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Abstract

Crowd counting has achieved significant progress by
training regressors to predict instance positions. In heav-
ily crowded scenarios, however, regressors are challenged
by uncontrollable annotation variance, which causes den-
sity map bias and context information inaccuracy. In
this study, we propose mutual prompt learning (mPrompt),
which leverages a regressor and a segmenter as guidance
for each other, solving bias and inaccuracy caused by anno-
tation variance while distinguishing foreground from back-
ground. In specific, mPrompt leverages point annotations
to tune the segmenter and predict pseudo head masks in a
way of point prompt learning. It then uses the predicted
segmentation masks, which serve as spatial constraint, to
rectify biased point annotations as context prompt learning.
mPrompt defines a way of mutual information maximization
from prompt learning, mitigating the impact of annotation
variance while improving model accuracy. Experiments
show that mPrompt significantly reduces the Mean Aver-
age Error (MAE), demonstrating the potential to be general
framework for down-stream vision tasks. Code is available
at https://github.com/csguomy/mPrompt.

1. Introduction
Crowd counting, which estimates the number of people in
images of crowded or cluttered backgrounds, has garnered
increasing attention for its wide-ranging applications in
public security [23, 42], traffic monitoring [13], and agricul-
ture [2, 38]. Many existing methods converted crowd count-
ing as a density map regression problem [3, 27, 28, 62],
i.e., generating density map targets by convolving the point
annotations with the predefined Gaussian kernels and then
training a model to learn from these targets.

Unfortunately, point annotations exhibit considerable
variances, termed label variance, which impedes the accu-
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Figure 1. Upper: The biased point annotation impedes ac-
curate model learning. mPrompt leverages context prompt
and point prompt to mine spatial context and rectify biased an-
notation for crowd counting. Lower: Illustration of mutual
prompt learning (mPrompt), which completes pseudo segmen-
tation mask by using point prompt learning. Meanwhile, it lever-
ages the rectified masks as spatial context information to refine bi-
ased point annotations in a way of context prompt learning. (Best
viewed in color)

rate learning of models. As shown in Fig. 1, label vari-
ance is an inherent issue, where the annotated point are
coarsely placed within head regions rather than at precise
center positions. To mitigate the label variance, loss re-
laxation approaches [40, 52, 54] modified the strict pixel-
wise loss constraint via constructing probability density
functions. Segmentation-based approaches [41, 48, 64]
suppressed background noises by introducing an auxiliary
branch to regressor networks [41].

Unfortunately, loss relaxation methods comprise point
position variance, which could introduce background noises
to the regressor. Segmentation-based methods manage to
alleviate label variance using spatial context, but are chal-
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lenged by the inaccurate context information. To obtain
accurate context information while alleviating background
noises in a systematic framework remains to be elaborated.

In this study, the pivotal question we seek to address is:
How to obtain precise spatial context information to al-
leviate the impact of label variance for crowd counting?
We propose a simple-yet-effective mutual prompt learning
framework, Fig. 1, which leverages a regressor and a seg-
menter as guidance for each other. This framework com-
prises a head segmenter, a density map regressor, and a
mutual learning module. Specifically, mPrompt leverages
the point annotation to tune a segmenter and predict pseudo
head masks in a way of point prompt learning. As illus-
tration in Fig. 1, the point prompt provides statistical dis-
tribution (random and uncertain locations) of points to re-
fine the object mask. The objective of the segmenter is to
isolate head regions, so as to learn comprehensive and ac-
curate pseudo segmentation masks. Such pseudo segmen-
tation masks are treated as spatial context to rectify biased
point annotations in a way of context prompt learning. This
mutual prompt process fosters information gain between the
segmenter and the density map regressor, driving them to
enhance each other and ultimately reach an optimal state.

The contributions of this study are summarized as fol-
lows:
• We propose a mutual prompt learning (mPrompt) frame-

work, which incorporates a segmenter and a regressor and
maximizes their complementary for crowd counting. To
our best knowledge, this is the first attempt to unify learn-
ing accurate context information and alleviating back-
ground noises using mutual prompt.

• We design feasible point prompt by unifying the pre-
dicted density map with the ground-truth one, and plau-
sible mask prompt by unifying/intersecting the predicted
density map with a segmentation mask.

• Experiments conducted on the popular crowd-counting
datasets, including ShanghaiTechA/B [63], UCF-
QNRF [57] and NWPU [17] demonstrate mPrompt’s ef-
fectiveness when addressing label variance. Particularly,
mPrompt achieves new state-of-the-art performances on
multiple benchmark datasets.

2. Related Work
Density Regression Method. Nowadays, density map re-
gression [27] is widely used in crowd counting [3, 4, 7, 28,
33, 34, 50, 51, 53, 55, 61, 63] due to its simple and effective
learning strategies. Nevertheless, many density regression
approaches neglected scale variation of heads, and thereby
is challenged by the inconsistency between density maps
and features caused by labeling variance.

To tackle scale variance, multi-scale feature fusion lay-
ers [19, 20, 51], attention mechanisms [12, 21, 31, 34,
61], perspective information [47, 58–60], and dilated net-

works [4, 58] were proposed.

To mitigate the side effect of inaccurate point annota-
tions, distribution matching [30, 54], generalized localiza-
tion loss [53], and density normalized precision [50] are
proposed to minimize the discrepancy between the pre-
dicted maps and point annotations. For so many approaches
proposed, however, density regression remains challenged
by the label variance issue, which is expected to be tackled
by introducing segmentation-based context information.

Segmentation-based Method. In early years, Chan et
al. [8] and Ryan et al. [46] proposed to segment foreground
objects to distinct clusters, and regress the features of each
cluster to determine the overall object counts. Recent stud-
ies [41, 48, 64] began to incorporate image segmentation
as an auxiliary task to leverage spatial context informa-
tion while mitigating the effects of false regression. These
methods typically utilized the coarse “ground-truth” seg-
mentation maps, which are simply derived from the noisy
point annotation maps. As a result, they lack robust and
precise spatial information, and are prone to label variabil-
ity. In contrast, this study smoothly acquires precise spatial
information about head positions, reducing label variance
through the deployment of mutual prompt learning. The
significant advantage of our approach upon conventional
segmentation-based approaches lies in that it can fully ex-
plore the statistical distribution (random and uncertain loca-
tions) of points to refine the object mask in a way of point
prompt learning.

Prompt Learning. In the era of large language mod-
els [6, 11], prompt learning has been shown to be a powerful
tool for solving various natural language processing (NLP)
tasks [6, 35, 44]. various prompt learning strategies includ-
ing prompt engineering [6, 39], prompt assembling [22],
and prompt tuning [43], are respectively proposed. Inspired
by the success of prompt learning in NLP, vision prompt
learning approaches [5, 18] are proposed. The challenge
lies in how to design plausible prompts which can guide
and enhance the learning of models on specific tasks.

In this study, we take a further step to mutual prompt
learning, with the aim to enhance both the regression and
segmentation models in a unified framework. While the
term “prompt” typically refers to “guidance/hint” embed-
ding into the pretrained large model in the forward pro-
cess, our work extends its application to the realm of back-
ward gradient propagation (via point and context prompt
in this paper). We also extend our method by integrating
pre-trained large-scale models, capitalizing on their exten-
sive knowledge base. This integration enables our model
to achieve robust performance while maintaining parameter
efficiency during training.
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Figure 2. mPrompt consists of four components: a shared backbone for feature extraction, a regressor for density map (ŷ) prediction, a
segmenter for head region (m̂) estimation, and a mutual prompt learning module.

3. The Proposed Approach

The proposed approach integrates a regressor and a seg-
menter for density map and segmentation mask prediction.
In what follows, we first unify the segmenter with a regres-
sor to construct a two-branch network. We then introduce
mutual prompt learning to the network, which encompasses
point prompts given by the regressor and context prompts
provided by the segmenter.

3.1. Unifying Segmenter with Regressor

Network Architecture. As shown in Fig. 2(upper),
mPrompt consists of a shared CNN backbone, a density
regressor R and a head segmenter S , which are trained
in an end-to-end fashion. The shared backbone is derived
from a HRNet by truncating layers from stage4 [56]. To
seamlessly unify the segmenter with the regressor, a self-
attention module applied to them to enhance features of the
regressor, Fig. 2. Denoting S(x) and R(x) as the features
of the regressor and the segmenter for an input image x,
the self-attention operation is applied on S(x) and R(x)
as Sigmoid

(
S(x)

)⊗
R(x), where

⊗
is the element-wise

multiplication. With feature self-attention, the regressor
preliminarily incorporates the context information provided
by the segmenter.

The regressor predicts the density map ŷ for the in-
put image x, and the segmenter predicts the head mask
m̂. The regressor and segmenter are designed using an
identical architecture, comprising Conv-BN-ReLU blocks.

Specifically, three Conv-BN-ReLU blocks are adopted to
decrease the feature channel size progressively from 128
to 64, and eventually down to 32 followed by a self-
attention operation. A convolution layer of kernel size 1
followed by ReLU/Sigmoid layer squeezes the features to
density/segmentation maps.

Segmenter Learning. Each point annotation is ex-
panded to a density map (y) and a target mask (m), which
however are noisy and inaccurate. Fortunately, existing
datasets, such as NWPU [57], provide point and box an-
notations, which can be expanded to pseudo masks for seg-
menter training. A point pseudo mask is derived by ap-
plying dilation to the point density map, which are con-
verted to a segmentation mask after binarization. Follow-
ing [41, 48, 64], we train the segmenter using the cross-
entropy loss function Ls defined on point pseudo masks.

As elucidated by experiments, using point-based pseudo
masks to train a segmenter exhibits a challenge in assim-
ilating spatial information. This limitation primarily stems
from the fact that the learning targets for both the segmenter
and regressor are manually created from dot annotations,
which intrinsically do not convey any spatial information.
To develop an advanced segmenter, we further leverage the
box annotations provided by the NWPU dataset [57]. A
box pseudo mask is produced by attributing values of 1 to
locations within the heads and 0 to the background. Ac-
cordingly, the overall loss for the regressor and segmenter
is defined as L = Lden + λsLseg where λs is a parameter
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Figure 3. Illustration of the generation of prompt information for the segmenter. White boxes highlight key regions for better clarity. The
red-shaded areas represent the head segmentation mask, demonstrating the pseudo mask’s inaccuracy when compared to the more precise
updated target mask. With offline prompt, the prompted segmenter tends to predicted more complete head regions but unfortunately
introduces background noises. With online prompt, background noises are reduced. (Best viewed in color with zoom)

Figure 4. Illustration of K-NN algorithm, which removes back-
ground noises from the target segmentation mask.

to balance the two losses 1.

3.2. Segmenter Learning with Point Prompt

As shown in Fig. 2, point prompt defines a procedure to
refine the target mask m using the pseudo mask mp, the
ground-truth density map y and the predicted density map
ŷ. In specific, we utilize the pseudo mask mp (offline ob-
tained via a segmenter pretrained on NWPU box annota-
tions) and ground-truth density map (y) for offline prompt,
and the density map ŷ for online prompt, which guarantees
the renewal of the segmentation map via the prompt from
the regressor. When training the segmenter, the binary cross
entropy loss is applied.

Offline Prompt. This is performed by unifying the seg-
mentation pseudo mask mp with the binarized ground-truth
density map y, as

m = mp ∪B(y), (1)

where ∪ denotes the union operation performing pixel-wise
OR operation between two matrices. B(·) defines a bi-
narization function: the density map is binarized with a 0
threshold to form a mask. Supervised by training targets m

1Please refer to the supplementary material for details of training a seg-
menter using point and box/pseudo masks.

from all the training images, the segmenter tends to absorb
the distribution (random and uncertain locations) of points.
After prompt learning, the prompted segmenter tends to pre-
dict more complete head regions (the top row of Fig. 3)
where the initialized segmenter fails to predict.

Online Prompt. With the offline prompt, the accuracy
of the predicted density map can be improved after κ epochs
of training, so that it can be used to improve the target seg-
mentation mask. Following the initial κ training epochs,
ŷ should possess credibility and aid in introducing reliable
distributions (Gaussian blobs randomly situated around the
point annotations) of head regions. As a result, integrating
ŷ into point prompt learning further assists in predicting the
comprehensive head regions. Meanwhile, the union oper-
ation defined in offline/online prompt inevitably introduce
background noises from the density map to the target mask.
To solve, we further leverage a K-NN algorithm to filter
out background noises (the bottom row of Fig. 3) at the end
of online prompt, which defined as interaction operation.
Online prompt defines the following union and intersection
operations, as

m← (m∪ (B(ŷ))∩mK , (2)

where mK is a context mask defined by a spatial K-NN al-
gorithm applied on the point annotations Fig. 4. In specific,
for a point annotation, the spatial K-NN algorithm finds
its K nearest point annotations. The minimum circle area
covering the K nearest point annotations is defined as the
context mask mK .

3.3. Regressor Learning via Context Prompt

With point prompt, the segmenter absorbs distribution of
the annotated points so that it produces more accurate mask
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Figure 5. mPrompt with learnable prompt modules based on a pre-
trained model.

predictions. Such mask predictions serve as a spatial infor-
mation to improve the regressor in turn, which is termed as
context prompt. In specific, the context prompt is defined as
a constraint, which encourages the predicted density map ŷ
falling the target mask m. This is implemented by intro-
ducing a context prompt loss to the framework, as

Lcon(ŷ, m̂) = −
Σ
(
B(ŷ) ∩B(m̂)

)
ΣB(ŷ)

, (3)

where Σ accumulates the values of all pixels. To minimize
the context prompt loss, intersection term in Eq. 3 must be
large, which implies the prediction ŷ of the regressor falling
in the predicted mask area (m̂) of the segmenter. In other
words, the segmenter serves as the context prompt of the re-
gressor. When training the regressor, the conventional MSE
constrain is defined as the density map construction loss.

3.4. Mutual Prompt Learning

Given the point prompt defined by Eq. 1 and Eq. 2, and the
context prompt defined by Eq. 3, the mutual prompt learn-
ing is performed in an end-to-end fashion by optimizing the
following loss function,

L = λdLden(ŷ,y) + λsLseg(m̂,m) + λcLcon(ŷ, m̂),
(4)

where λd, λs and λc are experimentally defined regulariza-
tion factors.

In summary, our mPrompt comprises three components:
(1) With point prompt learning, the segmenter absorbs sta-
tistical distribution (random and uncertain locations) of
points to predict more accurate target masks. (2) With
context prompt learning, the predicted density map is con-
strained to fall into the target mask regions, which in turn
improve the density regression. (3) Unifying point prompt
learning with context prompt learning in a framework with
shared backbone and training the network parameters in an
end-to-end fashion create mutual prompt learning.

3.5. Extension to Foundation Model

Our mPrompt approach can be further applied to founda-
tion model adaptation. This involves expanding the con-

text prompt into a feature insertion strategy, which enhances
the utilization of the extensive knowledge embedded in pre-
trained large models, as demonstrated in Fig. 5. In this pro-
cess, the context prompt is modulated by learnable prompt
modules. Such prompt modules are implemented using
adapter mechanism2 [16]. Our primary goal is to integrate
comprehensive context information into foundational mod-
els, specifically for crowd counting. This aims to make ef-
fective use of the representational knowledge in pre-trained
large models by only fine-tuning a small number of param-
eters.

During the inference phase, the learnable prompt mod-
ules, along with the backbone and regressor, are retained,
while the segmenter branch is discarded. These prompt
modules function as context prompts, facilitating the inser-
tion of features into the backbone.

3.6. Interpretive Analysis

The proposed approach is justified from the perspective of
mutual information [1]. mPrompt can be generally inter-
preted as a procedure to maximize the mutual information I
of a regressor (fr) and a segmenter (fs). The point prompt
is interpreted as

H(fs, fr) = H(fs|fr) +H(fr) (5)

where H(·) is information entropy, the H(fs|fr) is condi-
tional and the H(fs, fr) is joint entropy. Denote the pa-
rameters of the model as θ. To minimize Lcon(ŷ, m̂) is

equivalent to maximize log
Σ
(
B(ŷ)∩B(m̂)

)
ΣB(ŷ) . Then the con-

text prompt is interpreted as

argmax
θ
Iθ(fr; fs) = log

p(fr|fs)

p(fr)
, (6)

which maximizes the mutual information between the re-
gressor fr and the segmenter fs.

4. Experiment
Dataset: Experiments are carried out on four public crowd
counting datasets including ShanghaiTechA/B [63], UCF-
QNRF [17], and NWPU [57]. ShanghaiTech includes
PartA (SHA) and PartB (SHB), totaling 1, 198 images with
330, 165 annotated heads. SHA comprises 300 training im-
ages and 182 testing images with crowd sizes from 33 to
3, 139. SHB includes 400 training images and 316 testing
images with crowd sizes ranging from 9 to 578. The im-
ages are captured from Shanghai street views. UCF-QNRF
(QNRF) encompasses 1, 535 high-resolution images, 1.25
million annotated heads with extreme crowd congestion,
small head scales, and diverse perspectives. It is divided
into 1, 201 training and 334 testing images. NWPU dataset

2Please refer to the supplementary materials for more details.
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Method Venue
SHA SHB QNRF NWPU(V) NWPU(T)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
GLoss [53] CVPR’21 61.3 95.4 7.3 11.7 84.3 147.5 - - 79.3 346.1
P2PNet [50] ICCV’21 52.8 85.1 6.3 9.9 85.3 154.5 77.4 362.0 83.3 553.9
DKPNet [9] ICCV’21 55.6 91.0 6.6 10.9 81.4 147.2 61.8 438.7 74.5 327.4
SASNeT [51] AAAI’21 53.6 88.4 6.4 9.9 85.2 147.3 - - - -
GauNet [10] CVPR’22 54.8 89.1 6.2 9.9 81.6 153.7 - - - -
CLTR [29] ECCV’22 56.9 95.2 6.5 10.6 85.8 141.3 61.9 246.3 74.3 333.8
DDC [45] CVPR’23 52.9 85.6 6.1 9.6 65.8 126.5 - - - -
PET [32] ICCV’23 49.3 78.8 6.2 9.7 79.5 144.3 58.5 238.0 74.4 328.5
STEERER [14] ICCV’23 54.5 86.9 5.8 8.5 74.3 128.3 54.3 238.3 63.7 309.8
mPrompt‡ (ours) - 52.5 88.9 5.8 9.6 72.2 133.1 50.2 219.0 62.1 293.5
mPrompt‡∗ (ours) - 53.2 85.4 6.3 9.8 76.1 133.4 58.8 240.2 66.3 308.4

Table 1. Performance comparisons. mPrompt‡∗ indicates that we extend the mPrompt to the pre-trained model (SAM-base). The best
results are shown in bold, and the second-best results are underlined.

comprises 5, 109 images, with 2, 133, 375 annotated heads
and head box annotations. The images are split to a training
set of 3, 109 images, an evaluation set of 500 images, and
a testing set of 1, 500 images. NWPU(V) and NWPU(T)
denote the validation and testing sets, respectively.

Evaluation Metric: Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE) [28, 36] are used. They
are defined as MAE = 1

N

∑N
i=1 |Ĉi − Ci| and RMSE =√

1
N

∑N
i=1 |Ĉi − Ci|2, where N is the number of test im-

ages. Ĉi and Ci respectively denote the estimated and
ground truth counts of image xi.

Implementation Details: We resize images to a maxi-
mum length of 2, 048 pixels and a minimum of 416 pixels,
keeping the aspect ratio unchanged. Data augmentation in-
cludes random horizontal flipping, color jittering, and ran-
dom cropping with a 400 × 400 pixel patch size. Ground-
truth density maps are generated using a 15 × 15 Gaussian
kernel. The network is trained using Adam [24] optimizer
with learning rate of 1e−4. The batch size is 16 and train-
ing on NWPU dataset takes about 25 hours on four Nvidia
V100 GPUs. Key parameters include K = 3, λd = 1,
λs = 0.5, λc = 0.5 and κ = 50. The network is constructed
with the backbone HRNet-W40-C [56] pretrained on Ima-
geNet [26] and random initialization of the remaining pa-
rameters. When adopting mPrompt for foundation models,
we utilize SAM-base [25], chosen for its robust segmenta-
tion performance. We train both networks for 700 epochs.

In Table 1, the performance of mPrompt‡ is compared
with state-of-the-art methods across four major datasets.
mPrompt‡ consistently achieves impressive results in terms
of MAE on all four datasets. mPrompt‡ consistently ranks
within the top-2 for MAE performance across the datasets,
highlighting the superior effectiveness of our model.

4.1. Visualization Analysis

Fig. 6 visualizes the predicted density maps and the at-
tention map from a test image. mPrompt‡ generates
more precise density maps compared with the baseline
(mPromptrsg), at both dense and sparse regions. Particu-
larly, after the context prompt learning, mPrompt‡ indeed
isolates the accurate head regions as the regressor absorbs
the context information from the segmenter.

Fig. 7 visualizes the segmentation maps predicted by
mPromptrsg and mPrompt‡. Specifically, we identify three
types of regions when comparing these two segmenta-
tion maps. Blue and yellow regions are generated by
mPromptrsg (baseline) and mPrompt‡, respectively. Red
regions represent the intersection of these two masks. One
can see that mPrompt‡ improves head region segmentation
by removing areas where the background is mistaken for
a head and adding regions where the head is mistaken for
background, compared to the baseline. In order to evaluate
the enhancement of the segmenter, we conduct an analysis
of the Intersection over Union (IoU) between the head-box
regions and the predicted mask on the NWPU dataset. This
investigation yields IoU scores of 46.5 for mPrompt‡ and
38.7 for mPromptrsg, respectively, thus providing quan-
titative evidence of the segmenter’s improvement through
mPrompt‡. These validate the effect of point prompt learn-
ing, which finally contributes to the superior performance
reported in Table 2.

4.2. Ablation Studies
No Prompt. The baseline mPromptreg consists only a
regressor. By introducing the segmenter and employ-
ing pseudo mask as supervision, mPromptreg develops to
mPromptrsg. In Table 2, mPromptreg harnesses the robust
features of HRNet (truncated at stage4), achieving compet-
itive MAE performances of 59.4, 7.8, 85.5, and 65.7 on
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Figure 6. Comparison of the density maps with/without context prompt. (Best viewed in color with zoom)

Figure 7. Comparison of segmentation masks with/without point prompt. (Best viewed in color with zoom)

Methods Regressor Segmenter
Point Prompt Context

SHA SHB QNRF NWPU(V)
Offline Online Prompt

mPromptreg ✓ 59.4 7.8 85.5 65.7
mPromptrsg ✓ ✓ 58.4 7.1 83.2 64.3
mPromptp† ✓ ✓ ✓ 54.8 6.2 78.9 59.2
mPromptp‡ ✓ ✓ ✓ ✓ 53.9 5.9 74.8 52.1
mPromptc† ✓ ✓ ✓ 55.3 6.4 79.4 62.0
mPrompt† ✓ ✓ ✓ ✓ 54.1 6.1 76.7 56.5
mPrompt‡ ✓ ✓ ✓ ✓ ✓ 52.5 5.8 72.2 50.2

Table 2. Ablation study of mPrompt components about MAE.

Backbones #Params(M) GFLOPs
mPromptreg mPromptrsg mPrompt† mPrompt‡

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CNN architecture

VGG19 [49] 12.6 19.3 64.0 112.5 62.6 106.5 61.4 100.9 60.9 106.1
HRNet [56] 33.1 62.1 59.4 96.7 58.4 95.8 54.1 92.8 52.5 88.9

Transformer architecture

Swin [37] 7.4 11.6 63.9 105.5 61.8 100.0 61.1 99.3 59.3 98.8
SAM [25] 7.7 13.5 60.4 98.3 59.5 98.8 55.2 89.5 53.2 85.4

Table 3. Comparison of backbones on the SHA dataset is paired with an analysis of learnable parameters and FLOPs for a standard input
size of (3× 224× 224) when training.

SHA, SHB, QNRF, and NWPU(V) datasets, respectively.
mPromptrsg surpasses mPromptreg, highlighting the signif-
icance of introducing the segmenter and signifying the ef-
fective utilization of spatial head information.

Point Prompt. With offline and online point prompt,
mPromptrsg promotes to mPromptp† and mPromptp‡, re-
spectively. mPromptp† achieves better performance, reach-

ing MAEs of 54.8, 6.2, 78.9, and 59.2 on SHA, SHB,
QNRF, and NWPU(V) datasets, respectively. mPromptp‡
further reduces the MAEs to 53.9, 5.9, 74.8, and 52.1 on
these four datasets.

Context Prompt. In Table 2, when adopting Lcon to
mPromptrsg, our mPromptc† delivers a performance gain
on these datasets, indicating the necessity of spatial infor-
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No Mutual Prompt Learning

Method
Seg label

SHA S  HB Q  NRF N  U(V)
point b     ox

mPtrsg∗ ✓ 58.8 7.5 84.3 66.8
mPtrsg ✓ 58.4 7.1 83.2 64.3

Mutual Prompt Learning

Method
mp SHA S  HB Q  NRF N  U(V)

mPtrsg∗ m  Ptrsg
mPt‡∅ ∅ 54.6 6.3 73.9 52.1
mPt‡∗ ✓ 54.3 6.4 73.4 52.7
mPt‡ ✓ 52.5 5.8 72.2 50.2

Table 4. Performance when adopting different pseudo masks. Due
to space constraints, we use t he abbreviations NU(V) and mPt t o
respectively refer to NWPU(V) and mPrompt.

mation for regressing implemented in this explicit manner.
Mutual Prompt. I  n Table 2 , b oth mPrompt† a nd

mPrompt‡ achieves satisfying performances, and our final
variant mPrompt‡ delivers MAEs of 52.5, 5.8, 72.2, and
50.2 on SHA, SHB, QNRF, and NWPU(V) datasets, respec-
tively. Comparing with mPromptreg , a significant perfor-
mance gain i s achieved, r educing MAE by 6.9, 2.0, 13.3,
and 15.5, r espectively. These ablation studies validate t he
efficacy of the components of mPrompt.

Pseudo masks. W   e use a s egmenter pretrained on
NWPU box annotations t o obtain t he offline pseudo mask
mp. A natural question arises: Can we generate mp us-
ing a segmenter pretrained only with the point annotations,
or even directly set mp as ∅? To explore t his, we pretrain
mPromptrsg∗ using only the point annotations of the corre-
sponding dataset t o generate t he segmentation masks (i.e.,
point-based pseudo mask). In Table 4, mPromptrsg∗ under-
performs mPromptrsg due to the inaccuracy of the segmen-
tation label. By setting mp t o ∅ and utilizing pseudo masks
generated f rom mPromptrsg∗ a nd mPromptrsg i n mutual
prompt l earning, we obtain mPrompt‡∅, mPrompt‡∗ a nd
mPrompt‡, r espectively. mPrompt‡∗ performs similarly t o
mPrompt‡∅, as mp i ndeed i ntroduces no extra spatial i n-
formation when only utilizing t he pseudo masks generated
from mPrompt‡∗. Even with mp set t o ∅, mPrompt‡∅ still
significantly outperforms mPromptreg∗, highlighting the ef-
fectiveness of mutual prompt learning.

Backbone Architectures. W  e r eplace HRNet-W40-
C with o ther c ommonly-used b ackbones ( VGG19 [ 49],
Swin [37] and SAM [25]). Table 3 reveals t hat mPrompt‡
continues t o o utperform mPromptreg , mPromptrsg , a nd
mPrompt†, a chieving s ignificant MAE r eductions. F ur-
thermore, we have extended t he mPrompt t o f oundational
models, such as t he SAM [ 25] and Swin [ 37]. As shown
in Table 3, mPrompt‡ ( SAM based) s hows performance
marginally below mPrompt‡, y et with only a bout 1 

4 t he
training parameters and 1 

5 t he FLOPs of t he l atter. F or
crowd c ounting, g iven t he b ackbone i s s tatic a nd o nly
the p rompt module i s l earnable, t he Swin Transformer,

Figure 8. P erformance on NWPU when t raining with different
annotation variance.

pretrained f or c lassification, u nderperforms c ompared t o
SAM [25]. This mainly attributes to Swin’s representational
knowledge i s l ess aligned with crowd counting comparing
with SAM.

Robustness t o Annotation Variance. T  o assess t he
robustness of mutual prompt l earning against box annota-
tion variance, we conduct an experiment on NWPU, ob-
serving performance changes with varying box annotations.
Specifically, we add uniform r andom noise, r anging f rom
0 t o 5 0%, o f t he b ox h eight, t o t he o fficial a nnotated
boxes. F ig. 8 r eveals t hat our mPrompt‡ i s only mildly
affected by different noise l evels, while mPromptrsg a nd
STEERER [ 14] s uffer f rom s evere performance degrada-
tion. This demonstrates t he robustness of our mPrompt‡ t o
annotation variance.

5. Conclusions
We proposed a mutual prompt l earning approach, t o en-
hance context i nformation while mitigating t he i mpact of
point annotation variance i n crowd counting. mPrompt i n-
corporates a shared backbone, a density map regressor for
counting, a head segmenter for foreground and background
distinction. T he mutual prompt l earning s trategy maxi-
mized the mutual information gain of the segmenter and re-
gressor. Experimental results on four public datasets affirm
the efficacy and superiority of our method. While we pri-
marily focus on crowd density maps in this study, mPrompt
has potential applications i n areas with scarce or noisy l a-
beling i nformation, such as crowd l ocalization, object de-
tection, and visual tracking. We aim to explore these appli-
cations in the future work.
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