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Walking forward and steps over an object, 
and then continue walking.

Taking two strides forward, pivot swiftly on 
left foot, and then walk the other way.A person performs a standing back kick.

Figure 1. Our MoMask, when provided with a text input, generates high-quality 3D human motion with diversity and precise control over
subtleties such as ”two strides forward”, ”pivot on left foot”, and ”pivot swiftly”.

Abstract

We introduce MoMask, a novel masked modeling frame-
work for text-driven 3D human motion generation. In Mo-
Mask, a hierarchical quantization scheme is employed to
represent human motion as multi-layer discrete motion to-
kens with high-fidelity details. Starting at the base layer,
with a sequence of motion tokens obtained by vector quan-
tization, the residual tokens of increasing orders are de-
rived and stored at the subsequent layers of the hierar-
chy. This is consequently followed by two distinct bidi-
rectional transformers. For the base-layer motion tokens,
a Masked Transformer is designated to predict randomly
masked motion tokens conditioned on text input at train-
ing stage. During generation (i.e. inference) stage, start-
ing from an empty sequence, our Masked Transformer iter-
atively fills up the missing tokens; Subsequently, a Residual
Transformer learns to progressively predict the next-layer
tokens based on the results from current layer. Extensive ex-
periments demonstrate that MoMask outperforms the state-
of-art methods on the text-to-motion generation task, with

1These authors contributed equally to this work.

an FID of 0.045 (vs e.g. 0.141 of T2M-GPT) on the Hu-
manML3D dataset, and 0.228 (vs 0.514) on KIT-ML, re-
spectively. MoMask can also be seamlessly applied in re-
lated tasks without further model fine-tuning, such as text-
guided temporal inpainting.

1. Introduction

Generating 3D human motions from textual descriptions,
aka text-to-motion generation, is a relatively new task that
may play an important role in a broad range of applications
such as video games, metaverse, and virtual reality & aug-
mented reality. In the past few years, it has generated in-
tensive research interests [9, 15, 16, 21, 23, 36, 42, 49, 50].
Among them, it has become popular to engage generative
transformers in modeling human motions [13, 16, 21, 49].
In this pipeline, motions are transformed into discrete to-
kens through vector quantization (VQ), then fed into e.g.
an autoregressive model to generate the sequence of motion
tokens in an unidirectional order. Though achieving impres-
sive results, these methods shares two innate drawbacks. To
begin with, the VQ process inevitably introduces approxi-
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mation errors, which imposes undesired limit to the motion
generation quality. Moreover, the unidirectional decoding
may unnecessarily hinder the expressiveness of the genera-
tive models. For instance, consider the following scenario:
at each time step, the motion content is generated by only
considering the preceding (rather than global) context; fur-
thermore, errors will often accumulate over the generation
process. Though several recent efforts using discrete diffu-
sion models [23, 30] have considered to decode the motion
tokens bidirectionally, by relying on a cumbersome discrete
diffusion process, they typically require hundreds of itera-
tions to produce a motion sequence.

Motivated by these observations, we propose a novel
framework, MoMask, for high-quality and efficient text-to-
motion generation by leveraging the residual vector quanti-
zation (RVQ) techniques [4, 34, 48] and the recent genera-
tive masked transformers [7, 8, 24, 47]. Our approach builds
on the following three components. First, an RVQ-VAE is
learned to establish precise mappings between 3D motions
and the corresponding sequences of discrete motion tokens.
Unlike previous motion VQ tokenizers [13, 16, 49] that typ-
ically quantize latent codes in a single pass, our hierarchi-
cal RVQ employs iterative rounds of residual quantization
to progressively reduce quantization errors. This results in
multi-layer motion tokens, with the base layer serving to
perform standard motion quantization, and the rest layers
in the hierarchy capturing the residual coding errors of their
respective orders, layer by layer. Our quantization-based hi-
erarchical design is further facilitated by two distinct trans-
formers, the Masked Transformer (i.e. M-Transformer) and
Residual Transformer (R-Transformer), that are dedicated
to generating motion tokens for the base VQ layer and the
rest residual layers, respectively.

The M-Transformer, based on BERT [10], is trained to
predict the randomly masked tokens at the base layer, con-
ditioned on textual input. The ratio of masking, instead of
being fixed [10, 18], is a scheduled variable that ranges from
0 to 1. During generation, starting from all tokens being
masked out, M-Transformer produces a complete sequence
of motion tokens within a small number of iterations. At
each iteration, all masked tokens are predicted simultane-
ously. Predicted tokens with the highest confidence will re-
main unchanged, while the others are masked again and re-
predicted in the next iteration. Once the base-layer tokens
are generated, the R-Transformer ensues to progressively
predict the residual tokens of the subsequent layer given the
token sequence at current layer. Overall, the entire set of
layered motion tokens can be efficiently generated within
merely 15 iterations, regardless of the motion’s length.

Our main contributions can be summarized as follows:
First, our MoMask is the first generative masked modeling
framework for the problem of text-to-motion generation. It
comprises of a hierarchical quantization generative model

and the dedicated mechanism for precise residual quantiza-
tion, base token generation and residual token prediction.
Second, our MoMask pipeline produces precise and effi-
cient text-to-motion generation. Empirically, it achieves
new state-of-the-art performance on text-to-motion gener-
ation task with an FID of 0.045 (vs. 0.141 in [49]) on Hu-
manML3D and 0.204 (vs. 0.514 in [49]) on KIT-ML. Third,
our MoMask also works well for related tasks, such as text-
guided motion inpainting.

2. Related Work
Human Motion Generation. Recently, we have witnessed
the surge of works for neural motion generation, with con-
ditioning on various domains such as motion prefix [29, 33],
action class [6, 14, 31, 35], audio [13, 40, 43, 53], texts [9,
15, 16, 36, 42]. Early works [1, 12, 20, 27, 38] commonly
model motion generation deterministically, resulting in av-
eraged and blurry motion results. This is properly addressed
by stochastic models. GAN modeling is adopted in [5, 46]
for action-conditioned motion generation. Meanwhile, tem-
poral VAE framework and transformer architecture are ex-
ploited in the works of [17, 35]. In terms of text-to-motion
generation, T2M [15] extended the temporal VAE to learn
the probabilistic mapping between texts and motions. Simi-
larly, TEMOS [36] takes advantage of Transformer VAE to
optimize a joint variational space between natural language
and motions, which is extended by TEACH [3] for long
motion compositions. MotionCLIP [41] and ohMG [28]
model text-to-motion in an unsupervised manner using the
large pretrained CLIP [39] model. The emerging diffu-
sion models and autoregressive models have significantly
changed the field of motion generation. In diffusion meth-
ods, a network is learned to gradually denoise the mo-
tion sequence, supervised by a scheduled diffusion pro-
cess [9, 22, 23, 30, 42, 43, 50]. Regarding autoregressive
models [13, 16, 21, 49, 52], motions are firstly discretized
as tokens via vector quantization [44], which are then mod-
eled by the expressive transformers as in language model.
Generative Masked Modeling. BERT [10] introduces
masked modeling for language tasks that word tokens are
randomly masked out with a fixed ratio, and then the bi-
directional transformer learns to predict the masked tokens.
Despite being a decent pre-trained text encoder, BERT can-
not synthesize novel samples. In this regard, [7] proposes
to mask the tokens with a variable and traceable rate that
is controlled by a scheduling function. Therefore, new
samples can be synthesized iteratively following the sched-
uled masking. MAGE [24] unifies representation learning
and image synthesis using the masked generative encoder.
Muse [8] extends this paradigm for text-to-image genera-
tion and editing. Magvit [47] suggests a versatile masking
strategy for multi-task video generation. Inspired by these
successes, we first introduce generative masked modeling
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Figure 2. Approach overview. (a) Motion sequence is tokenized through vector quantization (VQ), also referred to as the base quantization
layer, as well as a hierarchy of multiple layers for residual quantization. (b) Parallel prediction by the Masked Transformer: the tokens in
the base layer t0 are randomly masked out with a variable rate, and then a text-conditioned masked transformer is trained to predict the
masked tokens in the sequence simultaneously. (c) Layer-by-layer progressive prediction by the Residual Transformer. A text-conditioned
residual transformer learns to progressively predict the residual tokens tj>0 from the tokens in previous layers, t0:j�1.

for human motion synthesis in this paper.
Deep Motion Quantization and RVQ. [2] learns seman-
tically meaningful discrete motif words leveraging triplet
contrastive learning. TM2T [16] starts applying vector
quantized-VAE [44] to learn the mutual mapping between
human motions and discrete tokens, where the autoencod-
ing latent codes are replaced with the selected entries from
a codebook. T2M-GPT [49] further enhances the perfor-
mance using EMA and code reset techniques. This is
adopted in several other works such as PoseGPT [31] and
MotionGPT [21, 52]. Nevertheless, the quantization pro-
cess inevitably introduces errors, leading to suboptimal mo-
tion reconstruction. In this work, we adapt residual quanti-
zation [4, 34, 48], a technique used in neural network com-
pression [11, 25, 26] and audio quantization [4, 45] which
iteratively quantizes a vector and its residuals. This ap-
proach represents the vector as a stack of codes, enabling
high-precision motion discretization.

3. Approach
Our goal is to generate a 3D human pose sequence m1:N of
length N guided by a textual description c, where mi 2 RD

with D denoting the dimension of pose features. As illus-
trated in Fig. 2, our approach consists of three principle
components: a residual-based quantizer that tokenizes mo-
tion sequence into multi-layer discrete tokens (Sec. 3.1),
a masked transformer that generates motion tokens in the
base layer (Sec. 3.2), and a residual transformer (Sec. 3.3)
that predicts the tokens in the subsequent residual layers.
The inference process of generation is detailed in Sec. 3.4.

3.1. Training: Motion Residual VQ-VAE
Conventional motion VQ-VAEs [16, 21, 49, 52] transform
a motion sequence into one tuple of discrete motion tokens.
Specifically, the motion sequence m1:N 2 RN⇥D is firstly
encoded into a latent vector sequence b̃1:n 2 Rn⇥d with
downsampling ratio of n/N and latent dimension d, using
1D convolutional encoder E; each vector is subsequently
replaced with its nearest code entry in a preset codebook
C = {ck}Kk=1 ⇢ Rd, known as quantization Q(·). Then the
quantized code sequence b1:n = Q(b̃1:n) 2 Rn⇥d is pro-
jected back to motion space for reconstructing the motion
m̂ = D(b). After all, the indices of the selected codebook
entries (namely motion tokens) are used as the alternative
discrete representation of input motion. Though effective,
the quantization operation Q(·) inevitably leads to informa-
tion loss, which further limits the quality of reconstruction.

To address this issue, we introduce residual quantization
(RQ) as described in Fig. 2(a). In particular, RQ repre-
sents a motion latent sequence b̃ as V + 1 ordered code
sequences, using V + 1 quantization layers. Formally, this
is defined as RQ(b̃1:n) = [bv

1:n]
V
v=0, with bv

1:n 2 Rn⇥d

denoting the code sequence at the v-th quantization layer.
Concretely, starting from 0-th residual r0 = b̃, RQ recur-
sively calculates bv as the approximation of residual rv , and
then the next residual rv+1 as

bv = Q(rv), rv+1 = rv � bv, (1)

for v = 0, ..., V . After RQ, the final approximation of latent
sequence b̃ is the sum of all quantized sequences

PV
v=0 b

v ,
which is then fed into decoder D for motion reconstruction.
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Overall, the residual VQ-VAE is trained via a motion re-
construction loss combined with a latent embedding loss at
each quantization layer:

Lrvq = km� m̂k1 + �
VX

v=1

krv � sg[bv]k22, (2)

where sg[·] denotes the stop-gradient operation, and � a
weighting factor for embedding constraint. This framework
is optimized with straight-though gradient estimator [44],
and our codebooks are updated via exponential moving av-
erage and codebook reset following T2M-GPT [49].
Quantization Dropout. Ideally, the early quantization lay-
ers are expected to restore the input motion as much as pos-
sible; then the later layers add up the missing finer details.
To exploit the capacity of each quantizer, we adopt a quan-
tization dropout strategy, which randomly disables the last
0 to V layers with probability q 2 [0, 1] during training.

After training, each motion sequence m can be repre-
sented as V + 1 discrete motion token sequences T =
[tv1:n]

V
v=0 where each token sequence tv1:n 2 {1, ..., |Cv|}n is

the ordered codebook-indices of quantized embedding vec-
tors bv

1:n, such that bv
i = Cv

tvi
for i 2 [1, n]. Among these

V + 1 sequences, the first (i.e. base) sequence possesses
the most prominent information, while the impact of subse-
quent layers gradually diminishes.

3.2. Training: Masked Transformer
Our bidirectional masked transformer is designed to model
the base-layer motion tokens t01:n 2 Rn, as illustrated
in Figure 2(b). We first randomly masked out a varying
fraction of sequence elements, by replacing the tokens with
a special [MASK] token. With t̃0 denoting the sequence af-
ter masking, the goal is to predict the masked tokens given
text c and t̃0. We use CLIP [39] for extracting text features.
Mathematically, our masked transformer p✓ is optimized to
minimize the negative log-likelihood of target predictions:

Lmask =
X

t̃0k=[MASK]

� log p✓(t
0
k|t̃0, c). (3)

Mask Ratio Schedule. We adopt a cosine function �(·) for
scheduling the masking ratio following [7, 8]. Practically,
the mask ratio is obtained by �(⌧) = cos(⇡⌧2 ) 2 [0, 1],
where ⌧ 2 [0, 1] that ⌧ = 0 means the sequence is com-
pletely corrupted. During training, the ⌧ ⇠ U(0, 1) is ran-
domly sampled, and then m = d�(⌧) · ne sequence entries
are uniformly selected to be masked with n denoting the
length of sequence.
Replacing and Remasking. To enhance the contextual rea-
soning of the masked transformer, we adopt the remasking
strategy used in BERT pretraining [10]. If a token is se-
lected for masking, we replace this token with (1) [MASK]
token 80% of the time; (2) a random token 10% of the time;
and (3) an unchanged token 10% of the time.

3.3. Training: Residual Transformer
We learn a single residual transformer to model the tokens
from the other V residual quantization layers. The residual
transformer has a similar architecture to the masked trans-
former (Sec. 3.2), except that it contains V separate embed-
ding layers. During training, we randomly select a quan-
tizer layer j 2 [1, V ] to learn. All the tokens in the pre-
ceding layers t0:j�1 are embedded and summed up as the
token embedding input. Taking the token embedding, text
embedding, and RQ layer indicator j as input, the residual
transformer p� is trained to predict the j-th layer tokens in
parallel. Overall, the training objective is:

Lres =
VX

j=1

nX

i=1

� log p�(t
j
i |t

0:j�1
i , c, j). (4)

We also share the parameters of the j-th prediction layer
and the (j + 1)-th motion token embedding layer for more
efficient learning.

3.4. Inference
As presented in Figure 3, there are three stages in in-
ference. Firstly, starting from an empty sequence t0(0)
that all tokens are masked out, we expect to generate the
base-layer token sequence t0 of length n in L iterations.
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Datasets Methods R Precision" FID# MultiModal Dist# MultiModality"Top 1 Top 2 Top 3

Human
ML3D

TM2T [16] 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 2.424±.093

T2M [15] 0.455±.003 0.636±.003 0.736±.002 1.087±.021 3.347±.008 2.219±.074

MDM [42] - - 0.611±.007 0.544±.044 5.566±.027 2.799±.072

MLD [9] 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 2.413±.079

MotionDiffuse [50] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 1.553±.042

T2M-GPT [49] 0.492±.003 0.679±.002 0.775±.002 0.141±.005 3.121±.009 1.831±.048

ReMoDiffuse [51] 0.510±.005 0.698±.006 0.795±.004 0.103±.004 2.974±.016 1.795±.043

MotionGPT [21] 0.492±.003 0.681±.003 0.778±.002 0.232±.008 3.096±.008 2.008±.084

MoMask (base) 0.504±.004 0.699±.006 0.797±.004 0.082±.008 3.050±.013 1.050±.061

MoMask 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 1.241±.040

KIT-
ML

TM2T [16] 0.280±.005 0.463±.006 0.587±.005 3.599±.153 4.591±.026 3.292±.081

T2M [15] 0.361±.005 0.559±.007 0.681±.007 3.022±.107 3.488±028 2.052±.107

MDM [42] - - 0.396±.004 0.497±.021 9.191±.022 1.907±.214

MLD [9] 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 2.192±.071

MotionDiffuse [50] 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 0.730±.013

T2M-GPT [49] 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 1.570±.039

ReMoDiffuse [51] 0.427±.014 0.641±.004 0.765±.055 0.155±.006 2.814±.012 1.239±.028

MoMask (base) 0.415±.010 0.634±.011 0.760±.005 0.372±.020 2.931±.041 1.097±.054

MoMask 0.433±.007 0.656±.005 0.781±.005 0.204±.011 2.779±.022 1.131±.043

Table 1. Quantitative evaluation on the HumanML3D and KIT-ML test set. ± indicates a 95% confidence interval. MoMask (base)
means that MoMask only uses base-layer tokens. Bold face indicates the best result, while underscore refers to the second best.

Given the masked token sequence at l-th iteration t0(l), M-
Transformer first predicts the probability distribution of to-
kens at the masked locations, and samples motion tokens
with the probability. Then the sampled tokens with the low-
est d�( l

L ) · ne confidences are masked again, and the other
tokens will remain unchanged for the rest iterations. This
new token sequence t0(l+1) is used to predict the token se-
quence at the next iteration until l reaches L. Once the base-
layer tokens are completely generated, the R-Transformer
progressively predicts the token sequence in the rest quanti-
zation layers. Finally, all tokens are decoded and projected
back to motion sequences through the RVQ-VAE decoder.
Classifier Free Guidance. We adopt classifier-free
guidance (CFG) [8, 19] for the prediction of both M-
Transformer and R-Transformer. During training, we train
the transformers unconditionally c = ; with probability of
10%. During inference, CFG takes place at the final lin-
ear projection layer before softmax, where the final logits
!g are computed by moving the conditional logits !c away
from the unconditional logits !u with guidance scale s:

!g = (1 + s) · !c � s · !u. (5)

4. Experiments
Empirical evaluations are conducted on two widely used
motion-language benchmarks, HumanML3D [15] and KIT-
ML [37]. HumanML3D dataset collects 14,616 motions
from AMASS [32] and HumanAct12 [14] datasets, with
each motion described by 3 textual scripts, totaling 44,970

descriptions. This diverse motion-language dataset contains
a variety of actions, including exercising, dancing, and ac-
robatics. KIT-ML dataset consists of 3,911 motions and
6,278 text descriptions, offering an small-scale evaluation
benchmark. For both motion datasets, we adopt the pose
representation from the work of T2M [15]. The datasets are
augmented by mirroring, and divided into training, testing,
and validation sets with the ratio of 0.8:0.15:0.05.
Evaluation metrics from T2M [15] are also adopted
throughout our experiments including: (1) Frechet Incep-
tion Distance (FID), which evaluates the overall motion
quality by measuring the distributional difference between
the high-level features of the generated motions and those
of real motions; (2) R-Precision and multimodal distance,
which gauge the semantic alignment between input text and
generated motions; and (3) Multimodality for assessing the
diversity of motions generated from the same text.

Though multimodality is indeed important, we stress its
role as a secondary metric that should be assessed in the
conjunction with primary performance metrics such as FID
and RPrecision. Emphasizing multimodality without con-
sidering the overall quality of generated results could lead
to optimization of models that produce random outputs for
any given input.
Implementation Details. Our models are implemented us-
ing PyTorch. For the motion residual VQ-VAE, we employ
resblocks for both the encoder and decoder, with a down-
scale factor of 4. The RVQ consists of 6 quantization layers,
where each layer’s codebook contains 512 512-dimensional
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MoMask (Ours) MLDT2M-GPT MDM

Time axes

A person sneaks away while walking sideways.

This person stumbles left and right while moving forward.

A person walks forwards, sits.

Figure 4. Visual comparisons between the different methods given three distinct text descriptions from HumanML3D testset. Only key
frames are displayed. Compared to previous methods, MoMask generates motions with higher quality and better understanding of the
subtle language concepts such as ”stumble”, ”sneak”, ”walk sideways”. Please refer to the demo video for complete motion clips.

codes. The quantization dropout ratio q is set to 0.2. Both
the masked transformer and residual transformer are com-
posed of 6 transformer layers, with 6 heads and a latent di-
mension of 384, applied to the HumanML3D and KIT-ML
datasets. The learning rate reaches 2e-4 after 2000 itera-
tions with a linear warm-up schedule for the training of all
models. The mini-batch size is uniformly set to 512 for
training RVQ-VAE and 64, 32 for training transformers on
HumanML3D and KIT-ML, respectively. During inference,
we use the CFG scale of 4 and 5 for M-Transformer and
R-Transformer on HumanML3D, and (2, 5) on KIT-ML.
Meanwhile, L is set to 10 on both datasets.

4.1. Comparison to state-of-the-art approaches

We compare our approach to a set of existing state-of-the-
art works ranging from VAE [15], diffusion-based mod-
els [9, 42, 51], to autoregressive models [16, 49].
Quantitative Comparisons. Following previous prac-

tices [15, 42], each experiment is repeated 20 times, and
the reported metric values represent the mean with a 95%
statistical confidence interval. Additionally, we conduct ex-
periments with MoMask exclusively generating the base-
layer motion tokens, denoted as MoMask (base). Quantita-
tive results for the HumanML3D and KIT-ML datasets are
presented in Table 1.

Overall, MoMask attains state-of-the-art performance on
both datasets, demonstrating substantial improvements in
metrics such as FID, R-Precision, and multimodal distance.
For the suboptimal performance on KIT-ML dataset, we
would like to point out that the leading model, ReMoDif-
fuse [51], involves more intricate data retrieval from a large
database to achieve high-quality motion generation. Ad-
ditionally, we observe that MoMask, even with the base-
layer tokens alone, already achieves competitive perfor-
mance compared to baselines, and the inclusion of residual
tokens further elevates the results to a higher level.
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(a) Comparisons on FID and Inference Cost (b) HumanML3D User Study

Figure 5. (a) Comparison of inference time costs. All tests are conducted on the same Nvidia2080Ti. The closer the model is to the
origin, the better. (b) User study results on the HumanML3D dataset. Each bar represents the preference rate of MoMask over the
compared model. Overall, MoMask is preferred over the other models most of the time. The dashed line marks 50%.

In Figure 5(a), we evaluate the efficiency and quality of
motion generation using various methods. The inference
cost is calculated as the average inference time over 100
samples on one Nvidia2080Ti device. Comparing to base-
line methods, MoMask positions itself more favorably be-
tween generation quality and efficiency.
User Study. We further conduct a user study on Amazon
Mechanical Turk to validate our previous conclusions. This
user study involves 42 AMT users with master recognition,
with the side-by-side comparisons between MoMask and
each of the state-of-the-art methods including MDM [42],
MLD [9] and T2M-GPT [49]. We generate the 50 mo-
tions for each method using the same text pool from Hu-
manML3D test set, and collect feedback from 3 distinct
users for each comparison. As shown in Fig. 5(b), MoMask
is preferred by users in most of the time, and even earns
42% of preference on par with ground truth motions.
Qualitative Comparisons. Figure 4 displays qualitative
comparisons of our approach and MDM[42], MLD [9],
and T2M-GPT [49]. MDM [42] usually generates overall
semantically correct motions but fails to capture nuanced
concepts such as ”sneak” and ”sideways”. Though T2M-
GPT [49] and MLD [9] have improved performance in this
aspect, they still find it difficult to generate motions accu-
rately aligned with the textual description. For example, in
the bottom row, the motions from these two methods either
forget to walk sideways (T2M-GPT [49]) or to sneak away
(MLD [9]). Moreover, MLD [9] sometimes produces life-
less motions where the character slides around, as shown in
the top row. In comparison, our method is able to generate
high-quality motions faithful to the input texts. Please refer
to supplementary videos for dynamic visualizations.

4.2. Component Analysis
In Table 2, we comprehensively evaluate the impact of dif-
ferent design components in MoMask through various com-
parisons, showcasing the performance in both motion re-
construction and generation. Initially, we compare our ap-

Methods Reconstruction Generation
FID# MPJPE# FID# MM-Dist#

Evaluation on KIT-ML dataset

M2DM [23] 0.413±.009 - 0.515±.029 3.015±.017

T2M-GPT [49] 0.472±.011 - 0.514±.029 3.007±.023

MoMask 0.112±.002 37.2 0.228±.011 2.774±.022

Evaluation on HumanML3D dataset

TM2T [16] 0.307±.002 230.1 1.501±.017 3.467±.011

M2DM [23] 0.063±.001 - 0.352±.005 3.116±.008

T2M-GPT [49] 0.070±.001 58.0 0.141±.005 3.121±.009

MoMask 0.019±.001 29.5 0.051±.002 2.957±.008

w/o RQ 0.091±.001 58.7 0.093±.004 3.031±.009

w/o QDropout 0.077±.000 39.3 0.091±.003 2.959±.008

w/o RRemask - - 0.063±.003 3.049±.006

MoMask (V , 0) 0.091±.001 58.7 0.093±.004 3.031±.009

MoMask (V , 1) 0.069±.001 54.6 0.073±.003 3.031±.008

MoMask (V , 2) 0.049±.002 46.0 0.072±.003 2.978±.006

MoMask (V , 3) 0.037±.001 42.5 0.064±.003 2.970±.007

MoMask (V , 4) 0.027±.001 35.3 0.069±.003 2.987±.007

MoMask (V , 5) 0.019±.001 29.5 0.051±.002 2.962±.008

MoMask (V , 6) 0.014±.001 26.7 0.076±.003 2.994±.007

MoMask (V , 7) 0.014±.000 25.3 0.084±.004 2.968±.007

MoMask (q, 0) 0.077±.000 39.3 0.091±.003 2.959±.008

MoMask (q, 0.2) 0.019±.001 29.5 0.051±.002 2.957±.008

MoMask (q, 0.4) 0.021±.000 30.2 0.082±.003 3.006±.007

MoMask (q, 0.6) 0.024±.000 33.2 0.053±.003 2.946±.006

MoMask (q, 0.8) 0.023±.000 33.4 0.083±.004 3.002±.008

Table 2. Comparison of our RVQ design vs. motion VQs from pre-
vious works [16, 23, 49], and further analysis on residual quantiza-
tion (RQ), quantization dropout (QDropout), and replacing & re-
masking (RRmask). V and q are the number of RQ and QDropout
ratio, respectively. MPJPE is measured in millimeters. Generation
results are based on 18 inference steps.

proach with previous VQ-based motion generation meth-
ods [16, 23, 49] on the HumanML3D and KIT-ML datasets.
Notably, M2DM [23] incorporates orthogonality constraints
among all codebook entries to enhance VQ performance.
Our residual design shows clearly superior performance
when comparing with these single VQ-based approaches.
Ablation. In the ablation experiments, we observe that
both residual quantization (RQ) and quantization dropout
(QDropout) effectively contribute to the enhancement of
motion quality in terms of both reconstruction and gener-
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Input region Generated region

Effect range: 3s - 6s
A person falls down and gets 

back up quickly.

Effect range: last 2s
A person bows.

Effect range: 3s - 5s
A person kicks something.

Effect range: first 2s
A person is doing 

warm up.

Figure 6. Examples of temporal inpainting. Dark dash line indicates the range(s) where the motion content(s) is given by the reference
sequence. Orange dash line indicates the range of motion content generated by MoMask, conditioned on the text prompt below.

Figure 7. Evaluation sweep over guidance scale s (top) and itera-
tion numbers L (bottom) in inference. We find a accuracy-fidelity
sweep spot around s = 4, meanwhile 10 iterations (L = 10) for
masked decoding yield sufficiently good results.

ation. Additionally, replacing-and-remasking strategy, as
well as RQ, facilitates more faithful motion generation.
Number of Residual Layers (V ). In Tab. 2, we inves-
tigate RVQ with different numbers of quantization layers.
Generally, more residual VQ layers result in more precise
reconstruction, but they also increase the burden on the R-
Transformer for residual token generation. We particularly
observe that the generation performance starts to degrade
with more than 5 residual layers. This finding emphasizes
the importance of striking a balance in the number of resid-
ual layers for optimal performance.
Quantization Dropout (q). We also analyze the impact
of quantization dropout ratio q in Tab. 2. As we increase
dropout probability from 0.2, the performance gains be-
come marginal, or even converse. We speculate that fre-
quent disabling quantization layers may disturb the learning
of quantization models.
Inference Hyper-parameters. The CFG scale s and the
number of iterations L are two crucial hyperparameters dur-
ing the inference of masked modeling. In Fig. 7, we present
the performance curves of FID and multimodality distance
by sweeping over different values of s and L. Several key

observations emerge. Firstly, an optimal guidance scale s
for M-Transformer inference is identified around s = 4.
Over-guided decoding may even inversely deteriorate the
performance. Secondly, more iterations are not necessarily
better. As L increases, the FID and multimodality distance
converge to the minima quickly, typically within around 10
iterations. Beyond 10 iterations, there are no further perfor-
mance gains in both FID and multimodal distance. In this
regard, our MoMask requires fewer inference steps com-
pared to most autoregressive and diffusion models.

4.3. Application: Temporal Inpainting

In Fig. 6, we showcase the capability of MoMask in tem-
porally inpainting a specific region in a motion sequence.
The region can be freely located in the middle, suffix, or
prefix. Specifically, we mask out all the tokens in the re-
gion of interest and then follow the same inference proce-
dure described in Sec. 3.4. For both tasks, our approach
generates smooth motions in coherence with the given text
descriptions. Additionally, we conduct a user study to
quantitatively compare our inpainting results with those of
MDM [42]. In this study, 40 samples are generated from
both methods using the same motion and text input, and
presented to users side-by-side. With 6 users involved, 68%
of the results from MoMask are preferred over MDM.

5. Conclusion

In conclusion, we introduce MoMask, a novel generative
masked modeling framework for text-driven 3D human
motion generation. MoMask features three advanced
techniques: residual quantization for precise motion
quantization, masked transformer and residual trans-
former for high-quality and faithful motion generation.
MoMask is efficient and flexible, achieving superior per-
formance without extra inference burden, and effortlessly
supporting temporal motion inpainting in multiple contexts.
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