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Figure 1. We introduce RegionGPT that enables complex region-level captioning, reasoning, classification, and expression comprehension capabilities
for the multimodal large language model. Users can input regions of interest of any shape, utilizing ⟨region⟩ as a placeholder within the instruction at any
position. Such placeholders are subsequently replaced with semantic region-level embeddings that are fed into the language decoder. Best viewed in color.

Abstract

Vision language models (VLMs) have experienced rapid ad-
vancements through the integration of large language mod-
els (LLMs) with image-text pairs, yet they struggle with de-
tailed regional visual understanding due to limited spatial
awareness of the vision encoder, and the use of coarse-
grained training data that lacks detailed, region-specific
captions. To address this, we introduce RegionGPT (short
as RGPT), a novel framework designed for complex region-
level captioning and understanding. RGPT enhances the
spatial awareness of regional representation with simple yet
effective modifications to existing visual encoders in VLMs.
We further improve performance on tasks requiring a spe-
cific output scope by integrating task-guided instruction
prompts during both training and inference phases, while
maintaining the model’s versatility for general-purpose
tasks. Additionally, we develop an automated region cap-
tion data generation pipeline, enriching the training set
with detailed region-level captions. We demonstrate that
a universal RGPT model can be effectively applied and sig-
nificantly enhancing performance across a range of region-
level tasks, including but not limited to complex region de-
scriptions, reasoning, object classification, and referring
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expressions comprehension. Code will be released at the
project page.

1. Introduction
Vision Language Models (VLMs) have marked a notable
convergence between visual and linguistic domains in arti-
ficial intelligence. With the emergence of Multimodal Large
Language Models (MLLMs) [1, 2, 14, 25, 28, 29, 59], there
has been a notable enhancement in the field’s ability to in-
terpret images and streamline interactions between humans
and VLMs. However, despite their effectiveness in under-
standing entire images, these models still struggle with an-
alyzing specific regions in detail. On the other hand, fine-
grained understanding is vital for advanced vision tasks, in-
cluding the analysis of object attributes and the interpreta-
tion of inter-object relations.

Addressing region-level complex understanding in
VLMs demands the alignment of spatial information and
semantics. To acheive this, existing works [9, 28, 35, 59]
learn inputting regions of interest in textual form, e.g.
[x1,y1,x2,y2], which share the same model structure as that
used for image-level tasks. However, this relies heavily
on the language decoder to interpret the position, inadver-
tently overlooking the prior positional information provided
by the visual encoder. Such an oversight can lead to a gap
in effectively integrating visual cues with linguistic context,
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which is crucial for tasks involving detailed image under-
standing. In a more advanced approach, GPT4RoI [56] in-
troduces spatial boxes with RoI-aligned features, training
the model specifically on region-text pairs. Despite that, the
positional format is restricted to a box. And yet the poten-
tial for region-specific visual representation, which could
offer more expressive fine-grained details and hence benifit
downstream vision tasks, remains under-explored.

In this paper, we present RGPT, a general framework de-
signed to facilitate complex region-level captioning and un-
derstanding. Specifically, we discover that simply refining
the visual features extracted by CLIP and employing Mask
Pooling to accommodate regions of interest (RoI) of any
shape significantly enhances the language model perfor-
mance on understanding spatial-aware semantic concepts.
Furthermore, we develop task-guided instruction prompts
that seamlessly integrate the vision tasks, such as closed-
set classification and referring expression comprehension,
into our framework. This is achieved by specifying these
tasks with visual question answering and response formats.
Existing available region-level captioning datasets, such as
ReferCOCOg [22] and VG [23], tend to provide overly sim-
plistic descriptions of regions, lacking detailed attributes
such as color, shape, style and their spatial relation with
the surroundings. To reduce the burden of manual label-
ing, we propose an automated pipeline for annotating de-
tailed region-level captions, which is achieved by reformat-
ting the existing object detection dataset and employing a
two-stage GPT-assisted approach. Our annotated captions
average 87.14 words per region, substantially surpassing the
8.46 words in ReferCOCOg, thereby providing richer con-
textual information for each region.

Our contributions are threefold: (1) We propose RGPT, a
general framework that harnesses the capabilities of LLMs
to tackle complex region-level captioning and understand-
ing tasks. RGPT is designed for open-ended vision ques-
tions, catering to both image-level and region-level tasks.
(2) We design task-guided instruction prompts to specify
the output format, thereby eliminating ambiguities in the
responses. By transforming vision tasks into VQA tasks,
the output patterns are aligned to the language model. (3)
We present a novel data reformation approach and pipeline,
leveraging GPT-assistant, to create high-quality, detailed
region-level captions. Our approach significantly enhances
the descriptive richness of these captions, with an average
word count of 87.14 words per caption.

2. Related Work
2.1. Large Language Model

Large Language Models have recently gathered consider-
able interest in the realm of Natural Language Processing
(NLP), which is viewed as a form of artificial general in-

telligence. This surge in attention is attributable to their
remarkable proficiency in several key areas: language gen-
eration, in-context learning, and the integration of extensive
world knowledge and reasoning abilities. The early poten-
tial of LLM was first showcased by groundbreaking works
such as, BERT [15] and GPT [36]. This initiated a trend of
scaling up that led to a succession of significant advance-
ments, including T5 [38], GPT-3 [4], Flan-T5 [13], PaLM
[12], among others. As training data and model parameters
expanded, this scaling-up progress culminated in the devel-
opment of ChatGPT [41] by OpenAI. ChatGPT, leveraging
a generative pre-trained model and refined through instruc-
tion tuning [34] based on human feedback, demonstrates
unparalleled capabilities in engaging in human-like conver-
sations. Rapid advancements in open-source LLMs, such as
Llama [43], Llama-2 [44] and Vicuna [11], have also started
to make them increasingly competitive with ChatGPT.

2.2. Multimodal Large Language Model

LLMs have demonstrated formidable capabilities in prior
knowledge and reasoning, prompting interest in other
modalities. This has led to efforts aimed at extending LLMs
into the multimodal domain, where they can interact with
and interpret information across various inputs beyond just
text. For image modality, end-to-end instruction tuning on
image-text pairs is proposed to connect the visual backbone
with language decoder. Flamingo [1], BLIP-2 [25], LLaVA
[29] and MiniGPT4 [59] are the pioneers to train vision-
language connector or language decoder on image-level vi-
sion tasks, such as image captioning and visual question
answering. Inspired by these pioneers, more recent works
are emerged to construct user-friendly interaction dataset
[18, 24] and lightweight trainable weights [17, 55]. Some
other interesting works have made remarkable progress by
extending LLM to audio [7, 20], medical VQA [31, 57] and
control systems [16, 32].

2.3. Region-level Vision Language Model

Traditional region-level tasks are common practice in com-
puter vision, such as object detection [5, 39], instance
segmentation [19] and semantic segmentation [40], which
aims at localizing the regions of interest and close-set
classification. Open-vocabulary region-level recognition
tasks [50, 51] target at understanding an object with arbi-
trary categories described by texts. Recently, region-aware
MLLMs, like KOSMOS-2 [35], Shikra [9], MiniGPT-2 [8]
and LLaVA [28], learn inputting regions information in tex-
tual form, which heavily rely on the language decoder to
interpret position. We argue that incorporating a visual
spatial-aware module can extract region-level features more
directly and efficiently. By utilizing a visual-language con-
nector, these features enable the complex region-level cap-
tioning and reasoning ability. VisionLLM [47], GPT4RoI
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Figure 2. Overview of the proposed RGPT architecture. Starting from a visual backbone, we extract low-resolution semantic features
from an input image Xv . Then, a feature refinement module is composed to obtain higher-resolution feature maps. With a patch merge
module, the feature maps are further merged to reduce the length of input image-level sequence. The mask features are obtained by
averaging the feature in the target region Xr , inputted as another branch, with Mask Pooling layer. Both the image-level feature and
region-level feature share the connector for semantic consistency. The example interactions demonstrate the model’s capabilities in complex
region-level description, reasoning, object classification, and referring expression comprehension.

[56] and ASM [48] utilize spatial boxes with ROI-aligned
features to align the region-level features into LLM word
embedding space. However, the input positional format is
restricted to a box. Besides, the region visual representa-
tion for fine-grained details remains under-explored. On the
contrary, our model supports any-shape region as input and
focuses on complex reasoning and captioning. Meanwhile,
we introduce task-guided instruction prompts to transform-
ing vision tasks into VQA tasks, whose output patterns are
aligned with the language model.

3. Method

RGPT is a multimodal large language model with strong ca-
pabilities in understanding and referring to specific regions.
It can take a inputs of any 2D region, usually in the form of
a box or a mask, and provide answers based on instructions.
By setting rules for how it should respond to instructions,
the model is able to output in a useful and consistent for-
mat. This feature allows RGPT to classify objects at the
region level in a closed vocabulary. Additionally, by giving
the model region proposals, it can identify specific objects
or regions given the query description. This makes RGPT
a practical tool for tasks that require detailed understanding
and processing of different regions within an image.

3.1. Model Architecture

An overview of our method RGPT, for region-level under-
standing and image-level understanding is shown in Fig. 2.
It contains an image encoder to extract semantic features,
a feature refinement module for the refinement of the low-
resolution feature map, an MLP layer to project visual fea-
tures into the word embedding space and a large language
model taking both visual and text tokens.
Visual Backbone. RGPT adapts a pretrained CLIP ViT-L
[37] model as the visual backbone. The visual backbone
is frozen during the entire training process. Specifically,
an input image Xv is encoded into a low-resolution feature
map ZLRes = f(Xv) by the visual backbone.
Feature Refinement Module. The visual backbone yields
a low-resolution feature map, which is not capable of rep-
resenting small-scale regions and objects. To further refine
the visual features, we introduce two deconvolution layers
of stride 2 to produce feature maps up-scaled by 4×, i.e.,
ZHRes = g(ZLRes). Our method aims to understand any
arbitrary-shaped region of the image, therefore, we choose
Mask Pooling to extract region-level features from the high-
resolution feature map. More concisely, we average the fea-
tures of ZHRes in region Xr to get the region-level feature
Zr = MaskPool (ZHRes,Xr).
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COCO Object Detection
User: What category name best describes the region represented by
⟨region1⟩? Answer the question using COCO-80 category names.
Assistant: TV
User: How would you label the section ⟨region3⟩?
Assistant: Laptop

Referring Expression Comprehension
User: From the provided masks denoted by ⟨region1⟩, ⟨region2⟩,
⟨region3⟩, ⟨region4⟩ and ⟨region5⟩, which one fits “a desktop
monitor with Bruce Lee photo on it”? Answer the question using
the template Region [x].
Assistant: Region [2] .
User: Match the object with its description: a black Xbox 360.
Assistant: No corresponding options found.

Table 1. Task-guided instruction prompt to indicate the response format. Two specific tasks are illustrated here. The guided prompt is
highlighted in red. We empirically show that instruction prompt is able to adjust the output format and significantly improves the mAP and
accuracy on COCO 2017 val set.

Since the visual features are flatten as sequence input
to language decoder, therefore, high-resolution feature map
gets longer sequence input , which significantly lowers the
training and inference efficiency. Hence, we simply use
adaptive pooling layer [30] to merge image feature patches
for image-level feature Zv = AdaPool (ZHRes, (H,W)),
where (H,W) is the target shape of the low-resolution out-
put feature map.
MLP Vision-language Connector. To project visual fea-
tures from the visual backbone into the language model’s
word embedding space, a two-layer MLP is adopted as the
vision-language connector. The embedding of a full image
is represented as Hv = h(Zv) and the region embedding
is Hr = h(Zr). Both the image-level and region-level fea-
tures share the same connector for semantic consistency.
Large Language Model. RGPT incorporates Vicuna (7B)
[11] as the language decoder. Textual inputs are first to-
kenized and transformed into word embeddings. Both
image-level and region-level features, after being processed
through the MLP connector, are directly input into the lan-
guage decoder.

3.2. Region-level Instruction Tuning

General prompt format. For each image Xv, we generate
multi-turn conversation data ([Xv,X1

q], X1
a, ..., XT

q ,XT
a ),

where T is the number of turns, Xt
q is the t-th instruction

and Xt
a is the corresponding response, following [29]. The

image is always used as the starting input of the first in-
struction to provide the contextual information. To facili-
tate region-level responses, we introduce the special token
⟨region⟩ as a placeholder in the user input prompt, which
will be replaced by the corresponding region embedding
Hr. The training loss is the standard auto-regressive train-

ing objective. We only set the response as the learning tar-
get, ignoring the instruction parts.
Task-guided instruction prompt. The language model is
trained without imposing restrictions on the range of its
outputs, in pursuit of achieving flexibility and adaptability.
However, certain tasks demand specific output formats. For
instance, in the context of the COCO detection task, when
provided with a specified bounding box, the model is re-
quired to output only the corresponding class name. This
response must be selected from a predetermined set of 80
candidate categories. To tailor the model’s responses to spe-
cific tasks, we craft custom instruction prompts to guide the
model to a desirable output format, as shown in Tab. 1.

The task-guided instruction prompt ensures that the
model remains both versatile and accurate in its task-
specific applications. We empirically show that our
carefully-designed instruction prompt significantly im-
proves the mAP result on COCO 2017 val set.
Pre-training stage. To maintain and enhance the model’s
capability in understanding images at both the global and
regional levels, we adopt a joint pre-training strategy en-
compassing both image-level and region-level tasks. For
global image understanding, we utilize the LAION-CC-
SBU-558K dataset [28], employing image captioning as a
pretext task. In parallel, to bolster the model’s proficiency in
interpreting and interacting with regional aspects of images,
we engage it with tasks derived from datasets like Visual
Genome [23], ReferCOCOg [22], and V3Det [46]. These
datasets are transformed into multi-turn conversational for-
mats, which help the model in region-based relationship un-
derstanding, captioning, and classification.

While training, we keep the visual encoder and the lan-
guage models’ weights frozen, and train the feature refine-

13799



Figure 3. Overview of the GPT-assisted region caption generation. In the upper block, we show our two-stage paradigm in which
the final output from the assistant accurately described the local region in terms of color, size and style. In contrast, without the global
caption and/or the class name, the assistant either generates vague or over-simplified description, or fails to focus on the region but instead
repeating the global context.

ment module and MLP vision-language connector to align
the image features with language embeddings.

Fine-tuning stage. We only keep the visual encoder
weights frozen, and continue to update the feature refine-
ment module, MLP connector and language model weights.
Our objective is to develop a model capable of advanced
region-level captioning and reasoning. However, the com-
plexity of existing datasets like ReferCOCOg and Visual
Genome for captioning is insufficient for our needs. To ad-
dress this gap, we additionally incorporate the GPT-assisted
region caption dataset (detailed in Sec. 3.3) into our train-
ing regime. Furthermore, we craft task-guided instructive
prompts on COCO-2017 and ReferCOCOg train set to de-
velop the model’s ability for closed-set object classifica-
tion and understanding of referring expressions, as shown
in Tab. 1.

Data Processing. To enhance training efficiency, we opti-
mize the V3Det dataset by balancing the number of bound-
ing boxes across each category. During the pre-training
phase, we limit to 100 boxes per category, and in the fine-
tuning phase, this is further reduced to 10 boxes per cat-
egory. For the closed-set object classification task on the
COCO dataset, we retained 20 boxes per category for fine-
tuning. In the case of Visual Genome, we randomly sam-
pled up to 10 boxes per image to generate dialogues. This
filtering process is employed to generate dialogues that are
rich in diversity and complexity. Although this filtering ap-

proach reduces the data’s volume, it is important to note that
both the visual backbone and the language model have al-
ready been pre-trained on large-scale datasets. The strong
prior knowledge allows the model to perform effectively
even with a smaller, yet diverse set of data. Our data pro-
cessing strikes a balance between training efficiency and ro-
bust model performance.

3.3. GPT-assisted Region Caption Generation

In this section, we present a GPT-assisted dense caption
generation pipeline, developed to construct the Region Cap-
tion Dataset (RecapD). Distinct from traditional image-text
pair datasets that typically offer a holistic description of
images, RecapD provides in-depth annotations focusing on
specific object regions within images. These descriptions
emphasize attributes such as color, shape, material, and
the spatial relationships between objects. The primary ob-
jective of RecapD is to address the challenges associated
with region-level understanding and referencing in images,
thereby significantly enhancing the capabilities of vision
language models in detailed visual comprehension.
A two-stage approach. We explore using an existing
global-level image captioning VLM, i.e., LLaVA [29] for
region-specific tasks. A naive approach is to crop the region
of interest (RoI) and adjust it to fit the model’s input format.
However, this method often leads to inaccurate captions due
to the lack of contextual information from the image’s sur-
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Dataset Images Regions Average words

ReferCOCO [22] 20K 142K 3.50
ReferCOCO+ [22] 20K 142K 3.53
ReferCOCOg [22] 25.8K 95K 8.46
VG [23] 82.4K 3.8M 5.09

Ours 213K 1.5M 87.14

Table 2. Comparison of our dataset with available region-
level caption datasets. Our dataset stands out with a significantly
higher average word count per region caption compared to other
datasets. This richness in detail provides a robust foundation for
complex region-level understanding.

rounding areas. The absence of surrounding information
also makes it infeasible for conveying spatial relationships
between objects.

Alternatively, we work around the limitation of the
VLMs, which does not support the simultaneous input of
both global images and local region patches. To circum-
vent this, in the first stage, we generate a global-level cap-
tion for the image using the VLM. This global description
is then used as contextual information, which we include
in the form of text at the beginning of the prompt. Subse-
quently in the second stage, by inputting the ROI, the VLM
is prompted to describe the specific region represented by
the image patch. We illustrate this approach with a detailed
example in the following:

In the context of the entire image, <GlobalCaption>,
describe the close-up region in detail.

Remarkably, our observations reveal that even with this
two-stage approach, the model often struggles to accu-
rately describe the input region. This inaccuracy largely
stems from its inability to correctly identify the object
classes within the cropped region. Therefore, we further
enhance our approach by incorporating human-annotated
class names as an additional condition when prompting the
VLM to describe the properties of the region:

In the context of the entire image, <GlobalCaption>,
describe the <ClassName> in the close-up region in detail.

GPT-assisted prompt augmentation. To enhance the
model’s adaptability to various styles and combinations
of user inputs, we augmented the input prompts using
ChatGPT-4 [33]. For instance, besides “describe the image
in detail”, one may also ask “provide a detailed description
of the given image”, or “share a thorough analysis of the im-
age”, etc, in the first stage. To ensure a diverse range of re-
sponses, we created ten different versions of input prompts
for both stages, as elaborated in the supplementary mate-
rial. During data generation, one of these ten variations is
randomly selected for each stage to promote diversity in the
model’s responses.

Methods PT IT Vision LLM mAP Acc (%)

CLIP [37] - - ViT-L - 58.9 -
RegionCLIP [58] - - R50x4 - 58.3 -
LLaVA† [29] 595K 158K ViT-L Vicuna-7B - 40.04
Shikra† [9] 600K 5.5M ViT-L Vicuna-7B - 53.91
GPT4RoI† [56] 266K 731K ViT-L LLaVA-7B - 64.01
PVIT† [6] 13.7M 243K ViT-L + R50x4 LLaVA-7B - 64.53
ASM [48] ∼22M ∼22M ViT-L Hasky-7B 69.3 -
Ours 923K 953K ViT-L Vicuna-7B 70.0 80.61

Table 3. Comparison with Region-level based methods on
COCO-2017 val set. Following RegionCLIP [58] and PVIT [6],
we report the results of object classification with ground-truth box
on COCO val set. † represents the results are imported from [6]. -
means that the results are not reported in the source paper.

Region caption dataset analysis. Utilizing our automated
annotation pipeline, we annotate a corpus of 213K V3Det
images [46], leveraging its comprehensive object bound-
ing boxes and class names. This dataset includes about
13,000 precisely labeled concepts, providing a rich founda-
tion for model training. This extensive and precise labeling
enhances the reliability of the generated data. To further
refine our dataset, we utilize the CLIP model [37] to calcu-
late the similarity between the image regions and the corre-
sponding generated region captions. This process allows us
to filter out noisy or irrelevant samples, ensuring that only
high-quality data is used for training. As shown in Tab. 2,
our dataset is distinguished by having a notably higher av-
erage number of words, 87.14 words per caption, in each
region’s caption versus other datasets. This detailed rich-
ness lays a solid groundwork for an in-depth understanding
at the region level.

4. Experiments
In this section, we present experimental settings and results.
The experiments are primarily conducted on region classifi-
cation [27], captioning [22, 23], expression comprehension
[22] and object hallucination benchmark [26]. We present
both quantitative and qualitative results.

Implementation details. During the entire training pro-
cess, the visual backbone weights remain unchanged. We
train the model with an image resolution of 336×336 during
both the pre-training and fine-tuning stages. An input im-
age is padded to achieve a square format, if it is not square.
In the pre-training stage, we employ a cosine learning rate
scheduler. The maximum learning rate is set at 1e-3, with a
weight decay of 0 and a warmup ratio of 0.03. The model is
trained with a batch size of 256 for one epoch. In the fine-
tuning stage, the maximum learning rate is reduced to 2e-5,
and the batch size is adjusted to 128. All other hyperparam-
eters remain the same as the pre-training stage.

4.1. Quantitative Evaluation

Region Classification. We first evaluate the object classifi-
cation ability of our model on COCO-2017 dataset. The
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Model RefCOCOg Visual Genome
METEOR CIDEr METEOR CIDEr

GRIT [49] 15.2 71.6 17.1 142.0
SLR [53] 15.9 66.2 - -
Kosmos-2 [35] 14.1 62.3 - -
Ours 16.9 109.9 17.0 145.6

Table 4. Performance on the region-level captioning task on
RefCOCOg and Visual Genome. We report METEOR and
CIDEr metrics, following the image-level caption task.

Method MDETR[21] Shikra [9] Kosmos-2 [35] MiniGPT-V2 [8] Ours

val 81.64 82.27 60.57 84.44 86.44
test 80.89 82.19 61.65 84.66 86.96

Table 5. REC on ReferCOCOg val and test set [22]. As
RGPT focuses on region-level understanding rather than localiza-
tion, hence, we highlight the strength of our model in interpreting
complex expressions within the context of the provided regions
from [60].

mAP and classification accuracy metrics are reported to
quantify performance. Our focus is on region recogni-
tion, rather than object localization. Therefore, following
RegionCLIP [58], we use ground-truth boxes as the in-
put for positional information. Alongside this, we attach
task-guided instruction prompts to the general instruction
prompt and input only one bounding box for one-turn con-
versation. If the output does not fall within the predefined
candidate categories of the COCO dataset, we simply dis-
card this prediction and categorize it as a misclassification.

We report the results of VLMs and feature-based vision
models, as shown in Tab. 3. For our baseline, we crop the
RoI from images, resize them to the input size, and then
compare their features with those of the 80 classes in the
COCO dataset to select the category with the highest simi-
larity. Additionally, we consider other feature-based meth-
ods like RegionCLIP [58] and ASM [48]. RegionCLIP pre-
trains CLIP model to align the CC3M [42] region-text pairs
in the feature space. ASM is trained on approximately 22M
images and the features are produced by the language de-
coder. The other VLMs use textual formats as output. On
the COCO dataset, our approach achieves a mAP of 70.0
and an accuracy of 80.86%, demonstrating our method’s
effectiveness in constraining output formats and its strong
capability in region-level object recognition.
Region Captioning. We evaluate the region-level caption-
ing ability of our model on the ReferCOCOg [22] and Vi-
sual Genome [23], employing the same evaluation met-
rics as used for image-level captioning: METEOR [3] and
CIDEr [45]. As illustrated in Tab. 4, our model surpasses
the region-aware VLM, Kosmos-2 [35]. The results high-
light our model’s proficiency in accurately generating refer-
ring expressions for image regions.
Referring Expression Comprehension (REC). We evalu-

Arch. Deconv BiLinear Deconv + BiLinear None

AP 66.8 60.9 62.7 57.7
APs 51.1 52.8 53.8 42.7
APm 71.5 70.8 71.4 65.2
APl 78.0 57.9 60.3 65.4

Table 6. Ablation study on the feature refinement module. The
object classification results on COCO 2017 val set are reported.
We use ViT-B/16 from [54] as our visual backbone, whose input
size is 512×512. Deconv represents our two deconvolution layers
design for feature maps of scale 4. BiLinear indicates the use of
bilinear upsampling for scale 16. Deconv + BiLinear means bilin-
ear upsampling the Deconv output for scale 16. None refers to no
module is used.

Model AP APs APm APl

OpenAI ViT-L-336 70.0 55.7 75.5 81.5
SigLip ViT-B-512 66.8 51.1 71.5 78.0
SigLip ViT-L-384 69.5 56.8 74.1 80.2
SigLip ViT-SO400M-384 71.0 57.9 76.5 81.6

Table 7. Ablation study on visual backbone. The object classifi-
cation results on COCO 2017 val set are reported. We use SigLip
models from [54] pre-trained on WebLI dataset [10] and OpenAI
CLIP model [37]. The results demonstrate that our method can be
further improved with more powerful visual network.

ate expression comprehension of our model on the Refer-
COCOg dataset. Our method focuses on region-level un-
derstanding, rather than object localization. Therefore, we
utilize bounding box proposals from [60] as candidate box
sets. If the Intersection Over Union between the ground
truth box and any of the candidate boxes is less than 0.5,
we include the ground truth box in our set of candidates.
The results in Tab. 5 only highlight the specific strength of
our model in understanding complex expressions within the
context of the provided regions.
Ablation Study on Feature Refinement Module. We
study the effect of the feature refinement module on the ob-
ject classification task. Our motivation for this module is
to refine the CLIP visual features for better spatial-aware
semantics. Tab. 6 shows that two-deconvolution-layer de-
sign significantly outperforms the baseline model (the last
column), demonstrating the effectiveness of feature refine-
ment. An interesting observation is that the methods of
16x upsampling (BiLinear and Deconv + BiLinear) enhance
the accuracy of classification for smaller objects, though it
shows a decrease in performance for larger objects. Our
approach achieves a superior trade-off between these two
aspects. We believe that implementing more complex and
carefully designed feature optimization mechanisms could
potentially lead to further improvements in performance.
Ablation Study on Visual Backbone. We study the ef-
fect of the visual backbone on the object classification task.
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Datasets Metrics Ours Shikra [9] InstructBLIP [14] MiniGPT4 [59] LLaVA [29] MM-GPT [18] mPLUG-Owl [52]

Random

Accuracy (↑) 87.80 86.90 88.57 79.67 86.00 50.10 53.97
Precision (↑) 97.75 94.40 84.09 78.24 87.50 50.05 52.07
Recall (↑) 78.13 79.26 95.13 82.20 84.00 100.00 99.60
F1 Score (↑) 86.85 86.19 89.27 80.17 85.71 66.71 68.39
Yes 41.20 43.26 56.57 52.53 48.00 99.90 95.63

Popular

Accuracy (↑) 87.20 83.97 82.77 69.73 76.67 50.00 50.90
Precision (↑) 95.44 87.55 76.27 65.86 72.22 50.00 50.46
Recall (↑) 78.13 79.20 95.13 81.93 86.67 100.00 99.40
F1 Score (↑) 85.92 83.16 84.66 73.02 78.79 66.67 66.94
Yes 40.93 45.23 62.37 62.20 60.00 100.00 98.57

Adversarial

Accuracy (↑) 85.67 83.10 72.10 65.17 73.33 50.00 50.67
Precision (↑) 91.99 85.60 65.13 61.19 69.02 50.00 50.34
Recall (↑) 78.13 79.60 95.13 82.93 84.67 100.00 99.33
F1 Score (↑) 84.50 82.49 77.32 76.05 66.32 66.67 66.82
Yes 42.47 46.50 73.03 67.77 61.33 100.00 98.67

Table 8. Results on the object hallucination benchmark using the POPE evaluation pipeline [26]. Except for our model and LLaVA
[29], the other results are obtained from [9].

The results in Tab. 7 demonstrate that the performance on
region-level understanding can be further improved by re-
placing current visual backbone with a more powerful one.
Object Hallucination. We evaluate object hallucina-
tions, generating objects that are inconsistent with the tar-
get images in the descriptions, of our method using the
POPE evaluation pipeline [26], with the results detailed in
Tab. 8. Our approach significantly outperforms recent popu-
lar image-level VLMs. Given that our baseline model is the
LLaVA model, we attribute this performance gain to our
region-level instruction fine-tuning strategy, which signifi-
cantly refines the model’s ability to interpret images with
greater precision.

4.2. Qualitative Evaluation

As demonstrated in Fig. 4, RGPT is capable of analyz-
ing of relationships between multiple regions within an im-
age. Additionally, in the green example, our model exhibits
complex region-level reasoning abilities akin to those seen
in GPT-4V demonstrations, effectively interpreting and ex-
plaining visual content.

5. Conclusion

In this paper, we present RGPT, a general vision-language
model that tackles complex region-level captioning and rea-
soning following user instruction. Our model employs
region-level instruction tuning to align the visual feature
with the language word embedding space. Besides, we
carefully design task-guided instruction prompts to seam-
lessly blend vision tasks within GPT framework, by con-
verting the vision tasks to VQA tasks and prompting the
response format. Finally, we propose a two-stage GPT-
assisted annotation pipeline to reformat the object detec-
tion dataset and create detailed region-level captions. The

Figure 4. Qualitative evaluation of the mutli-turn conversation
of RGPT. Our model preserves the mutli-turn conversation and
image-level captioning ability.

results demonstrate that RGPT achieves impressive perfor-
mance on the region-level understanding tasks.
Acknowledgement. This paper is partially supported by
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