, meeting
rooms, lounges for working scenes, and living rooms, bed-
rooms, dining rooms, washrooms for living scenes. Fig. 4
shows the diversity of scenes. Furthermore, We record
world coordinates of rooms to form connecting areas, in-
cluding 2, 7, and 5 seamless areas of learning, working and
living scenes, which facilitate navigation and understanding
large-scale indoor scenes.

For the facilitation of GPU-accelerated batch training
and testing, we divide the point clouds from various scenes
into individual rooms based on their primary structural fea-
tures, particularly the wall orientations. It is important to
note that we provide coordinate correspondences for each
room to facilitate tasks working in a whole area. Point
clouds from learning scenes are divided into 216 rooms, in-
cluding 173 rooms for training and 43 for testing. Similarly,
we split the working scenes into 206 rooms, including 169
and 37 for training and testing, each room covering approx-
imately 100m2. In living scenes, of the 43 rooms analyzed,
33 are used for training and 10 for testing. The distribution
of room areas is illustrated in Fig. 5.

LiDAR-Net contains 24 semantic categories, including
houseplant (low potted plants), tree (tall trees typically po-
sitioned on the floor), person, floor, stair, ceiling, pipe,
wall, pillar, window, curtain, door, table, chair, sofa, black-
board (common in learning or working scenes), monitor,
bookshelf, wardrobe, bed, light, tabletop others (miscella-
neous small objects on tables), reflection noise, ghost (re-
sulting from moving entities, such as people). Additionally,
an ’unknown’ class exists outside these 24 categories, en-
compassing points not classified into any specific category.
Each point within the 24 semantic categories is assigned
instance labels. 17 categories are used for object detec-
tion. Floors, ceilings, pipes, walls, pillars, reflection nois-
es and ghosts, which lack definite boundaries, are excluded
from object detection task, following [29, 37]. It is impor-
tant to note that instance labels are provided for these ex-
cluded categories, facilitating use cases like smart construc-
tion sites and vectorized indoor modeling. The LiDAR-Net
dataset will be publicly released, with the goal of estab-
lishing benchmarks in indoor point cloud semantic segmen-
tation, instance segmentation, and object detection, which
will be evaluated through an online public platform. Fol-
lowing ScanNet [11] and ScanNet++ [53], labels of the test

set will remain hidden.

4. Experiments
4.1. Representative Baselines

In Section 2.2, we explore the three main tasks in learning-
based 3D point cloud scene understanding. To comprehen-
sively evaluate our LiDAR-Net dataset, we carefully select
eight emblematic methods, applying them as benchmarks
across different tasks to conduct an extensive benchmark
test on our dataset. Precisely, we utilize PointNet [35],
PointNet++ [36], KPConv [45], and RandLA-Net [17], for
point cloud semantic segmentation, ASIS [48] and 3D-
BoNet [51] for instance segmentation, VoteNet [37] and
GroupFree3D [29] for object detection.

4.2. Evaluation Metrics

Consistent with prevailing benchmarks, our evaluation
framework is designed for a thorough assessment across
various segmentation and detection tasks. For semantic
segmentation, we focus primarily on mean Intersection-
over-Union (mIoU) as the key evaluation metric, follow-
ing [17, 45]. In instance segmentation, our analysis empha-
sizes mean precision (mPre) and mean recall rate (mRec)
to measure algorithmic performance, following [48, 51].
Moreover, within the domain of object detection, we con-
centrate on the mean of per-category object detection aver-
age precision with 3D IoU threshold 0.25 and 0.5, denoted
as mAP@0.25 and mAP@0.5, following [29, 37].

4.3. Benchmark Results

To ensure a fair comparison, we rigorously follow the ex-
perimental settings outlined in the original publications of
each benchmark algorithm. Table 2 presents the quantita-
tive results across three tasks. The overall performances
in segmentation and detection has not reached a satisfac-
tory level. For instance, examining RandLA-Net [17] and
KPConv [45], which show the best performance in seman-
tic segmentation, Table 3 details the IoU for each semantic
category of the two methods. Table 3 reveals that certain
key categories, such as window and bookshelf, were poor-
ly segmented. RandLA-Net achieves 42.02% for the IoU
of tree, which is higher than 7.94% of KPConv, however
for the IoU of sofa, performance of KPConv is much bet-
ter than that of RandLA-Net. There is a significant varia-
tion in performance across different algorithms within these
challenging categories, and no single algorithm consistently
outperforms the other. Comprehensive quantitative results
of other semantic segmentation, instance segmentation and
object detection methods for each category are given in the
supplementary materials.

A key advantage of our LiDAR-Net is that its annotated
raw points closely mirror the distribution of real-scanned
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Figure 4. The diversity of scenes. Each point is color-coded by its semantic label. The bottom row displays three seamless areas.

Semantic segmentation mIoU Instance segmentation mPre mRec Object detection mAP@0.25 mAP@0.5
PointNet [35] 16.27 ASIS [48] 37.32 25.08 VoteNet [37] 44.83 16.71PointNet++ [36] 28.81
KPConv [45] 44.29 3D-BoNet [51] 39.82 24.63 GroupFree3D [29] 46.80 18.86RandLA-Net [17] 32.60

Table 2. Statistics of selected emblematic methods on LiDAR-Net. The percent sign (%) is omitted.

Methods Houseplant Tree Person Floor Stair Ceiling Pipe Wall Pillar
KPConv [45] 26.98 7.94 45.22 85.43 25.70 86.51 38.49 74.92 5.68

RandLA-Net [17] 3.56 42.02 40.75 93.17 0.42 86.12 19.43 73.81 0.91
Window Curtain Door Table Chair Sofa Blackboard Monitor Bookshelf

KPConv [45] 9.48 22.21 34.44 79.88 75.45 58.02 74.79 55.23 26.76
RandLA-Net [17] 18.00 41.33 51.22 61.69 42.28 0.00 74.77 6.06 7.73

Wardrobe Bed Light Tabletop others Reflection noise Ghost Unknown mIoU
KPConv [45] 34.05 39.51 65.21 40.58 19.22 56.82 18.80 44.29

RandLA-Net [17] 0.00 0.00 54.13 14.91 0.00 67.53 15.09 32.60

Table 3. Comparison of IoU for each semantic category. The percent sign (%) is omitted.
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Figure 5. Distribution of room areas. LiDAR-Net encompasses
a diverse array of rooms, reflecting a broad spectrum of spatial
configurations.

Datasets
Semantic

segmentation
Instance

segmentation
Object

detection
mIoU mPre mRec mAP@0.25 mAP@0.5

S3DIS [2] 35.58 15.72 7.84 7.93 0.28
ScanNet [11] 33.18 15.88 14.44 20.91 1.21

ScanNet++ [53] 23.60 26.48 4.68 13.31 1.67
LiDAR-Net 39.75 32.92 20.39 32.96 9.22

Table 4. Quantitative comparisons of deep models trained on dif-
ferent datasets and tested on real-scanned data. The percent sign
(%) is omitted.

points. To evaluate it, we train the benchmark methods
on existing popular datasets, including S3DIS [2], Scan-
Net [11], and ScanNet++ [53]. Then, the deep models

are tested on 5 real-scanned rooms, captured using a Le-
ica BLK2GO scanner in locations not included in LiDAR-
Net. Due to the categories of the four datasets are dif-
ferent, we test the models on the communal categories.
Fig. 6 and Table 4 show the qualitative and quantita-
tive comparisons, selecting RandLA-Net [17] for seman-
tic segmentation, ASIS [48] for instance segmentation, and
GroupFree3D [29] for object detection. Detailed statistics
of other methods and each category are listed in the sup-
plementary materials. Benefited from the realistic distribu-
tion of raw points in LiDAR-Net, deep models trained on it
demonstrate superior performances across all three tasks.

5. Challenges

This section focuses on the key challenges presented by our
dataset, which inherently stem from the authentic LiDAR
collection process. Then, we provide an in-depth analysis
of these challenges with a potential to drive advancements
in the current field. Concurrently, we delve into tentative
discussions of viable solutions. It is crucial to clarify that
the aim of this paper is not to introduce a new method for
addressing these challenges. Rather, our goal is to identify
data biases potentially caused by existing datasets, to shed
light on unresolved issues, and to provide analysis and in-
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Figure 6. Qualitative comparisons of deep models trained on different datasets and tested on real-scanned data. Each row displays one
task. Deep models are tested on the communal categories. It’s important to note that ScanNet++ does not include instance labels for floors,
walls, and ceilings, and therefore, these elements are excluded from the instance segmentation experiment.

sights. Ultimately, we seek to catalyze advancements in the
understanding of indoor scene point clouds.

5.1. Differences in Data Distribution

LiDAR scanning. In previous discussions, we introduced
a point cloud dataset derived from authentic LiDAR scan-
ning, which significantly differs from existing indoor point
cloud datasets. While LiDAR and RGB-D scanning pro-
duce point clouds with some similar attributes, notable dif-
ferences exist in their characteristics. The non-uniform dis-
tribution of real-scanned points, characterized by scanning
holes and lines, is a result of the laser scanning process. Li-
DAR measures distance by emitting laser pulses and mea-
suring the time they take to return. The laser beam moves
directionally, creating linear point captures. Gaps in these
lines lead to scanning holes. Furthermore, the distance from
the scanner affects point distribution. Points closer to the
scanner are denser, while those at greater distances tend
to be sparser, a phenomenon owing to the dispersion and
weakening of laser pulse energy. LiDAR’s capability to op-
erate over long distances inherently leads to a noticeable
decrease in point density at farther ranges.

RGB-D cameras. Conversely, RGB-D cameras, which
utilize structured light or Time of Flight (ToF) technolo-
gy, determine distance using a distinct methodology. Points
closer to the sensor tend to be denser due to variations in ob-
servational angles, while farther points show relative sparsi-
ty owing to resolution limits. RGB-D cameras are capable
of providing relatively dense data within a specific range,
but this density noticeably decreases or even disappears be-
yond their operational limit. Therefore, although both au-
thentic LiDAR and RGB-D cameras exhibit the challenge
of variable point density, there is a fundamental difference

Figure 7. Point and voxel distributions in S3DIS, ScanNet, Scan-
Net++ and LiDAR-Net.

in their respective point cloud distributions. In the indoor
conditions, authentic LiDAR typically encompasses a point
distribution radius spanning 2 ∼ 7 meters, in sharp contrast
to the 2 ∼ 5 meters typically covered by RGB-D cameras
(as illustrated in Fig. 7).

Comparison of the datasets. Due to the distinctions in
acquisition technologies, LiDAR and RGB-D systems ex-
hibit notable discrepancies in factors such as scanning pre-
cision, noise, color information, and performance in dif-
ferent lighting conditions. This type of data variance be-
comes particularly conspicuous in deep learning method-
ologies heavily reliant upon data. Fig. 7 illustrates the point
and voxel distributions in existing indoor datasets compared
to LiDAR-Net. Firstly, the three existing datasets predom-
inantly contain points within a 2 ∼ 5 meters range from
the scannner, while our LiDAR-Net provides a distinct dis-
tribution. It is worth to be explored that would the deep
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models trained on previous datasets over-fitted to the distri-
bution of 2 ∼ 5 meters? Our LiDAR-Net, with its broader
range of 2 ∼ 7 meters, provides an expanded scope for
future research in this area. Secondly, since the points in
the previous three datasets are generated by sampling on
annotated 3D reconstructions, they mirror the voxel distri-
bution. In contrast, the primary strength of LiDAR-Net lies
in its annotated raw points, which are non-uniform, leading
to distinct point and voxel distributions. This divergence
introduces new challenges to the field. Our dataset adept-
ly encapsulates these genuine characteristics of real-world
data, thereby establishing a robust foundation for various
forthcoming applications in indoor perception technology.

5.2. Impact of Imbalance Class Distribution

Upon further investigation, we discern a more critical issue
within indoor scene datasets: a conspicuous performance
discrepancy resulting from imbalanced class distribution.
We showcase the cumulative count of 3D points per seman-
tic category in the top of Fig. 8, and the instance distribution
is shown in the bottom. It is observable that the primary
semantic categories, including ceilings, floors, walls, etc.,
make up over 80% of the total points. In contrast, small-
er yet crucial categories (e.g., monitors) constitute a mere
0.16% of the total points, highlighting a stark imbalance in
the distribution of semantic classes. This disproportion is
inherent to indoor scenes, where walls, ceilings, and floors
naturally cover large surface areas, while items like moni-
tors are considerably smaller.

Data imbalance poses a significant challenge in 3D scene
understanding, an issue that is also evident in LiDAR-Net.
As shown in Table 3, the skew in segment headers is espe-
cially marked in the semantic segmentation task, owing to
the disparity in point cloud quantities at the point level. For
instance, looking at the results of RandLA-Net in specific
categories, the semantic segmentation accuracy for floors is
around 93%, while for stairs, it nearly drops to zero. Essen-
tially, indoor scenes are dominated by a few categories such
as ceilings and walls, whereas categories like stairs, though
minor but critical, have an extremely sparse data distribu-
tion. When considering instance segmentation, the combi-
nation of instance-level and point-level imbalances exacer-
bates the problem, leading to a more severe dual-imbalance
situation. Detailed instance segmentation results of each
category are listed and discussed in the supplementary ma-
terials. This profound imbalance in distribution poses an-
other significant challenge introduced by our dataset.

6. Conclusion
In this study, we present a comprehensive indoor point
cloud dataset derived from authentic LiDAR scanning. This
dataset encompasses three meticulously labeled scenes with
a total of 3.6 billion points, covering 30,000m2. Designed
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Figure 8. Top: Point number distribution of semantic categories.
Bottom: Instance number distribution. Unknown points do not
have instance labels.

for a variety of applications including semantic segmen-
tation, instance segmentation, and object detection, our
dataset serves as a versatile resource for related research
tasks. Our comprehensive benchmark testing not only high-
lights persistent challenges but also emphasizes the distinct
advantages of our dataset, particularly regarding the differ-
ences between annotated raw points from genuine LiDAR
and points sampled from annotated 3D reconstructions. We
have thoroughly examined issues such as the pronounced
effects of imbalanced class distribution and the adaptability
of models to unseen real-scanned scenes. Looking towards
a future where autonomous indoor robots navigate diverse
human-centric environments, we underscore the importance
of real-time perception using authentic LiDAR-scanned da-
ta. The precision and high resolution of real-world LiDAR
point cloud data are crucial for emerging cyber-physical
systems like smart homes and digital twins. We believe our
dataset and benchmarks will spur further progress in related
areas of study.
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