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Abstract

Prior studies on Remote Sensing Foundation Model
(RSFM) reveal immense potential towards a generic model
for Earth Observation. Nevertheless, these works primar-
ily focus on a single modality without temporal and geo-
context modeling, hampering their capabilities for diverse
tasks. In this study, we present SkySense, a generic billion-
scale model, pre-trained on a curated multi-modal Remote
Sensing Imagery (RSI) dataset with 21.5 million temporal
sequences. SkySense incorporates a factorized multi-modal
spatiotemporal encoder taking temporal sequences of opti-
cal and Synthetic Aperture Radar (SAR) data as input. This
encoder is pre-trained by our proposed Multi-Granularity
Contrastive Learning to learn representations across differ-
ent modal and spatial granularities. To further enhance the
RSI representations by the geo-context clue, we introduce
Geo-Context Prototype Learning to learn region-aware pro-
totypes upon RSI’s multi-modal spatiotemporal features. To
our best knowledge, SkySense is the largest Multi-Modal
RSFM to date, whose modules can be flexibly combined or
used individually to accommodate various tasks. It demon-
strates remarkable generalization capabilities on a thor-
ough evaluation encompassing 16 datasets over 7 tasks,
from single- to multi-modal, static to temporal, and classifi-
cation to localization. SkySense surpasses 18 recent RSFMs
in all test scenarios. Specifically, it outperforms the latest
models such as GFM, SatLas and Scale-MAE by a large
margin, i.e., 2.76%, 3.67% and 3.61% on average respec-
tively. We will release the pre-trained weights to facilitate
future research and Earth Observation applications.

1. Introduction
Remote Sensing Imagery (RSI) interpretation is crucial in
understanding our common home, the Earth [16, 60], via
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Figure 1. SkySense has achieved superior performance on 16
datasets over 7 distinct tasks compared with 18 state-of-the-art
RSFMs and supports a board range of EO imagery interpretations.

quite diverse tasks [5, 13, 43, 72], e.g. crop monitoring,
natural disaster management, etc. Every task may require
significant dedicated efforts and resources to build a task-
specific model. Recently, Foundation Model emerges as
a pre-trained generic model that excels in a wide range of
downstream tasks [70, 76]. Hence, there is a soaring interest
in exploring a comprehensive Remote Sensing Foundation
Model (RSFM) for many Earth Observation (EO) tasks.

The key question naturally arises: What is essential for
a RSFM? First of all, an ideal RSFM should possess the
ability to perceive multi-modal temporal RSI. EO heavily
relies on multi-modal time series of remote sensing data,
including temporal optical and Synthetic Aperture Radar
(SAR) data. Individual modality offers unique advantages
and complements to each other. For example, optical im-
ages provide rich spectral bands and texture details but are
susceptible to weather [77]. In contrast, SAR sensors cap-
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Model Different EO Interpretation Input Types

Single-Modal
O(RGB)

Single-Modal
O(Ms)

Multi-Modal
Static O & SAR

Multi-Modal
Temporal O & SAR

SkySense ✔ ✔ ✔ ✔

SatLas[4] ✔ ✔
GFM[47] ✔
Scale-MAE[50] ✔

Table 1. SkySense supports various input types. O(RGB): Optical
RGB images; O(Ms): Optical multispectral images.

ture clear imagery in all weather conditions [31, 38]. More-
over, the time series of such data provide the crucial tempo-
ral clue to various tasks [5, 22, 73] like change prediction.
Second, a RSFM should be easy to tailor when being de-
ployed for EO tasks using different modalities (i.e., single-
and multi-modal) at different spatial (i.e., pixel-, object-,
and image-level) granularities. Last but not the least, re-
mote sensing data is inherently contingent on their space-
time coordinates, which provide rich regional and seasonal
geo-context that benefits RSI interpretation a lot, as indi-
cated in [11, 24, 32, 39, 40]. Therefore, a RSFM shall bear
the vital capability of effective geo-context learning and uti-
lization.

Previous works on RSFM [1, 2, 4, 8, 17, 33, 45–
48, 50, 55, 57, 62, 63, 65, 66] have demonstrated their
preliminary success on several specific datasets. However,
these RSFMs, while proficient in certain areas, are limited
in their applications to EO tasks, due to factors such as
single-modal pre-training and the neglect of geo-context.

In this paper, we propose SkySense, a billion-scale
Multi-Modal Remote Sensing Foundation Model (MM-
RSFM). SkySense incorporates 2.06 billion parameters and
is pre-trained on a large-scale multi-modal dataset which
comprises 21.5 million RSI temporal sequences extracted
from high-spatial-resolution optical images (HSROIs),
medium-resolution temporal multispectral imagery (TMsI)
and temporal SAR imagery (TSARI). To handle the multi-
modal temporal RSI sequences, SkySense employs a factor-
ized multi-modal spatiotemporal encoder to perform spatial
feature extraction and multi-modal temporal fusion inde-
pendently, since RSI sequence are spatially-aligned in na-
ture. It leads to a modular design allowing flexible use of its
modules, i.e., the spatial encoder can be either used alone
or in combination of the fusion module to support tasks
from static single-modal to temporal multi-modal. This de-
sign delivers strong modeling of RSI sequences while us-
ing substantially less parameters compared to common 3D
structures [44, 75]. The factorized encoder is pre-trained
by Multi-Granularity Contrastive Learning to construct fea-
tures from different modal and spatial granularities. Fur-
thermore, we propose Geo-Context Prototype Learning to
generate regional prototypes from RSI features given geo-
locations. This approach enhances multi-modal spatiotem-

poral representation learning by leveraging the regional
context clue hidden in numerous unlabeled RSI.

SkySense has achieved the state-of-the-art (SOTA) per-
formance across a variety of modalities and EO tasks, as
shown in Fig. 1. We evaluate SkySense on a diverse set of
16 datasets [9, 14, 15, 17, 18, 22, 36, 53, 56, 59, 67, 68],
where the selection covers different task types, modali-
ties and spatial scales. The results demonstrate that Sky-
Sense outperforms 18 advanced RSFMs [1, 2, 4, 8, 17, 45–
48, 50, 55, 57, 62, 63, 65, 66] in all test scenarios, validating
its competitive edge for a broad range of EO interpretation
tasks. Tab. 1 compares our work with latest representative
studies w.r.t. various input types of EO interpretation.

In summary, our technical contributions are:
• We propose SkySense, the largest MM-RSFM to date

with a modular design, which is capable of handling di-
verse tasks, from single- to multi-modal, static to tempo-
ral, and classification to localization.

• The design of SkySense involves three novel technical
components: a) A factorized multi-modal spatiotempo-
ral encoder to effectively process multi-modal tempo-
ral RSI; b) Multi-Granularity Contrastive Learning that
learns features at various levels of granularities to facili-
tate different tasks; c) Geo-Context Prototype Learning to
extract region-aware geo-context clue to enable implicit
geo-knowledge integration.

• We extensively compare SkySense with 18 recently pub-
lished RSFMs. Our model has achieved the SOTA perfor-
mance, supparssing the latest models like GFM, SatLas
and Scale-MAE by over 2.5% on average. We hope the
release of pre-trained weights will contribute to the Re-
mote Sensing community and facilitate future research.

2. Related Work

2.1. Remote Sensing Foundation Model

Recent Remote Sensing Foundation Models draw their pri-
mary inspiration from the research on Vision Foundation
Model [3, 7, 10, 19, 23, 25–27, 41, 49, 61]. Remote sens-
ing data inherently integrates space-time coordinates and
has diverse spatial scales. The maintstream RSFMs ex-
tend the foundation model techniques to space-time RS
data, such as Contrastive Learning. For instance, GASSL
[2] utilized geo-location prediction as an additional pre-text
task in the MoCo-v2 framework [12]. Multiple views with
different sizes were utilized by DINO-MC [66] for self-
supervised learning within the DINO framework [7]. SeCo
[46] and CACo [45] both proposed Contrastive Learning to
perceive short-term and long-term changes by using the spa-
tiotemporal structure of temporal RSI sequences. Besides,
there are works either improving the MIM-based framework
[50, 55, 62] or exploring the model scale-up [8]. For ex-
ample, RingMo [55] modified MAE to adapt to the dense
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Figure 2. The overview of our SkySense model architecture.

objects in RSI. SatMAE [17] employed TMsI to enhance
the performance on temporal sequences. Scale-MAE [50]
built a framework with scale-aware encoder. Recent efforts
such as CMID [48] and GFM [47] have commenced to ex-
plore amalgamation of CL and MIM strategies. Concur-
rently, CROMA [21] and DeCUR [64] investigated multi-
modal pre-training for single- and multi-modal tasks using
static imagery. In this study, we propose a comprehensive
MM-RSFM, SkySense, to fill the gap in existing RSFMs,
i.e., single modality of RingMo, CACo, etc., static input of
Scale-MAE, CROMA, etc., and the neglect of geo-context
of SatLas, RVSA, etc.

3. SkySense

In this section, we introduce the pre-training dataset and the
design choices for individual module respectively.

3.1. Pre-training Dataset

We curate an extensive multi-modal remote sensing dataset
with temporal sequences, containing RSI from various
sources: HSROIs from WorldView-3, 4, etc. (RGB band),
TMsI from Sentinel-2 (B2-8, B8A, B11-12 band) and
TSARI from Sentinel-1 (VV, VH Polarization). All data is
geo-spatially aligned. Strictly speaking, HSROIs and TMsI
shall be categorized to the optical modality, while TSARI
falls to the SAR modality. However, due to HSROIs and
TMsI’s significant difference in spectral band and ground
sample distance, we regard HSROIs and TMsI as two dis-
tinct modalities for simplicity in this paper. The dataset
comprises 21.5 million training samples, each consisting
of a static HSROI with rich texture details, a TMsI con-
taining temporal and multispectral data, a TSARI provid-
ing backscatter polarization under cloud coverage, and the
metadata like geo-location and acquisition date for geo-

context modeling. This dataset covers a great variety of
scenarios across resolution, spectrum, and imaging mech-
anism. More details of the data are included in the supple-
mentary materials. We construct the input for SkySense as
{xHR, xMs, xSAR}, where xHR represents a static HSROI;
xMs is a Sentinel-2 TMsI after filtering cloudy images,
where we randomly select 20 images to form the sequence;
and xSAR stands for a standard-calibrated TSARI, from
which we randomly select 10 images for training.

3.2. Model Architecture

Factorized Multi-Modal Spatiotemporal Encoder. The
overall architecture of our method is illustrated in Fig. 2. In
a multi-modal input {xHR, xMs, xSAR}, the pixels within
each RSI naturally align with the others given the same
geo-location. Upon this, we propose a factorized encoder
that initially extracts spatial features from each RSI inde-
pendently and then fuses them to capture a multi-modal
spatiotemporal representation. The design separates spatial
feature extraction from the feature fusion, enabling the in-
tegration of the clues from modality, time and geo-context.

Spatial Feature Extraction. To handle the spatially
aligned sequence input {xHR, xMs, xSAR}, we utilize the
spatial encoder gHR, gMs and gSAR for each individual RSI
from HSROI, TMsI and TSARI respectively. As shown
in Eq. (1), the obtained feature Fi ∈ Rh×w×Ti×d, i ∈
{HR,Ms, SAR} are of the same size in spatial dimen-
sion, where h and w are the height and width of Fi, THR,
TMs, TSAR represent the sequence lengths of HSROI,
TMsI, and TSARI respectively, and d is the feature di-
mension. The initial multi-modal temporal feature repre-
sentation FT ∈ RNS×NT×d is generated by concatenat-
ing all Fi along the time dimension, where NS = h × w
represents the feature size in the spatial dimension, and
NT =

∑
i∈{HR,Ms,SAR} Ti represents the total sequence

length across all modalities,

Fi = gi(xi), i ∈ {HR,Ms, SAR} ,
FT = Concat [FHR, FMs, FSAR] .

(1)

Multi-modal Temporal Fusion. Next, we incorporate the
date-specific temporal positional encoding PDTPE [:, t, :] ∈
R1×NT×d to FT through broadcasting, creating F date

T for
date-aware modeling. F date

T is then concatenated with an
extra token Fe ∈ RNS×1×d [20] (see Eq. (2)),

F date
T = FT + PDTPE [:, t, :],

F cat
T = Concat

[
Fe, F

date
T

]
∈ RNS×(1+NT )×d,

(2)

where t ∈ RNT is a vector containing the acquisition dates
of all RSI in the current batch. PDTPE ∈ R1×365×d

is a learnable parameter representing different dates of a
year, which is essential for tasks affected by seasons (e.g.,
crop recognition). F cat

T is then fed into the Multi-modal
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Temporal Fusion Transformer, composed of multiple Naive
Transformer encoder layers. This module employs self-
attention to integrate multi-modal temporal data, generating
the multi-modal spatiotemporal feature Fmm

fus ∈ RNS×1×d.
Attentional Geo-Context Integration. Each RSI’s ge-
ographical location may reveal rich region-specific geo-
context. It is valuable for RSI interpretation as indicated
by [11, 24, 32, 40]. To utilize this contextual clue to en-
hance Fmm

fus , we employ a region-specific prototype set P ∈
RNR×Np×d (shown on the right side of Fig. 2), where NR is
the number of regions, Np represents the number of proto-
types for each region and d denotes the feature dimension.
The learning procedure of P will be elaborated in Sec. 3.3.
Specifically, a regional prototype subset Pr ∈ RNp×d is
chosen from P based on the geo-location embedded with
Fmm
fus . Fmm

fus is then attended to the prototypes of Pr through
the attention mechanism, as shown in Eq. (3). The weights,
computed from Softmax

(
QKT

√
d

)
, facilitate a soft selection

of prototypes in accordance with their similarity to Fmm
fus .

The final representation Ffus ∈ RNS×2d is generated by
concatenation of Fmm

fus and weighted sum of prototypes from
Pr along the feature dimension. The prototypes represent
a set of discriminative features linked to certain semantics
like water body, cropland, etc. By finding the similar ones
to Fmm

fus , we provide the standard representations of certain
semantics to complement Fmm

fus ,

Ffus = Concat

[
Fmm
fus ,Softmax

(
QKT

√
d

)
V

]
,

Q = Fmm
fus ,K = V = Pr.

(3)

3.3. Pre-training

An overview of our pre-training procedure is illustrated in
Fig. 3. We build the pre-training framework on a com-
mon teacher-student structure [7], since it conducts self-
supervised learning using only positive pairs, which is eas-
ily accessible given spatially aligned RSI, avoiding compli-
cated design of negative pairs. Teacher’s parameter set θ′ is
updated through exponential moving average (EMA) [26]
from student’s parameter set θ.
Multi-Granularity Contrastive Learning. We propose
Multi-Granularity Contrastive Learning for self-supervised
learning on different modal and spatial granularities for
diverse tasks. Given the input {xHR, xMs, xSAR}, two
sets of random augmentations are employed, generat-
ing two groups of views {ui} and {vi}, where i ∈
{HR,Ms, SAR}. ui and vi are subsequently fed into the
spatial encoders from the student and teacher branches re-
spectively. gi is the student’s spatial encoder and g′i is the
teacher’s. The features are generated as in Eq. (4),

Fi = gi (ui) , F
′
i = g′i (vi) i ∈ {HR,Ms, SAR}. (4)

After applying the multi-modal temporal fusion and geo-
context integration on Fi and F ′

i , the final feature Ffus and
F ′
fus are obtained. Initially, we establish pixel-, object-

and image-level contrastive learning to progressively learn
coarse-to-fine spatial features for various tasks.

Each temporal slice of Fi can be viewed as a pixel-level
feature Fpix

i ∈ RNS×d. Pixel-level contrastive learning
loss Lpix is obtained by averaging all LCL across the spa-
tial (s) and temporal (t) dimensions, as shown in Eq. (5).
fpix
i ∈ Rd represents a feature vector from Fpix

i and fpix′
i

is its correspondence at the same geo-location. LCL de-
notes the learning loss [7] between fpix

i and fpix′
i , and

Lpix(Fi, F
′
i ) =

1

NSTi

∑
s

∑
t

LCL(f
pix
i , fpix′

i ). (5)

F obj
i ∈ RNC×d denotes object-level feature generated

from unsupervised clustering on pixel-level feature vectors
fpix
i in a single RSI, where NC is the number of clus-

ters. The clustering employs the same Sinkhorn-Knopp al-
gorithm [6] we apply for Geo-Context Prototype Learning,
as shown later. fobj

i ∈ Rd is the vector representing the
cluster centers in F obj

i , which can be viewed as a general
representation for a set of collected fpix

i . It usually corre-
sponds to a certain ground object or semantics. The object-
level contrastive learning loss is computed as Eq. (6),

Lobj(Fi, F
′
i ) =

1

NCTi

∑
s

∑
t

LCL(f
obj
i , fobj′

i ). (6)

F img
i ∈ Rd corresponds to the image-level feature,

which is an average pooling result from Fpix
i . Image-level

contrastive learning loss is illustrated by Eq. (7),

Limg(Fi, F
′
i ) =

1

Ti

∑
t

LCL(F
img
i , F img′

i ). (7)

The fine-grained contrastive learning loss LFGCL is the
sum of pixel-, object- and image-level contrastive learning
losses as Eq. (8). Finally we form the Multi-Granularity
Contrastive Learning loss LMGCL in Eq. (9). The con-
cept of multi-granularity is reflected in two aspects: space
and modality. In terms of space, contrastive learning is
performed at the pixel-, object-, and image-level, facilitat-
ing representation learning that encapsulates diverse spatial
dimensions. Regarding modality, we conduct contrastive
learning on the feature of each single modality, i.e., Fi, and
the multi-modal feature after fusion, i.e., Ffus,

LFGCL(Fi, F
′
i ) =

∑
n∈{pix,obj,img}

Ln(Fi, F
′
i ), (8)

LMGCL =
∑

i∈{HR,Ms,SAR}

LFGCL(Fi, F
′
i )

+ LFGCL(Ffus, F
′
fus).

(9)
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Figure 3. Overview of SkySense pre-training and downstream usage. SkySense employs data augmentations on the input and then feeds the
augmented data into the student and teacher networks respectively. Multi-Granularity Contrastive Learning and Cross-Modal Alignment
are proposed to pre-train the overall network. The region-specific prototype set P is learned on the student branch and it is frozen for
downstream usage. Enhancing feature with P is optional. After pre-training, we adopt the parameters of the teacher branch for downstream
tasks. Each pre-trained module can be used alone or combined with the others, with the chosen ones either frozen or fine-tuned.

Cross-Modal Alignment. The heterogeneity of multi-
modal data poses a challenge for effective multi-modal fea-
ture fusion. We address this issue by adopting multi-modal
contrastive loss LMMCL [35] to form the alignment loss
Lalign, as shown in Eq. (10),

Lalign =
∑
i̸=j

LMMCL (Fi, Fj) ,

i, j ∈ {HR,Ms, SAR} .
(10)

LMMCL maximizes the similarity of cross-modal features
from the same geo-location, while minimizing it otherwise.
Cross-modal alignment is performed on the student branch.
Unsupervised Geo-Context Prototype Learning. Differ-
ent regions characterize distinct geographic landscapes and
seasonal dynamics [30, 32] due to disparities in topogra-
phy and climate. Prior arts have shown that the enlarged
context can benefit the RSI interpretations [11, 24, 32, 40].
In this work, Fmm

fus captures rich spatiotemporal clues for a
small area. By clustering on numerous Fmm

fus , higher-level
regional semantics are obtained as implicit geo-knowledge
for a vast geo-spatial scope (see Fig. 5). Thus, we propose
Geo-Context Prototype Learning to unsupervisedly extract
regional geo-context from Fmm

fus during pre-training.
We divide the globe into NR regions and initialize a

region-specific prototype set P ∈ RNR×Np×d. Each pro-
totype is learned from Fmm

fus . We leverage the geo-location
of the RSI to retrieve the regional subset Pr ∈ RNp×d

from P . Then, we calculate the cosine similarity matrix
M ∈ RNS×Np between Fmm

fus and Pr as in Eq. (11),

M =
Fmm
fus · PT

r

∥Fmm
fus∥∥Pr∥

, (11)

We utilize the Sinkhorn-Knopp algorithm [6] on M to
find the optimal assignment matrix S ∈ RNS×Np between
Fmm
fus and the prototypes. This algorithm introduces the uni-

form distribution constraint to avoid trivial solution while
achieving maximal similarity possible. We then use S to
generate an update value for current sample’s correspond-
ing Pr, denoted as Pr, as shown in Eq. (12),

Pr = STFmm
fus . (12)

Afterwards, we update Pr through EMA [26] as in Eq. (13),
where m ∈ [0, 1) is a momentum coefficient,

Pr ← mPr + (1−m)Pr. (13)

Each Pr is updated during pre-training and used as the
fixed geo-context for downstream tasks. Geo-Context Pro-
totype Learning is only conducted on the student branch. It
extracts generalized region-aware representations from nu-
merous RSI within a consistent region, offering a comple-
mentary clue to enhance the feature of a single RSI.

As Geo-Context Prototype Learning is incorporated
without an explicit loss term, our pre-training objective is
shown in Eq. (14), where α and β are trade-off weights,

L = αLMGCL + βLalign. (14)

4. Experiments
Fig. 1 demonstrates SkySense’s superior performance in all
test scenarios. We conduct experiments on 16 datasets, cov-
ering different modalities and tasks, to ensure a comprehen-
sive assessment. The right side of Fig. 3 shows how to ap-
ply SkySense to different tasks. Each pre-trained module is
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Model Publication Dyna.-Pla. iSAID Potsdam Dyna.-S2

mIoU mIoU mF1 mIoU

GASSL [2] ICCV’21 34.0/40.8 65.95 91.27 28.1/41.0
SeCo [46] ICCV’21 - 57.20 89.03 29.4/39.8
SatMAE [17] NIPS’22 32.8/39.9 62.97 90.63 30.1/38.7
RingMo† [55] TGRS’22 - 67.20 91.27 -
RVSA [62] TGRS’22 34.3/44.4 64.49 - -
BFM† [8] Arxiv’23 - - 92.12 -
TOV [57] JSTARS’23 32.1/37.8 66.24 92.03 -
SSL4EO [65] GRSM’23 35.3/42.1 64.01 91.54 31.8/42.7
CMID [48] TGRS’23 36.4/43.5 66.21 91.86 -
CACo [45] CVPR’23 35.4/42.7 64.32 91.35 30.2/42.5
SAMRS† [63] NIPS’23 - 66.26 91.43 -
SatLas [4] ICCV’23 37.4/40.7 68.71 91.28 31.9/43.5
GFM [47] ICCV’23 36.7/45.6 66.62 91.85 -
Scale-MAE [50] ICCV’23 34.0/41.7 65.77 91.54 -

SkySense - 39.7/46.5 70.91 93.99 33.1/46.2

(a) Semantic segmentation results.

Model
Horizontal Oriented

DIOR DIOR-R FAIR1M

mAP50 mAP mAP

GASSL [2] 67.40 65.65 48.15
SatMAE [17] 70.89 65.66 46.55
RingMo† [55] 75.90 - 46.21
RVSA [62] 73.22 71.05 47.04
BFM† [8] - 73.62 -
TOV [57] 70.16 66.33 49.62
SSL4EO [65] 64.82 61.23 49.37
CMID [48] 75.11 66.37 50.58
CACo [45] 66.91 64.10 47.83
SatLas [4] 74.10 67.59 46.19
GFM [47] 72.84 67.67 49.69
Scale-MAE [50] 73.81 66.47 48.31

SkySense 78.73 74.27 54.57

(b) Object detection results.

Model LEVIR-CD OSCD Dyna.-S2

F1 F1 SCS

GASSL [2] 78.19 46.26 13.6/16.7
SeCo [46] 90.14 47.67 13.9/16.0
SatMAE [17] 87.65 52.76 14.8/16.2
RingMo† [55] 91.86 - -
RVSA [62] 90.86 - -
SpectralGPT† [28] - 54.29 -
MATTER† [1] - 59.37 -
DINO-MC [66] - 52.70 14.5/15.6
SSL4EO [65] 89.05 35.08 12.3/17.5
CMID [48] 91.72 - -
CACo [45] 81.04 52.11 15.3/15.8
SatLas [4] 90.62 - 13.3/17.8
GFM [47] 91.73 59.82 -
Scale-MAE [50] 92.07 - -

SkySense 92.58 60.06 15.4/18.0

(c) Change detection results.

Table 2. Results of semantic segmentation, object detection and change detection. † means the code and weights are not released until
November 11th, 2023, thus we report the metrics from the paper. - means the task is not supported or the value is unavailable in the paper.

Model
Single-label Multi-label Temporal

AID
(TR=20%/50%)

RESISC-45
(TR=10%/20%)

BEN-S2
(TR=10%/100%)

fMoW-S2
(TR=100%)

OA OA mAP Top-1/5 Acc

GASSL [2] 93.55/95.92 90.86/93.06 79.24/87.40 50.69/77.99
SeCo [46] 93.47/95.99 89.64/92.91 82.62/87.81 51.65/77.40
SatMAE [17] 95.02/96.94 91.72/94.10 86.18/89.50 63.84/-
RingMo† [55] 96.90/98.34 94.25/95.67 - -
RVSA [62] 97.03/98.50 93.93/95.69 - -
DINO-MC [66] - - 84.20/88.75 60.16/83.49
TOV [57] 95.16/97.09 90.97/93.79 - -
SSL4EO [65] 91.06/94.74 87.60/91.27 87.10/91.80 51.70/76.77
CMID [48] 96.11/97.79 94.05/95.53 - -
CACo [45] 90.88/95.05 88.28/91.94 81.30/87.00 50.72/76.31
CROMA† [21] - - 88.29/- 63.59/-
SatLas [4] 94.96/97.38 92.16/94.70 82.80/88.37 57.95/79.00
GFM [47] 95.47/97.09 92.73/94.64 86.30/- -
Scale-MAE [50] 96.44/97.58 92.63/95.04 - -

SkySense 97.68/98.60 94.85/96.32 88.67/92.09 64.38/87.27

Table 3. Scene classification results.

designed to allow for combined or individual use, with the
flexibility to be either frozen or fine-tuned as needed. More
details are included in the supplementary materials.

4.1. Pre-training Implementation

The model is pre-trained with a batch size of 240 samples,
distributed over 80 A100-80GB GPUs. For HSROIs, we
apply data augmentations including multi-crop [6], Gaus-
sian blur, solarization [23], etc. As for TMsI and TSARI,
we randomly select a fixed-sized sequence from the origi-
nal one and perform random disturbances on the RSI acqui-
sition date. We employ the huge version of the Swin Trans-
former (Swin-H) [41] as the spatial encoder of HSROIs, for
its design efficiency in minimizing computational costs for
high-resolution imagery [74]. RSI from TMsI or TSARI is
processed with corresponding ViT-L [20]. For Geo-Context
Prototype Learning, we divide the globe into 4096 regions,
each containing 100 prototypes.

4.2. Performance on Single-Modal Tasks

We evaluate SkySense on 4 representative single-modal
tasks. All experiments are conducted using consistent fine-
tuning settings for fairness. The supplementary materials
include implementation details, visualization results and ad-
ditional experiments on frozen backbone tuning.
Semantic Segmentation. We adopt Dyna.-Pla. [59],
iSAID [67], Potsdam [52] and Dyna.-S2 [59] for the seg-
mentation experiment. They are chosen considering fac-
tors such as spatial resolution, spectrum and category type.
UperNet [69] serves as the segmentation head. For Dyna.-
Pla. and Dyna.-S2 datasets, we report mIoU results on of-
ficial validation and test sets. For iSAID and Potsdam, we
follow the settings of [55]. As depicted in Tab. 2a, SkySense
has achieved the SOTA performance on all four segmenta-
tion datasets. On average, it surpasses the previous SOTA
by an impressive improvement of 1.86%.
Horizontal & Oriented Object Detection. We employ the
widely recognized DIOR [36] dataset for Horizontal Ob-
ject Detection and its enhanced version DIOR-R [15], along
with FAIR1M [56], for Oriented Object Detection. All
datasets consist of optical RGB images. Faster RCNN [51]
and Oriented RCNN [37] are used for the experiment, fol-
lowing the setup of [55, 62]. SkySense excels on all three
datasets (Tab. 2b). Notably, we surpass the second best
CMID by 3.99% mAP and have achieved the best perfor-
mance on the FAIR1M v2.01 leaderboard. More impor-
tantly, our results are accomplished without using any so-
phisticated Oriented Detection designs [29, 37, 71].
Change Detection. We assess SkySense’s Change De-
tection performance on LEVIR-CD [9], OSCD [18], and
Dyna.-S2 [59] datasets. For LEVIR-CD and OSCD, we
follow the frameworks of [55, 66] and report the F1 met-
ric. For Dyna.-S2, we utilize the UperNet head since the re-

1https://www.gaofen-challenge.com/benchmark (2023.11.17)
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Figure 4. (a) Experiment on fine-tuning using different percent-
ages of training data on the AID dataset. (b) The impact of S1-Ts
data under varying cloud coverage conditions.

Task & Dataset Data Source & Geo-Context Previous
SOTA SkySense

(a) Multi-Modal Seg:
Dyna.-MM

(i) Planet. 45.6 [47] 46.5 ↑ 0.9
(ii) Planet. with GCP - 47.0
(iii) S2 43.5 [4] 46.2 ↑ 2.7
(iv) Planet. + S2 - 47.3
(v) Planet. + S2 + S1 - 47.7
(vi) Planet. + S2 + S1 with GCP - 48.2

(b) Multi-Modal Seg:
PASTIS-MM

(i) S2-static - 73.5
(ii) S2-Ts 83.4 [58] 84.6 ↑ 1.2
(iii) S2-Ts + S1-Ts 84.2 [22] 84.8 ↑ 0.6
(iv) S2-Ts + GEP - 85.8
(v) S2-Ts + S1-Ts + GEP - 85.9

(c) Multi-Modal Cls:
BEN-MM

(i) S1 83.70 [64] 86.25 ↑ 2.55
(ii) S2 + S1 89.70 [64] 92.21↑ 2.51

Table 4. Fine-tuning results on multi-modal tasks.

ported semantic change segmentation (SCS) score is calcu-
lated from the segmentation results [59]. Both results from
the validation and test sets of Dyna.-S2 are presented. The
remarkable generalization ability of SkySense is evident
in the consistent improvements shown in Tab. 2c. Unlike
CACo [45], which shows proficiency mainly on the Dyna.-
S2 validation set, our model excels across all datasets.
Scene Classification. We utilize four scene classification
datasets: AID [68] and RESISC-45 [14] with static RGB
images, BEN-S2 [53] with static multispectral images, and
fMoW-S2 [17] with temporal multispectral images. The
training ratio (TR) follows [17, 46, 55]. We use a lin-
ear classifier head for experiment. For AID and RESISC-
45, we report Overall Accuracy (OA), for BEN-S2 we re-
port mAP, and for fMoW-S2 we report both Top-1 and
Top-5 Accuracy. SkySense overally outperforms compet-
itive baselines and achieves the best results on all datasets
(Tab. 3). Additionally, with limited labeled data on the AID
dataset, SkySense consistently outperforms CMID, Scale-
MAE, and random initialization, with a 4.17% higher OA
than the second best Scale-MAE using only 1% training
data (Fig. 4a). These results highlight the robustness and
generalization ability of SkySense’s pre-trained features.

4.3. Performance on Multi-Modal Tasks

Multi-Modal Segmentation: Time-insensitive Land
Cover Mapping. We employ the Dyna.-MM dataset [59]

for fine-tuning and report mIoU on the official test set.
The dataset comprises HSROIs from PlanetFusion (Planet.),
multispectral imagery from Sentinel-2 (S2), and SAR im-
agery from Sentinel-1 (S1). We use a simple UperNet head.
As shown in Tab. 4a, SkySense achieves the best results
in single-modal scenarios (i) and (iii), clearly outper-
forming the previous SOTA by roughly 1% mIoU. More-
over, combining all three modalities as (v) further im-
proves the mIoU by 1.2% compared to (i). Notably, with-
out bells and whistles, SkySense ranks No.1 on the chal-
lenging DynamicEarthNet leaderboard2.

Multi-Modal Segmentation: Time-sensitive Crop Map-
ping. We evaluate SkySense’s fine-tuning result on the
PASTIS-MM dataset, an enhanced version of PASTIS-
R [22]. PASTIS-MM includes HSROIs from Google Earth
Pro (GEP), TMsI from Sentinel-2 (S2-Ts), and TSARI
from Sentinel-1 (S1-Ts). We use a naive FCN head [42]
and report the OA from the official five-fold validation on
PASTIS-MM dataset. In Tab. 4b, comparing S2-Ts and
static multispectral data (S2-static), we observe a signifi-
cant 11.1% OA increase, highlighting the importance of in-
corporating temporal clue for crop mapping.

Furthermore, both (ii) and (iii) exceed the perfor-
mance of the previous SOTA, affirming the superior ca-
pabilities of SkySense. When more modalities are added
as (ii), (iv), and (v), the OA increases accordingly.
However, integrating Sentinel-1 data yields no substantial
improvement, presumably because of the cloud-free im-
agery from PASTIS-MM dataset. To further investigate, we
compare OA using S2-Ts data at different cloud ratios with
and without Sentinel-1. Fig. 4b illustrates that the perfor-
mance difference between utilizing and foregoing Sentinel-
1 data becomes more pronounced with an increasing cloud
ratio. Specifically, when the cloud ratio exceeds 50%, the
result of using Sentinel-1 outperforms its counterpart by
13%. This highlights the importance of SAR data in sit-
uations with cloud coverage and rainfall.

Multi-Modal Scene Classification. We utilize the BEN-
MM [54] dataset for evaluating the multi-modal scene clas-
sification task. This dataset includes both Sentinel-1 (S1)
and Sentinel-2 (S2) imagery. The evaluation protocol from
DeCUR [64] is followed, and we report the mAP met-
ric of fine-tuning with 100% training data. In Tab. 4c,
both (i) and (ii) significantly outperform the previous
SOTA by more than 2.5% mAP. Furthermore, the inclusion
of Sentinel-2 imagery greatly enhances performance com-
pared to using Sentinel-1 imagery alone.

All these results show a notable gain for the tasks us-
ing multi-modal data, affirming the necessity of SkySense’s
multi-modal pre-training from one perspective.

2https://codalab.lisn.upsaclay.fr/competitions/2882#results(2023.11.17)
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Pre-training iSAID fMoW-S2

mIoU Top-5 Acc

Simple Ver. 68.98 85.69
SkySense 70.91 ↑ 1.93 87.27 ↑ 1.58

(a)

Pre-training Dyna.-MM

mIoU

Baseline 42.2
+ MGCL 44.4 ↑ 2.2
+ MM 47.0 ↑ 2.6
+ CMA 47.7 ↑ 0.7
+ GCPL 48.2 ↑ 0.5

(b)

Table 5. (a) Discussion on multi-modal pre-training effectiveness.
(b) Ablation study on the pre-training design.

5. Discussions & Ablation Studies

Multi-modal Pre-training Effectiveness. In addition to
confirming the effectiveness of using multi-modal data in
downstream tasks, we investigate the impact of multi-modal
pre-training on single-modal tasks, compared with pre-
training on fewer modalities. We conduct experiments on
iSAID for static HSROI segmentation and fMoW-S2 for
temporal multispectral classification. Two versions of the
pre-trained model are tested: a simple version pre-trained
only with optical imagery (HSROIs, TMsI), and SkySense,
which includes HSROIs, TMsI, and TSARI for pre-training.
The rest of the settings remain consistent. The results in
Tab. 5a show that SkySense consistently outperforms the
simple version, suggesting that the introduction of SAR data
benefits representation learning of other modalities. This
may attribute to the implicit clue brought by SAR data
through Cross-Modal Alignment. It provides another per-
spective on the necessity of SkySense’s multi-modal pre-
training.
What does Geo-Context Prototype (GCP) Learn? We
utilize the Dyna.-MM dataset for experiment as it contains
diverse geo-locations worldwide. For the segmentation task
in Tab. 4a, adding GCP in downstream tasks leads to a fur-
ther gain of 0.5% mIoU compared to the strong multi-modal
baseline (v). Moreover, a comparison between (i) and
(ii) shows a 0.5% mIoU improvement using GCP for the
single-modal task. It demonstrates GCP’s consistent perfor-
mance gain in single- and multi-modal scenarios.

In Fig. 5, we visualize the learned prototypes on the Map
by calculating the pre-trained feature of each pixel and as-
signing the most similar prototype to it. A comparison with
the ESRI LandCover Map [34] reveals GCP’s promising re-
sults in segmenting different areas. Moreover, GCP exhibit
fine-grained advantage, as shown in the middle of Fig. 5.
The prototypes learned from unsupervised clustering seg-
ment cropland within the town, which is overlooked by the
LandCover Map. Notably, the visualization shares the same
spatial resolution with ESRI LandCover Map.
Design of Pre-training. Tab. 5b presents the ablation study
to assess our pre-training design, namely Multi-Granularity
Contrastive Learning (MGCL), Multi-Modal (MM) inte-
gration, Cross-Modal Alignment (CMA) and Geo-Context

Figure 5. Comparison between (a) ESRI LandCover Map and (b)
Geo-Context Prototype. The visualization process of Geo-Context
Prototype is illustrated in the upper part of this figure.

Prototype Learning (GCPL). We utilize the Dyna.-MM
dataset for the experiment and report mIoU metric on the
official test set.

Initially, we utilize a single-modal version, using gHR

spatial encoder and HSROIs for pre-training. The training
settings are kept the same as described in Sec. 4.1. The
results show that MGCL leads to a notable improvement
compared to a simple baseline [7]. Then we integrate fur-
ther multi-modal data (i.e., TMsI and TSARI) into the pre-
training and downstream evaluation. This effectively im-
proves the performance on the test set to 47.0% mIoU, val-
idating the necessity of multi-modal pre-training.

CMA is another necessary design for SkySense’s pre-
training, which explicitly pulls features from different
modalities together, encouraging cross-modal interactions.
The results show that the incorporation of modal alignment
leads to 0.7% mIoU improvement. Finally, we introduce
GCPL, which learns complementary regional context clue
to facilitate downstream tasks and further pushes the very
strong performance to 48.2% mIoU.

6. Conclusion & Future Work
In this paper, we present SkySense, a large-scale MM-
RSFM for interpretation of EO imagery. SkySense allows
using its modules flexibly to accommodate different scenar-
ios and consistently outperforms other models on a variety
of tasks, showcasing its exceptional generalization ability
and strong performance. We hope SkySense will inspire
further research on MM-RSFM and its release may con-
tribute to sustainable innovations thriving in the Remote
Sensing community. As part of our future work, we plan to
incorporate the language modality, thereby extending Sky-
Sense’s applications to more EO tasks.
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