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Abstract

Camera-based person re-identification (ReID) systems
have been widely applied in the field of public security.
However, cameras often lack the perception of 3D morpho-
logical information of human and are susceptible to vari-
ous limitations, such as inadequate illumination, complex
background, and personal privacy. In this paper, we pro-
pose a LiDAR-based ReID framework, ReID3D, that uti-
lizes pre-training strategy to retrieve features of 3D body
shape and introduces Graph-based Complementary En-
hancement Encoder for extracting comprehensive features.
Due to the lack of LiDAR datasets, we build LReID, the
first LiDAR-based person ReID dataset, which is collected
in several outdoor scenes with variations in natural con-
ditions. Additionally, we introduce LReID-sync, a simu-
lated pedestrian dataset designed for pre-training encoders
with tasks of point cloud completion and shape parame-
ter learning. Extensive experiments on LReID show that
ReID3D achieves exceptional performance with a rank-1
accuracy of 94.0, highlighting the significant potential of
LiDAR in addressing person ReID tasks. To the best of
our knowledge, we are the first to propose a solution for
LiDAR-based ReID. The code and dataset are available at
https://github.com/GWxuan/ReID3D.

1. Introduction
Person ReID has numerous practical applications, such as
video surveillance, intelligent transportation and public se-
curity. Most ReID systems use cameras as sensors, aiming
to recognize the same individual in images or videos caught
by different cameras. With the development of computer vi-
sion technology, camera-based ReID has witnessed contin-
uous advancements. However, certain challenges have not
yet been effectively addressed. Firstly, cameras introduce
limitations in terms of visual ambiguity caused by poor illu-
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Figure 1. Overview of camera-based and LiDAR-based per-
son ReID. Camera-based methods primarily learn the 2D appear-
ance of human, such as color of clothes, accessories, and shoes.
LiDAR-based methods utilize 3D structural information to learn
intrinsic features, such as height, body shape, and gait.

mination and complex backgrounds [34]. Additionally, cur-
rent camera-based ReID models primarily learn appearance
information [47]. Therefore, variations in human appear-
ance considerably impact the performance of models [19].
Furthermore, camera-based person ReID systems raise per-
sonal privacy issues [1, 4] for applications in some areas.

In recent years, Kinect-based ReID approaches have
been proposed [28, 32] to address these challenges by uti-
lizing depth information. However, Kinect is primarily de-
signed for indoor scenes and has a limited measurement
range [17], restricting its applicability in large-scale outdoor
scenarios. Recently, researchers have explored the use of
radar for gait recognition, identity recognition, and person
ReID [7, 26]. While radar is cost-effective, it suffers from
poor angular and distance resolution, as well as a limited
effective measurement range [7], which poses challenges in
discriminating individuals with similar body shapes.

In the past few years, LiDAR has been widely adopted
in autonomous driving, driven by its improved accuracy and
reduced costs [38]. The successful applications of LiDAR
motivate us to explore its potential in person ReID within
complex outdoor scenes. LiDAR can offer a broader mea-
surement range and higher resolution, enabling precise per-
ception about individuals in large-scale outdoor settings.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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LiDAR provides precise 3D structural information with-
out being affected by lighting conditions or complex back-
grounds, which enables the extraction of intrinsic features
of individuals, such as height, body shape, and gait, irre-
spective of clothing color. LiDAR has been utilized in the
task of gait recognition [34], which focuses on recogniz-
ing cooperative subjects walking along a specified route in
small-scale scenes. However, ReID primarily focuses on
the identification of unscripted pedestrians in large-scale
scenes with a small sample size for each identity, which
often requires multiple acquisition devices. In our work,
we leverage low-cost LiDARs to tackle person ReID chal-
lenges, as shown in Fig. 1.

To the best of our knowledge, this paper presents the first
study on LiDAR-based person ReID. We build LReID, the
first LiDAR-based ReID dataset to facilitate research on uti-
lizing LiDAR point clouds for person ReID. We collect the
dataset in several outdoor scenes using multiple collection
nodes, each including a Livox Mid-100 LiDAR and an in-
dustrial camera. LReID offers several distinctive features:
(1) Real-world scenes. The dataset is captured in outdoor
scenes where pedestrians demonstrate unscripted behavior,
leading to occlusions between pedestrians, as well as the
presence of dynamic objects like vehicles and bicycles that
may impact person ReID. (2) Data diversity. LReID en-
compasses dynamic data and annotations of 320 pedestrian
gathered in varying seasons, times of day, and lighting con-
ditions, amounting to a total of 156,000 frames of point
clouds and images, thus enabling comprehensive analysis
of the impact of different factors on person ReID. (3) Preci-
sion. The Livox Mid-100 LiDAR has a distance accuracy of
2 cm and an angular accuracy of 0.1°, which provides high-
precision 3D structural information for ReID problems.

Additionally, we introduce a simulated dataset, named
LReID-sync, including 360,000 frames of point clouds for
600 pedestrians captured by multi-view synchronous Li-
DARs. LReID-sync comprises annotations for point cloud
completion from single view to full views, and Skinned
Multi-Person Linear Model (SMPL) parameters [24].

Based on point clouds, the identification of pedestri-
ans relies on their static anthropometric features, including
height, body shape, and limb structure, as well as their dy-
namic gait features. Accurately extracting complete shape
features of a pedestrian is beneficial for both aspects. To
address this, we propose an efficient LiDAR-based frame-
work, termed ReID3D. ReID3D utilizes a pre-training strat-
egy to guide the encoder in learning 3D body features based
on LReID-sync. Moreover, in order to extract discrimina-
tive static and dynamic features of pedestrians, the ReID
network of ReID3D comprises a Graph-based Complemen-
tary Enhancement Encoder (GCEE) and a temporal module.
Extensive experiments on LReID demonstrate the follow-
ing: (1) ReID3D outperforms the state-of-the-art camera-

based methods, particularly under low light, highlighting
the significant potential of LiDAR in addressing person
ReID tasks. (2) The use of LReID-sync for pre-training
significantly enhances feature encoding capability of the
model. (3) Compared to commonly used point cloud en-
coders, our GCEE exhibits a higher proficiency in extract-
ing comprehensive and discriminative features.

To summarize, our main contributions are as follows:
• To the best of our knowledge, this is the first work on

LiDAR-based person ReID, demonstrating the practical-
ity of utilizing LiDAR for person ReID in challenging
real-world outdoor scenes.

• We build LReID, the first LiDAR-based person ReID
dataset, which is collected in several outdoor scenes with
variations in natural conditions. Moreover, we introduce
LReID-sync, a new simulated pedestrian dataset designed
for pre-training ReID models with tasks of point cloud
completion and shape parameter learning.

• We propose a LiDAR-based ReID framework, termed
ReID3D, that utilizes pre-training strategy to guide the
encoder in learning 3D body features and introduces
GCEE for extracting comprehensive and discriminative
features. Experimental results on dataset LReID indicate
that ReID3D outperforms camera-based methods.

2. Related Work
Person ReID. Camera-based ReID has been extensively
researched in the past decades. Researchers have employed
various convolutional neural networks [48] to extract hu-
man features from images or videos. Some video-based
ReID models adopt recurrent neural networks (RNNs) [25,
45, 57] or transformer blocks [6, 56] to aggregate tempo-
ral features. These models primarily focus on extracting
appearance features, which serve as efficient but short-lived
identifiers. By contrast, intrinsic and behavioral features ex-
hibit minimal change over time. Given the constraints of us-
ing cameras at night, infrared sensors have been introduced
for RGB-IR cross-modality person ReID [29, 42]. How-
ever, the infrared sensor only captures 2D single-channel
intensity information, constraining its perceptive ability.

In order to extract intrinsic features of individuals, re-
searches on ReID utilizing Kinect [28, 32] and radar [7]
have emerged. Kinect and radar provide 3D structural in-
formation to help the model extract physiological and be-
havioral features, reducing reliance on the appearance of
individuals [10, 32]. However, they are constrained by sig-
nificant hardware limitations [7, 17]. In comparison, Li-
DAR serves as a more advantageous option, offering supe-
rior practicality. Despite this, LiDAR-based person ReID
has not been researched.

Point Cloud Completion. Point cloud completion is the
task to predict missing parts based on the rest of the point
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Table 1. Comparison of publicly available 3D datasets for person ReID.

Dataset Year Identity Sensor Scene Unscripted Natural diversity Occlusion
RGBD-ID [3] 2012 80 1 Kinect Indoor

BIWI RGBD-ID [27] 2014 50 1 Kinect Indoor
Kinect-REID [30] 2015 71 1 Kinect Indoor

LReID 2023 320 4 LiDARs + 4 Cameras Outdoor
LReID-sync 2023 600 4 LiDARs Simulation

cloud. To accomplish this, networks need to learn the in-
trinsic geometric structures and semantic knowledge of the
3D object. Additionally, the learned representations can be
transferred to downstream tasks. The entire process does
not require human annotations and therefore falls under the
category of unsupervised representation learning [44].

Point cloud completion has received increasing attention
in the past decade [13, 16, 23, 40]. In terms of complet-
ing the missing parts caused by a single viewpoint, Wang
et al. [36] utilize an encoder-decoder model to recover the
occluded points. However, there has been limited research
focusing on point cloud completion for pedestrians.

Person ReID Dataset. Depending on the used representa-
tions, person ReID datasets can be classified into 2D and 3D
datasets. Due to the early emergence and widespread use of
cameras, 2D datasets are mainly composed of camera-based
datasets [12, 21, 22, 37, 54, 55], which have advanced re-
search in person ReID. In addition, some 2D datasets uti-
lize infrared cameras as sensors [29, 42]. Kinect-based
datasets [3, 27, 30] serve as typical examples of 3D datasets.
However, the current Kinect datasets have limited scales as
they are often collected in small indoor scenes with only
one cooperative subject. Additionally, Cheng and Liu [7]
collected a radar dataset containing 40 identities, but it is
not publicly available and also involves only one coopera-
tive subject in each frame. To address these limitations, we
introduce a novel LiDAR-based 3D dataset. The compari-
son of publicly available 3D datasets is shown in Tab. 1.

3. Method
ReID3D adopts multi-task pre-training to guide the en-
coder in learning 3D body features based on LReID-sync,
as shown in Fig. 2. The ReID network of ReID3D com-
prises a Graph-based Complementary Enhancement En-
coder (GCEE), which consists of a GCN backbone and a
Complementary Feature Extractor (CFE), along with a tem-
poral module, as shown in Fig. 3. The pre-trained GCEE is
used to initialize the ReID network.

3.1. Pre-training with Multiple Tasks

Based on our observations, the crucial factors that are likely
to impact the performance of ReID models are (1) the vari-
ations in information resulted from different viewpoints un-
der cross-view settings, and (2) the incomplete information
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Figure 2. The pre-training approach of ReID3D. Simulated single-
view point cloud is taken as input, and the encoder is pre-trained
for tasks of point cloud completion and SMPL parameter learning.

acquired from single view. Besides, the collection and an-
notation of real-world data involve significant costs, while
simulated data is low-cost, and comes with rich and accu-
rate annotations. Hence, we leverage simulated data to pre-
train the encoder for tasks of point cloud completion and
SMPL parameter learning. The overall idea of our proposed
pre-training approach is shown in Fig. 2, which enables the
encoder to effectively extract anthropometric characteristics
and mitigate the influence of viewpoint disparities.

Multi-task Network. Throughout we define point cloud
P as a set of points in 3D Euclidean space, P = {pi|i =
1, 2..., N}, where each point pi can be represented by its
coordinates (xi, yi, zi). The network is fed with the single-
view point cloud P̃ , then embed it into a latent vector z
using encoder Φ(·). The first branch of the network focuses
on the task of point cloud completion, where the decoder
Ψ(·) complete the point cloud based on z. The process can
be formulated as:

P̂ = Ψ(Φ(P̃)), (1)

where P̂ is the predicted complete point cloud.
The second branch aims to learn the characteristics of

human body, i.e. SMPL shape parameters β. The latent vec-
tor z is expected to encompass shape information. There-
fore, a straightforward MLP network is utilized to convert z
into predicted SMPL shape parameters β̂. The process can
be formulated as:

β̂ = MLP(Φ(P̃)). (2)

Training. We adapt the folding-based decoder PCN [49]
to complete the single-view point cloud in two steps, out-
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Figure 3. The ReID network of ReID3D. The Graph-based Complementary Enhancement Encoder (GCEE) extracts frame-level features
from the pedestrian point clouds, and the transformer module aggregates the sequential features. GCEE consists of a GCN backbone and
a Complementary Feature Extractor (CFE).

putting a coarse shape P̂coarse and a detailed shape P̂detail.
The pre-training model is trained with a combined loss cor-
responding to the two branches. In the branch of point clout
completion, we use Chamfer Distance (CD) as the differ-
ence measure between prediction P̂ and ground-truth Y:

CD(P̂,Y) =
1

|P̂|

∑
p̂∈P̂

min
p∈Y

∥p̂− p∥+ 1

|Y|
∑
p∈Y

min
p̂∈P̂

∥p− p̂∥.

(3)
The loss of the completion branch is a sum of the Chamfer
distances on the coarse and detailed shapes weighted by a
hyperparameter δ:

Lcom = CD(P̂coarse,Y) + δCD(P̂detail,Y). (4)

The branch of shape parameter learning utilizes mean
squared error (MSE) as the loss function:

Lshape =
1

n

n∑
i=1

(βi − β̂i)
2, (5)

where n is the dimension of β, i.e. n = 10.
The pre-training loss is a combination of the two

branches with a weighted hyperparameter η:

L = Lcom + ηLshape. (6)

3.2. ReID Network

To extract spatio-temporal features from the sequence of
point clouds, the ReID Network of ReID3D comprises a
GCEE, which consists of a GCN backbone and CFE, along
with a temporal module, as illustrated in Fig. 3.

GCN Backbone. To extract local and global features
from point clouds effectively, we employ graph convolu-
tional structure as the backbone. We construct the directed

�� (N, D) 

�� (1, DC) 

Correlation
Layer Binarization

Neighbor sum 
in feature space

Erasing

 

Eraser

��
′  (N, D) 

� (N, 1) � (N, 1) 

Figure 4. The architecture of the Eraser module in CFE.

graph G(V, E) by using the k-nearest neighbors (KNN)
of each point including self-loop, where V represents the
points and E represents the set of edges. For the original
point cloud, we construct the graph based on the nearest
neighbors in its coordinate space. However, we update the
graph at each layer of the network in feature space based on
the feature similarity among points, rather than fixed spatial
positions.

Denote that pi is the central point of once graph con-
volution operation, and N (i) = {j|(i, j) ∈ E} is the
set of points in its neighborhood with features F(i) =
{fj |j ∈ N (i)}. To integrate the global shape structure
and local neighborhood feature differences [39], we define
fij = [fi, fj − fi] as the input feature, where [·, ·] is the
concatenation operation. The convolution process can be
formulated as:

f
′

i = max
j∈N (i)

σ(fij × k), (7)

where f
′

i is the output feature of the central point pi, k is
the convolution kernel, max is a channel-wise max-pooling
function, × represents matrix multiplication and σ(·) is the
activation function LeakyReLU.
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Complementary Feature Extractor. One viable method
for extracting frame-level pedestrian features is to apply
pooling directly to the features output by the GCN back-
bone. However, applying the same operation to each frame
results in highly redundant extraction, which only empha-
sizes a part of the most salient features. To this end, inspired
by [15], we design CFE to extract complementary features
and improving representation learning of the encoder.

For each frame in a sequence, we consider it as the pri-
mary frame. The CFE further extracts its features based on
the output of the GCN backbone. Then, the next frame is
taken as the supplementary frame, from which the Eraser
module erases the previously discovered salient features.
We duplicate the last frame Pn as its own supplemen-
tary frame. In particular, for a sequence of point clouds
{Pi}ni=1(Pi ∈ RN×3), the feature sequence {Fi}ni=1(Fi ∈
RN×D) is obtained by the GCN backbone, where N is the
number of points and D is the dimension of features. For
the primary frame, CFE utilizes a graph convolution layer
and a global max-pooling layer to extract the most salient
features fp ∈ R1×DC . Then, the Eraser module reconstruct
the features of the supplementary frame Fs guided by the
discovered features fp. The reconstructed features F ′

s is fed
into similar graph convolution layer and global max-pooling
layer to extract auxiliary features fs. fp and fs are concate-
nated to obtain the complementary features fcfe ∈ R1×2DC

of the primary frame.
The architecture of the Erasure module is shown in

Fig. 4. Firstly, the correlation layer is used to obtain the
correlation vector R ∈ RN×1 between Fs and fp, through
computing the semantic relevance between fp and all the
local descriptors of Fs, formulated as:

R = Fs × (fp × ω)T , (8)

where ω ∈ RDC×D is a learnable variable projecting fp to
the feature space of Fs. Then, the Binarization module gen-
erates the binary mask based on R to identify the points to
be erased. Specifically, for each point in Fs, calculate the
sum of the correlation values of the point and its KB near-
est neighbors in the feature space. The calculated sum rep-
resents the correlation of the region centered on the point.
We select the region with the highest correlation value to
be erased, through setting the corresponding value in the
binary mask B to 0 and others to 1. Finally, Fs is erased
according to B to obtain the reconstructed features F ′

s .

Temporal Fusion Module. The sequence of pedestrian
point clouds includes distinctive dynamic features, such as
gait frequency and amplitude of limb swings. We utilize a
transformer module [35] with four encoder layers to extract
the dynamic features. The transformer module takes the se-
quence of features {f i

cfe}ni=1 as input and outputs the final
features f ∈ RDT .

Training and Inference. Following the standard
paradigm of camera-based ReID [5, 15, 46, 52], we exploit
a combination of cross-entropy and batch-hard triplet
terms [14] as the loss function, with the hyperparameter γ:

L = Lce + γLtri. (9)

During inference, the similarity between query and
gallery set is measured using the cosine distance.

4. Person ReID Dataset
In this paper, we build a real-world LiDAR-based ReID
dataset LReID and a simulated pedestrian point cloud
dataset LReID-sync. LReID is captured by a multimodal
imaging system, which consists of 4 Livox Mid-100 LiDAR
sensors and 4 industrial cameras [51]. LReID includes 320
identities, 156,000 point cloud frames and synchronized
RGB images with corresponding 2D and 3D annotations.

Data Acquisition. LReID is collected in two extensive
outdoor scenes: a crossroad and a square in front of a build-
ing, capturing different time periods and weather condi-
tions, as shown in Fig. 6. We synchronize each pair of Li-
DAR and camera with ∼ 5 ms accuracy and provide an ac-
curate extrinsic and intrinsic calibration. All sequences are
recorded with a frame rate of 10 Hz. The images are cap-
tured of a resolution of 2048 × 1536 pixels and the density
of LiDAR points is about 30,000 points per frame.

The square scene is located in front of a building with
frequent pedestrian traffic, and many pedestrians walk to-
gether in groups, which makes it more complex for person
ReID tasks. We collected data in the square scene dur-
ing two different times in summer to analyze the impact
of lighting conditions on person ReID. Additionally, to ex-
plore the impact of different scenes, weather conditions, and
pedestrian attire in different seasons, we also collected data
at a crossroads scene in winter. Figure 5 shows the samples
of two pedestrians collected from different scenes. Fur-
thermore, we analyze the point distribution in LReID and
LReID-sync, as shown in Fig. 6.

Annotations. To ensure efficient and accurate annotation,
we utilize a point cloud-based 3D detector [18] to locate
pedestrians. Additionally, we employ a 3D multi-object
tracking method [41] to establish continuous trajectories,
and manually rectify them. Furthermore, we adjust the IDs
of the pedestrians that appeared repeatedly in the field of
view based on the images. After obtaining precise 3D ReID
annotations, we project them onto synchronized RGB im-
ages and perform manual corrections.

To avoid the influence of absolute coordinate informa-
tion on the network, we normalize the pedestrian point
clouds by subtracting the center coordinates of their respec-
tive bounding boxes.
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Figure 5. Samples of two pedestrians collected from the square scene
in summer (top row), and the crossroads scene in winter (bottom row).
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Figure 6. Data acquisition scenes and statistics about
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Figure 7. Samples of LReid-sync for full views and each single
view.

Evaluation. LReID is divided into two splits: a training
set with 220 identities and a test set with the remaining 100
identities. Both sets include different scenes, seasons, and
lighting conditions. Within the test set, 30 identities are
captured under low light, whereas 70 identities are captured
under normal light. Following the standard paradigm of
video-based datasets [20, 43, 55], the evaluation focuses on
recognition across different LiDARs.

We select one sample of each identity in the test set to
build the query set and use the other samples as the gallery
set. In the test set, we ensure that the data collected by
different LiDARs does not overlap in time, which is to pre-
vent the model from recognizing individuals based on hu-
man pose at a certain time. To maximize the use of train-
ing data, we divide the sequences in training set into several
fragments that may partially overlap in time. The evaluation
metrics for LReID include Cumulative Matching Charac-
teristics (CMC) and mean Average Precision (mAP), which
are consistent with camera-based datasets.

LReID-sync. LReID-sync is a novel pedestrian dataset
generated using the software Unity3D, which simulates
pedestrians in scenes captured by multiple synchronized
LiDARs from various views, as shown in Fig. 7. With
this setup, LReID-sync accurately simulates the informa-
tion loss and point cloud sparsity that occur when pedestri-
ans are captured using a single-view LiDAR. Additionally,

LReID-sync includes annotations for point cloud comple-
tion from single view to full views, as well as SMPL pa-
rameters. Therefore, LReID-sync can be utilized for pre-
training. LReID-sync comprises 600 pedestrians with vari-
ous actions, each exhibiting unique body shapes and gaits,
ensuring diversity within the dataset.

5. Experiments
5.1. Implementation Details

ReID Network. The ReID network is trained for 700
epochs using the AdamW optimizer with a weight decay of
5e-5. The learning rate, initially set to 5e-5, is updated using
a Cosine Annealing Learning Rate (CosineAnnealingLR)
scheduler with a cycle of 200 epochs. Each frame of pedes-
trian point clouds in LReID is upsampled or downsampled
to 256 points as input to the network. To train our model,
we randomly choose 6 identities, and sample 6 sequences
for each identity with a sequence length of 30 frames. The
loss weight γ is set to 1. The neighborhood size is set to
10 and 8 for each graph convolution layer and Binarization
module, respectively. And the feature dimensions D, DC
and DT are set to 512, 512 and 1024, respectively.

Pre-training. The pre-training model follows a similar
training strategy as described above, except that the initial
learning rate is set to 1e-4. The loss weight η is set to 1. The
coefficient δ in Eq. 4 is set to 0.01 for the first 100 epochs,
then increased to 0.1, 0.5 and 1.0 after 100, 200 and 400
epochs. The coarse shape P̂coarse contains 128 points, while
the detailed shape P̂detail contains 512 points. The weights
of the pre-trained GCEE are used as initialization for the
ReID network.

5.2. Comparison with Camera-based Methods

We compare ReID3D with the state-of-the-art video-based
methods [2, 9, 15, 50]. The input images are resized in the
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Table 2. Comparison with state-of-the-art camera-based methods on LReID. Numbers in bold indicate the best performance and under-
scored ones are the second best. To ensure fairness, ReID3D without pre-training is evaluated.

Method Venue Modality Normal light Low light Overall
Rank-1 Rank-3 mAP Rank-1 Rank-3 mAP Rank-1 Rank-3 mAP

TCLNet [15] ECCV 2020

Camera

98.6 98.6 94.88 60.0 73.3 46.18 87.0 91.0 80.27
STMN [9] ICCV 2021 94.3 98.6 93.81 30.0 50.0 31.17 75.0 84.0 75.02
SINet [2] CVPR 2022 97.1 100.0 94.63 43.3 60.0 43.97 81.0 88.0 79.43
PiT [50] TII 2022 94.3 95.7 86.21 33.3 60.0 35.74 76.0 85.0 71.07

B-ReID3D Ours LiDAR 90.0 97.1 82.04 90.0 93.3 81.64 90.0 96.0 81.92
ReID3D Ours 94.3 98.6 83.65 93.3 96.7 82.43 94.0 98.0 83.28
B-ReID3D: ReID3D without pre-training.

Table 3. Comparison for different pre-training method.

Pre-training Method Rank-1 Rank-3 mAP
Baseline(w/o pre-training) 90.0 96.0 81.92

ReID 91.0 96.0 82.13
Completion 93.0 97.0 82.73

Completion + SMPL 94.0 98.0 83.28

resolution of 128 × 64. To ensure fairness, ReID3D without
pre-training (B-ReID3D) is also evaluated. All methods are
evaluated with the same dataset settings and metrics.

The comparative results are shown in Tab. 2, from which
the following observations can be obtained: (1) ReID3D
and B-ReID3D demonstrate their superiority to the video-
based methods, primarily benefiting from the utilization of
point clouds, which is unaffected by lighting conditions and
complex background. (2) ReID3D achieves state-of-the-art
results in overall and low light conditions, but it falls behind
video-based methods in normal light conditions. This is be-
cause video-based methods make full use of appearance in-
formation under normal light. (3) Video-based methods per-
form poorly under low light, while ReID3D and B-ReID3D
demonstrate comparable reliability under both low light and
normal light.

5.3. Pre-training

To demonstrate the effectiveness of pre-training with simu-
lated dataset LReID-sync, we evaluate the performance of
different pre-training method. The following four method
are evaluated: (1) ReID3D without pre-training. (2) Pre-
training with similar ReID task, in which the pre-training
model and loss are consistent with the ReID network. (3)
Pre-training with only the branch of point cloud comple-
tion. (4) Pre-training with multiple tasks, as described in
Section 3.1. The experimental results are shown in Tab. 3. It
can be observed that pre-training with multiple tasks makes
an improvement to the accuracy of ReID3D, with the rank-
1 accuracy increasing from 90.0 to 94.0. This improvement
can be attributed to two factors: (1) The simulated data
comprises a diverse collection of pedestrian point clouds
with various body shapes, which supplements the real-
world data. (2) Multi-task pre-training effectively leverages
the performance of the encoder. Besides, pre-training with

(a) (b)

(c) (d)

Figure 8. Completion results for real-world pedestrian point
clouds obtained by the pre-trained model. In each sample, the de-
tailed shape, coarse shape, and image are shown from left to right.
The red points represent the input point cloud, and the blue points
represent the predicted complete point cloud.

task of ReID or point cloud completion also leads to an im-
provement in performance.

To showcase the robust feature encoding capabilities at-
tained by the encoder through pre-training, we visualize the
completion results for several real-world pedestrian point
clouds with different characteristics, as shown in Fig. 8.
We can observe that: (1) Intuitively, the detailed and coarse
shape closely resemble the actual human shape, which in-
dicates that the encoder has successfully captured the com-
plete features of the human body. (2) The detailed shape is
an extension based on the coarse shape, with higher resolu-
tion and more information. (3) The pre-trained encoder has
the ability to estimate the features of the missing part in the
point cloud. As shown in Fig. 8a, the unobserved parts of
the legs are accurately completed. (4) Due to motion blur
or object carrying, the point cloud may contain some noise
points. For example, in Fig. 8b and Fig. 8c, there are red
noise points located between the legs and from the carrying
bags, respectively. However, the model can effectively filter
out the noise points that do not conform to the body shape.

17443



Table 4. Performance of B-ReID3D with different encoders.

Encoder Rank-1 Rank-3 mAP
PointNet [31] 74.0 88.0 60.31

Point Transformer [53] 83.0 93.0 74.86
3DCNN [8] 34.0 51.0 28.27

GCEE 90.0 96.0 81.92

Table 5. Ablation study on the CFE module and Eraser module.

Encoder Type Rank-1 Rank-3 mAP
B-ReID3D-w/o CFE 83.0 94.0 74.15

B-ReID3D-w/o Eraser 85.0 95.0 80.47
B-ReID3D 90.0 96.0 81.92

5.4. Ablation Study

Effect of Encoders. To evaluate the effectiveness of our
GCEE, we also implement several commonly used encoders
in point cloud tasks to replace GCEE in the ReID net-
work for comparison, including PointNet [31], Point Trans-
former [53], and 3DCNN [8]. All methods use consistent
training strategies and employ a same transformer mod-
ule as the temporal fusion network. We report the re-
sults on LReID in Tab. 4, obtaining the following obser-
vations: (1) GCEE outperforms other encoders, which is
mainly beneficial by its flexible graph structure in the fea-
ture space and the strategy of complementary enhancement.
(2) Point-based encoders are superior to voxel-based en-
coder 3DCNN, which indicates that point-based encoders
can provide a more detailed understanding of humans in
tasks like ReID.

Effect of CFE. CFE is a crucial component in our pro-
posed encoder, used to extract complementary features. We
compared our full model with two ablated versions: one
without CFE and another without the Eraser module, as
shown in Tab. 5. Removing CFE results in a lower rank-
1 accuracy, with a score of 83.0 compared to our 90.0,
which highlights the effectiveness of the complementary
enhancement in constructing distinctive and comprehensive
features. While removing the Eraser module retains the fea-
tures of the complementary frame, it might lead to the ex-
traction of similar features from the primary frame, thus re-
stricting the improvement in accuracy, with a score of 85.0
compared to 83.0 of the version without CFE.

Effect of the Temporal Module. We evaluate the ef-
fectiveness of different temporal modules in combination
with GCEE, as shown in Tab. 6. We can observe that the
attention-based transformer structure demonstrates signifi-
cant superiority over the LSTM structure. The rank-1 accu-
racy of transformer exceeds that of LSTM by 8 points, and
that of BiLSTM by 10 points.

Table 6. Results of B-ReID3D with different temporal modules.

Temporal Module Rank-1 Rank-3 mAP
LSTM [11] 82.0 89.0 72.34

Bi-LSTM [33] 80.0 90.0 70.92
Transformer [35] 90.0 96.0 81.92

(a) (b) (c)

High

Low

Figure 9. Feature visualization of CFE. The features of the primary
frame and the supplementary frame are presented on left and right,
respectively. The color bar on the right indicates the feature value.

5.5. Visualization Analysis

For qualitative analysis, we visualize the feature values out-
put by the two graph convolutional layers in the CFE, as
shown in Fig. 9. Three samples are taken from different
actions of a person in the test set of LReID, with each sam-
ple comprising two consecutive frames. In each sample, the
features of the primary frame and the supplementary frame
are presented. We can observe that primary ones pay more
attention to the head and arms, potentially linked to the
discriminative height parameter, while supplementary ones
predominantly emphasize the torso and legs. The combina-
tion of them creates a complementary and comprehensive
feature representation.

6. Conclusions
This paper presents the first research on person ReID us-
ing precise 3D structural information provided by LiDAR.
Firstly, We propose a LiDAR-based ReID framework,
named ReID3D, that utilizes pre-training to guide Graph-
based Complementary Enhancement Encoder (GCEE) for
extracting comprehensive 3D intrinsic features. More-
over, we build the first LiDAR-based person ReID dataset,
termed LReID, which contains 320 pedestrians in various
outdoor scenes and lighting conditions. Additionally, we
introduce LReID-sync, a new simulated pedestrian dataset
designed for pre-training encoders with tasks of point cloud
completion and shape parameter learning. Our proposed
ReID3D demonstrates exceptional performance on LReID,
highlighting the significant potential of LiDAR in address-
ing person ReID tasks.
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