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Abstract

Human action anticipation aims at predicting what peo-
ple will do in the future based on past observations. In this
paper, we introduce Uncertainty-aware Action Decoupling
Transformer (UADT) for action anticipation. Unlike exist-
ing methods that directly predict action in a verb-noun pair
format, we decouple the action anticipation task into verb
and noun anticipations separately. The objective is to make
the two decoupled tasks assist each other and eventually im-
prove the action anticipation task. Specifically, we propose
a two-stream Transformer-based architecture which is com-
posed of a verb-to-noun model and a noun-to-verb model.
The verb-to-noun model leverages the verb information to
improve the noun prediction and the other way around. We
extend the model in a probabilistic manner and quantify the
predictive uncertainty of each decoupled task to select fea-
tures. In this way, the noun prediction leverages the most in-
formative and redundancy-free verb features and verb pre-
diction works similarly. Finally, the two streams are com-
bined dynamically based on their uncertainties to make the
joint action anticipation. We demonstrate the efficacy of our
method by achieving state-of-the-art performance on ac-
tion anticipation benchmarks including EPIC-KITCHENS,
EGTEA Gaze+, and 50-Salads.

1. Introduction

Human action anticipation aims at predicting the future ac-
tion before it happens based on the current observation. It is
an important research topic for intelligent systems since it
is widely applied for autonomous driving [44], human-robot
interaction [31], and smart homes [19].

The task is very challenging as the future observation is
unavailable and the anticipation needs to be made timely
for real-time purposes [25]. Under most anticipation task
settings [13, 28, 36, 38], the actions are represented as
(verb, noun) pairs, which means both verbs and nouns
needed to be predicted correctly. Most existing meth-
ods [20, 25, 26, 40, 48, 61] for action anticipation tackle
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Figure 1. An illustration of uncertainty-aware action decou-
pling transformer (UADT). UADT is composed of a verb-to-
noun model (VtN) and a noun-to-verb model (NtV), which aims at
anticipating noun and verb respectively. VtN anticipates the noun
with the assistance of verb information and NtV anticipates the
verb with the assistance of noun information. VtN and NtV are
dynamically combined based on the predictive uncertainty.

the task as an one-class action classification problem with-
out considering the underlying dynamics and dependencies
between verbs and nouns. These models directly output
the action prediction, which is later decomposed into verb
and noun predictions in a post-processing. However, this
mechanism has a critical drawback. If either the verb or
noun of the action is difficult to predict due to the lim-
ited visual cues, the action can be very difficult to predict
correctly since it requires both verb and noun to be cor-
rect [59, 60]. On the other hand, if either verb or noun is
known, the remaining part is much easier to predict. For ex-
ample, the verb of “drinking coffee” can be easier predicted
when knowing the “coffee” and the noun of “stretch dough”
is easier to predict when knowing “stretch”. In addition,
the predictive uncertainty can be greatly reduced because
the p((verb, noun)|X) is converted to p(verb|X,noun) or
p(noun|X, verb), where X is the input. The verb/noun in-
formation serves as a prior for the complementary part so
the anticipation is simplified.

To address the above issue of verb-noun modeling,
we introduce Uncertainty-aware Action Decoupling Trans-
former (UADT), which decouples the action anticipation
into verb and noun anticipations. Specifically, UADT is
composed of a verb-to-noun model and a noun-to-verb
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model. Each model is composed of an encoder and a de-
coder. The encoder of the verb-to-noun model aims at gen-
erating verb embedding and its corresponding uncertainty.
Then the embedding and its uncertainty are taken by the
decoder to help the noun anticipation. We model the pre-
dictive uncertainty of the model because the encoder can
generate bad embedding, which propagates the error to the
following predictions. By quantifying the predictive uncer-
tainty, we can leverage it to select reliable information and
to filter the redundancy and irrelevance. In this way, the
noun anticipation can be improved by benefiting from the
verb information. Inversely, the noun-to-verb model first
generates noun embeddings and the corresponding uncer-
tainty. Then it performs the verb anticipation with assis-
tance of noun information. In the end, we obtain the aug-
mented noun and verb predictions. We dynamically com-
bine them for the joint action anticipation based on their
predictive uncertainties.

To train UADT, we adopt a two-stage training strategy.
The encoders and decoders are trained with different loss
functions to guide them for their specific purposes. We
firstly train the encoders to generate the high-quality em-
beddings. Then we fix the encoders and train decoders for
joint action anticipation. We evaluated UADT on both ego-
centric and third-person action anticipation datasets includ-
ing EPIC-KITCHENS-100 [15], EGTEA Gaze+ [38], and
50-Salads [52]. Experiments results show the verb-to-noun
model and noun-to-verb model effectively improve the an-
ticipation of noun and verb respectively. We also demon-
strate the effectiveness and benefits of proposed mecha-
nisms and components by extensive ablation studies.

In summary, the main contributions of this paper are:
• We propose UADT for human action anticipation. By de-

coupling the action into verb and noun, we design and
combine a verb-to-noun model and a noun-to-verb model.
The two models assist each other to improve the joint ac-
tion anticipation.

• By extending the model in a probabilistic manner, we
quantify the predictive uncertainty, which is used for
identifying informative embeddings and prediction fu-
sion.

• UADT achieves state-of-the-art performance on ego-
centric and third-person action anticipation bench-
mark datasets including EPIC-KITCHENS-100, EGTEA
Gaze+, and 50-Salads. In addition, extensive ablation
studies demonstrate the effectiveness of the proposed
mechanisms and components.

2. Related Work

2.1. Human Action Anticipation

Human action anticipation aims at predicting future actions
before they occur. As for its practical applications, a num-

ber of benchmarks [15, 28, 36, 38, 52] have been built
to boost related research. For anticipation, feature learn-
ing [22, 46, 55] and temporal modeling [3] are two main fo-
cuses. Recurrent neural network is widely adopted by many
prior work [2–4, 20, 22, 35, 41, 51] to model the tempo-
ral relationship. For example, Furnari et al. [20] proposed
rolling-unrolling LSTM (RULSTM) with a rolling LSTM to
encode the historical information and an unrolling LSTM to
decode the future actions.

Recently, transformer-based methods [25–27, 47, 57, 61]
become the mainstream because of its strong capability for
capturing long-range spatial-temporal dependencies. Typi-
cally, Girdhar et al. [26] proposed anticipative video trans-
former (AVT) with a pure self-attention design. Based
on the transformer encoder, Girase et al. [25] introduced
RAFTformer for real-time action forecasting with low in-
ference latency. To leverage the overall goal of actions, mul-
tiple methods [43, 48, 49] are proposed to learn the hidden
representations of goal to guide the anticipation. To utilize
information from different sources such as audio and op-
tical flow, various approaches [13, 20, 21, 32, 50, 65, 68]
combined different modalities to improve the anticipation.
Also, large language model (LLM) is also explored for ac-
tion anticipation [66].

2.2. Uncertainty for Action Understanding

Uncertainty is a measure of prediction confidence [24, 33].
It not only represents the reliability of prediction, but also
provides specific information about the model [42]. Uncer-
tainty quantification techniques [33] have shown increasing
importance in action understanding such as action recogni-
tion [30, 56, 64, 67] and temporal action detection [5, 7, 10–
12, 29, 37, 62, 63]. Wang et al. [56] leverages uncer-
tainty sampling for active learning to select most informa-
tive instances for action recognition. Guo et al. [30] pro-
posed uncertainty-guided probabilistic transformer (UGPT)
for complex action recognition. Specifically, uncertainty is
quantified to train two models for low-uncertainty and high-
uncertainty data respectively.

For anticipation task, a few work have explored the un-
certainty of future actions. Furnari et al. [21] considered
the uncertainty to design the loss function. Farha et al. [2]
modeled the probability distribution of future action and
generated multiple samples to account for the uncertainty.
In some cases, the future action is almost impossible to in-
fer, Suris et al. [53] proposed a hierarchical model to infer
high-level activities when the simple action is difficult to
anticipate. In this work, we model the uncertainty of verbs
and nouns to identify reliable information and assist deci-
sion making.
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Figure 2. Overall framework of UADT. UADT is composed of a verb-to-noun (VtN) model on the top and a noun-to-verb (NtV) model
on the bottom, which aims at anticipating the noun and the verb respectively. VtN is made up of a verb encoder and a noun decoder. NtV
is made up of a noun encoder and a verb decoder. Given the input video, a pretrained backbone is firstly used to extract features. The
extracted features are fed into two encoders to generate the verb/noun embeddings and their corresponding uncertainties, which are taken
by the decoders to help the anticipation of the noun/verb. The decoders output the assisted verb and noun predictions. In the end, the VtN
and NtV are dynamically combined based on their predictive uncertainties.

3. Method

In this section, we first give an overview of Uncertainty-
aware Action Decoupling Transformer (UADT) in Sec. 3.1
and formulate the action anticipation task in Sec. 3.2. Then
we introduce UADT’s encoders and decoders in Sec. 3.3
and Sec. 3.4 respectively. The uncertainty-based fusion
strategy is introduced in Sec. 3.5. Finally, we discuss the
training procedures in Sec. 3.6.

3.1. Overview

An overall framework of UADT is shown in Figure 2. It
is composed of a verb-to-noun (VtN) model and a noun-to-
verb (NtV) model. Given the input video up to time t, fea-
tures are firstly extracted by a pretrained backbone network.
Then the extracted features are fed into a verb encoder and
a noun encoder to generate the initial verb and noun em-
beddings. Meanwhile, the encoders also output the predic-
tive uncertainty to identify informative and reliable embed-
dings. The initial verb embedding and its corresponding un-
certainty are fed into noun decoder to assist the noun antic-
ipation. And initial noun embedding and its corresponding
uncertainty are fed into verb decoder to assist the verb an-
ticipation. Besides noun and verb predictions, the decoders
also output noun and verb uncertainties. Finally, the noun
and verb predictions are dynamically combined based the
uncertainty to make joint action anticipation.

3.2. Anticipation Problem Formulation

Human action anticipation aims at predicting future actions
before they occur. In this work, we follow the settings of
short-term action anticipation in [13, 14]. Mathematically,
denote the input at time t as Xt = {I1, ..., It}, where It′ is
the frame at time t′. The goal of anticipation is to predict
the action in (verb, noun) format at time t + tf , where tf
is the time interval before the future action happens. So
the problem can be formulated as a classification task as
y∗t+tf

= argmaxŷ p(ŷt+tf |Xt), where y denotes the action
label. An illustration is shown in Figure 3.

time
t

ft t+

Anticipation

Interval ft
Future ActionPast Frames

Observed Unobserved

tX

Figure 3. Action anticipation illustration. The task aims at pre-
dicting the future action after a time interval tf given the observa-
tion up to time t.

3.3. UADT Encoders

UADT has a verb encoder (VE) and a noun encoder (NE).
The objective of these encoders is to generate verb/noun
embeddings that can be used as a prior to assist the an-
ticipation of the complementary part. To achieve this, we
build two probabilistic encoders based on Transformer [54]
encoder to encode verb/noun information and quantify the
predictive uncertainty. We quantify the uncertainty because
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not all the generated embeddings are reliable and useful.
Uncertainty is used to identify informative embeddings that
can better serve the decoders.

For the architecture, we follow the standard transformer
encoder design. To capture the predictive uncertainty, we
extend the model in a probabilistic manner. Specifically,
we replace the feed-forward networks in the last encoder
layer with Gaussian probabilistic layers [33] to model the
parameter distribution. To learn the model, reparameteriza-
tion trick [34] is used to perform forward pass and back-
propagation. In this way, the model can generate multiple
outputs based on the same input through sampling. Since
only the forward process after the probabilistic layer needs
to be repeated, the computational cost does not increase dra-
matically. Then the predictive uncertainty can be quantified
based on these predictions.

To train the encoders to generate verb/noun-orientated
embeddings, we design a verb/noun-guided training strat-
egy. Given the input Xt at time t, a pretrained backbone
first extracts the features as F t = {f1, ...,f t}. Then en-
coders make verb/noun anticipation at each time step based
on F t:

v̂2, ..., v̂t+1 = V E(F t), n̂2, ..., n̂t+1 = NE(F t) (1)

where V t = {v̂2, ..., v̂t+1} and N t = {n̂2, ..., n̂t+1} are
predicted verbs and nouns.

To train the model for action anticipation, most ap-
proaches use cross-entropy-based loss functions to optimize
the top-1 prediction. However, this may cause problems for
our encoders since the top-1 prediction can be wrong and
the error will propagate to the decoder part. To address this
issue, we propose a top-K cross-entropy loss so that the en-
coder can tolerate certain erroneous predictions and encode
more information. The loss function is defined as follows:

Ltop K =

{
− log

∑K
k=1 p(ŷk), if top-K prediction is correct

−
∑C

c=1 1(ŷ = c) log p(c), o.w.
(2)

where C is the total number of verb or noun classes, K is a
hyper-parameter, and ŷk denotes the top-k predicted label.
From Eq. 2, a classification result has less penalty if its top-
K predictions include the ground-truth verb/noun. In this
way, the encoding space is extended to K verbs or nouns so
it is more robust for wrong top-1 prediction. We empirically
set K = 5 based on the ablation study in Figure 5a.

On the other hand, we also make the encoders do feature
anticipation at each time step: F̂ t = {f̂2, ..., f̂ t+1}, where
f̂τ is the predicted future feature of fτ . Specifically, the
output embeddings of the last encoder layer are treated as
the anticipated features. We train them by minimizing the
mean squared error loss Lfeat between predicted features
and true features in a self-supervised manner:

Lfeat = ∥F t+1 − F̂ t∥22 (3)

where F t+1 = {f2, ...,f t+1}.
The VE and NE are trained separately by jointly mini-

mizing the top-K verb/noun loss and the feature loss. The
total encoder loss function can be written as:

Len = Lverb/noun
top K + λLfeat (4)

where λ is a hyper-parameter that measures the weight of
the feature anticipation loss. After training the verb and
noun encoders, their outputs encode the verb and noun in-
formation, which are utilized by the following decoders.
Uncertainty quantification. The generated embeddings
above contain misleading information or redundancy. To
address this issue, we measure the predictive uncertainty to
identify the reliable embeddings. Modeling the uncertainty
is effective for action anticipation because the observation
of future action is unavailable and there is intra-class ambi-
guity. Even the same observed actions can lead to different
future actions [53]. For example, “get cup” and “pour cof-
fee” both exist in “make coffee” and “make tea”. And dif-
ferent people may perform the same action in different ways
and in different orders. Therefore, it is important to model
the predictive uncertainty for reliable future prediction.

Specifically, the predictive uncertainty is composed of
epistemic uncertainty and aleatoric uncertainty [33]. Epis-
temic uncertainty, also known as model uncertainty, cap-
tures the lack of knowledge of model and is inversely
proportional to the training data. In action anticipation
task, epistemic uncertainty accounts for the unreliability of
model for future actions. Aleatoric uncertainty, also known
as data uncertainty, measures the noise in the data. This
kind of uncertainty is related to the label and imperfectness
of action data. Please refer to [1] for more details. These
two types of uncertainties add up to the total predictive un-
certainty. As epistemic uncertainty account for the internal
property of model for the unknowns, it is more effective for
anticipation task. We demonstrate this claim in the ablation
study (§ 4.4). In this work, we mainly leverage the epis-
temic uncertainty.

By extending the model in a probabilistic manner, we
learned the distribution of parameters. So we can obtain N
sets of parameters {θ1, ..., θN} by sampling and then get N
predictions from the same input by repeating the forward
process with different parameters. Generally, the total pre-
dictive uncertainty is quantified as the entropy of the predic-
tions as H[ŷ|x] = −

∑C
c=1 p(ŷ|x) log p(ŷ|x), where y is the

output label and x is the input. The epistemic uncertainty
can be quantified as follows [42]:

Ue ≈ H[
1

N

N∑
n

p(ŷ|x, θn)]−
1

N

N∑
n

H[p(ŷ|x, θn)] (5)

In Eq. 5, we use average of N samples to approximate the
true value since it is intractable to integrate over the parame-
ter space. The second term on the right is an approximation
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of aleatoric uncertainty:

Ua ≈ 1

N

N∑
n

H[p(ŷ|x, θn)] (6)

We follow the same procedure for every time step so that ev-
ery generated embedding has its corresponding uncertainty.
The generated embeddings along with their uncertainties
are fed into the decoder make the final anticipation.

3.4. UADT Decoders

The objective of decoders is to make the verb/noun anticipa-
tion by leveraging the noun/verb embeddings and uncertain-
ties from the encoders. They take both the extracted features
from backbone and the embeddings from the encoders.

As shown in Figure 2, the decoders are composed of
self-attention layers and cross-attention layers. The self-
attention layers are transformer encoders with causal masks
to make sure each step can only access its past information.
They first take the input features F t to generate the interme-
diate noun embeddings Znt = {zn1, ...,znt} and interme-
diate verb embeddings Zvt = {zv1, ...,zvt}. Znt and Zvt

are orientated to anticipate the noun and verb respectively,
which are used for cross-attention.

Before the encoder embeddings enter the cross-
attention layer, we apply an uncertainty mask M t =
{m2, ...,mt+1} to select the most informative embedding.
We assume the embeddings with large uncertainty tend to
be less reliable and less relevant to the actions being antici-
pated. So the weights of masks are inversely proportional to
the uncertainty. Specifically, the weights of the uncertainty
mask at time t can be computed as follows:

mt′ = 1− (Ut − Umin)/(Umax − Umin) (7)

where Ut′ is the epistemic uncertainty of embedding at
time t′, and Umax, Umin are the maximum and mini-
mum epistemic uncertainty within each batch. The un-
certainty mask is multiplied to the encoder embeddings
at each time step to generate the weighted embeddings
F̂ ′

t = {m2f̂2, ...,mt+1f̂ t+1}. Same procedures are used
for both models. Then we perform the cross attention be-
tween Zvt/Znt and encoder embeddings F̂ ′

t of noun/verb
model. After cross-attention, the updated embeddings are
fed into the last self-attention layer to generate the final em-
beddings.

To train the decoders, we first have a standard cross-
entropy loss to train the decoder at time t for next verb/noun
anticipation:

Lnext = − log ŷt[ct+1] (8)

where ŷt is the predicted label at time t and ct+1 is the
ground-truth label of frame t+ 1.

In addition, we follow the same procedures as the en-
codes to make feature anticipation by minimizing Lfeat in

Eq. 3. We also train the model to do verb/noun anticipa-
tion before time t. Specifically, each output embedding goes
through a linear layer to output the verb/action prediction.
We train this sub-task with a cross-entropy loss as follows:

Lverb/noun = −
t−1∑
τ=1

log ŷτ [cτ+1] (9)

where ŷτ is the predicted verb or noun label at time τ .
The total loss function for training the decoders can be

written as:

Lde = Lnext + λ1Lfeat + λ2Lverb/noun (10)

where λ1 and λ2 are hyper-parameters.
Decoder uncertainty. The last self-attention layer in the
decoder is also extended in a probabilistic manner. And de-
coders output the predictive uncertainty of the anticipated
verb and noun. The noun and verb uncertainties represent
the the reliability of the verb-to-noun model and noun-to-
verb model respectively. The noun and verb predictions
along with their uncertainties are combined for the final ac-
tion anticipation.

3.5. Uncertainty-based Fusion

Joint action anticipation. To combine the predictions of
verb-to-noun model and noun-to-verb model, we proposed
an uncertainty-based fusion strategy. We assume the pre-
diction with low uncertainty is more reliable so it should be
assigned higher weights. The fusion of the two models can
be written as:

p(verb) = αpenv→n + (1− α)pden→v

α = σ((Un→v − Uv
min/Uv

max − Uv
min))

(11)

p(noun) = βpenn→v + (1− β)pdev→n

β = σ((Uv→n − Un
min/Un

max − Un
min))

(12)

where p denotes the prediction and σ is the sigmoid func-
tion. α and β are functions of the predictive epistemic un-
certainty. In this way, the prediction that has high uncer-
tainty is less considered in the final anticipation. The fusion
is dynamic since it depends on the input uncertainty. By
considering the uncertainty of future verb/noun in the de-
cision process, the final anticipation is made by the most
reliable verb and noun combination.
Post-processing. After the fusion of verb-to-noun model
and noun-to-verb model, we obtain the joint action pre-
diction. However, the verbs and nouns are predicted sep-
arately, which means some (verb, noun) pairs can be im-
plausible such as “drinking potatoes”. To correct implau-
sible verb-noun pairs, we perform a post-processing by se-
lecting the verb-noun pair that has the maximum joint prob-
ability among valid (verb, noun) combinations.

(verb, noun)∗ = argmax
(verb,noun)∈Y

p(verb)p(noun) (13)
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Algorithm 1 UADT Training

Input: D = {Xn ∈ RT×H×W×C ,Y n ∈ RT }Nn=1 - data
Output: Encoder and decoder parameters {θen, θde}

1: Extract F t from Xt by a backbone
Training encoders

2: Make predictions V̂ t and N̂ t

3: Compute anticipated features F̂ t

4: Optimizing θen by minimizing Len in Eq. 4
5: Compute encoder uncertainty Ue by Eq. 5

Training decoders
6: Generate intermediate embeddings Znt and Zvt

7: Cross-attention between Znt/Zvt and F̂ ′
t

8: Predict V t and N t

9: Compute anticipated features F̂ t

10: Optimize θde by minimizing Lde in Eq. 10
11: return θ = {θen, θde}

where Y is the set that contains all plausible (verb, noun)
combinations.

3.6. Training Procedures

To train the UADT, we adopt a two-stage (2S) training strat-
egy. We first train the verb encoder and noun encoder sep-
arately by minimizing Len in Eq. 4. Afterwards, we fix
the encoders and train the noun decoder and verb decoder
by minimizing Lde in Eq. 10. The training procedures are
summarized in Algorithm 1. In addition, we also trained the
model in an end-to-end (E2E) manner. E2E training gives
better performance than the 2S training. An ablation study
of training strategies is available in Sec. 4.4.

4. Experiments
We first introduce the benchmark and evaluation metrics
(§ 4.1). Then we provide the implementation details (§ 4.2).
Next we compare UADT with state-of-the-art methods
(§ 4.3). Finally, we present ablation studies of the proposed
mechanisms and components (§ 4.4).

4.1. Datasets and Evaluation Metrics

EPIC-KITCHENS-100 (EK100) [15] is a large-scale ego-
centric video dataset. It contains 700 cooking activity
videos. There are 3806 actions with 97 verbs and 300
nouns. In this work, we evaluate our proposed method on
the validation dataset as previous work [20, 25] without ad-
ditional training data. Following the settings in [21], we
report the top-5 recalls of action, verb, and noun.
EGTEA GAZE+ [38] is a large-scale dataset for first-
person-view (FPV) actions and gaze. It contains 28 hours
cooking activity videos from 86 unique sessions of 32 sub-
jects. There are totally 106 actions with 19 verbs and 51
nouns. Top-1 accuracy is used as the evaluation metric.

Method Init Modality Top-5 Recall
Verb Noun Action

TempAgg [50] IN1k RGB 24.2 29.8 13.0
RULSTM [20] IN1k RGB - - 13.3
RULSTM [20] IN1k RGB+Flow+Obj 30.8 27.8 14.0
TempAgg [50] IN1k Flow+Obj+ROI 21.2 31.4 14.7
AVT [26] IN21k RGB 30.2 31.7 14.9
AVT+ [26] IN21k RGB+Obj 28.2 32.0 15.9
TSN-AVT+ [26] IN21k RGB+Obj 31.8 25.5 14.8
MeMViT [61] K400 RGB 32.8 33.2 15.1
RAFTformer [25] K400+IN1k RGB 33.3 35.5 17.6
UADT (ours) K400 RGB 35.2 38.5 18.8
MeMViT [61] K700 RGB 32.2 37.0 17.7
RAFTformer [25] K700 RGB 33.7 37.1 18.0
RAFTformer-2B [25] K700+IN1k RGB 33.8 37.9 19.1
UADT (ours) K700 RGB 38.2 41.4 20.3
UADT (ours) K700 RGB+Flow+Obj 43.5 46.6 23.0

Table 1. Experiment results on EK100 validation set. UADT
achieves state-of-the-art performance under different settings.

50-Salads [52] is a third-person video dataset for action un-
derstanding. It captures 25 people preparing 2 mixed salads
in 966 activity instances. There are totally 17 different ac-
tions. Following [50], we report the top-1 action accuracy
over the pre-defined splits for comparison.

4.2. Implementation Details

Feature extraction. For EK100 dataset, we adopt MViT-
b [17, 39] as the backbone. We pre-trained the 16×4 MViT-
b on Kinetics-400 [8] for action classification. The 16 ×
4 model uses 16 frames sampled 4 frames apart at 30fps,
which leads to 2 seconds for each clip at 8fps. On the other
hand, the Kinetics-700 [9] pretrained features are obtained
by a 32× 3 MViT, which uses 32 frames sampled 3 frames
apart at 30fps. For EGTEA Gaze+, a TSN [58] pretrained
on ImageNet-1K is used to extract features following the
procedure in RULSTM [20]. For 50-Salads dataset, we used
the I3D [8] features provided in [18]. In this way, we use the
same feature as the SOTA [48] for fair comparisons. More
details can be found in the supplementary.
Settings. The proposed framework is implemented in Py-
Torch [45]. The UADT is optimized using AdamW opti-
mizer with momentum 0.8 and weight decay of 10−3. We
train the model for 50 epochs using a cosine scheduler with
a 20 warmup epochs. The batch size is set to 512. The
base learning rate is set to 10−4 and end learning rate is set
to 10−6. The batch size is set to 512. The dropout rate of
transformer is set to 0.25. λ is set to 6 in Len. And we set
λ1 = 5 and λ2 = 0.1 in Lde. More details are available in
the supplementary.

4.3. Comparison to state-of-the-art

EK100. The experiment results on EK100 are shown in
Table 1. Only using the RGB modality, our proposed
UADT outperforms the state-of-the-art RAFTformer [25]
by a large margin with both K400 and K700 features. We
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Method Init Modality Top-5 Recall

DMR [55] - RGB 38.1
ASTN [13] TSN/IN1k RGB+Flow 31.6
MCE [21] TSN/IN1k RGB+Flow 43.8
TCN [6] - RGB 47.1
FN [16] VGG-16 RGB 42.7
RED [23] VGG-16/TS RGB+Flow 54.6
RULSTM [20] TSN/IN1k RGB+Flow+Obj 58.6
RAFTformer [25] TSN/IN1k RGB 63.5
UADT (ours) TSN/IN1k RGB 68.4

Table 2. Experiment results on EGTEA Gaze+. UADT achieves
SOTA performance using the same TSN/IN1k features.

Method Top-1 Acc. (%)
DMR [55] 6.2
RNN [3] 30.1
CNN [3] 29.8
ActionBanks [50] 40.7
AVT [26] 48.0
RAFTformer* [25] 53.2
Latent-goal [48] 59.6
UADT (ours) 62.7

Table 3. Experiment results on 50-Salads. Using the same
I3D features as prior work, UADT outperforms all state-of-the-
art methods. * indicates reproduced results.

also show that the performance can be further boosted by
incorporating more modalities in the ablation study (§ 4.4).
EGTEA Gaze+. The comparison is shown in Table 2. Us-
ing the same TSN/1N1k features, our UADT significantly
outperforms the RAFTformer by 4.9%.
50-Salads. The results are shown in Table 3. Our UADT
outperforms the Latent-goal [48] by 3.1% using the same
I3D features. This demonstrates that UADT can generalize
to third-person dataset for anticipation.

4.4. Ablation Studies

Different input modalities. To further study UADT, we in-
corporate results using additional modalities including the
optical flow and object features. Specifically, we concate-
nate the feature vectors of different modalities at each time
step. The results are shown in Table 4. By comparison,
the performance is significantly improved by adding extra
modalities. The optical flow features significantly improve
the verb anticipation since they contain motion patterns.
The object features are relatively effective for noun antici-
pation as the detected objects are highly-related to the noun
of the action.
Encoder uncertainty modeling. To demonstrate the effec-
tiveness of uncertainty from the decoder, we implemented
a baseline verb-to-noun model (VtN-b) and noun-to-verb
model (NtV-b) without uncertainty mask. The two mod-
els have exactly the same architectures as the probabilistic
ones we proposed. A comparison of performance is shown
in Table 5. From the results, the uncertainty-based single-

RGB Flow Obj Top-5 Recall (%)
Verb Noun Action

✓ 38.2 41.4 20.3
✓ ✓ 41.7 42.9 21.2
✓ ✓ 41.0 44.6 21.5
✓ ✓ ✓ 43.5 46.6 23.0

Table 4. Experiment results of different modalities on EK100
val with K700 features. By incorporating additional modalities,
the performance is significantly improved.

Method
K400 (Top-5 recall) K700 (Top-5 recall)

Verb Noun Action Verb Noun Action
VtN-b - 35.5 - - 38.7 -
VtN-U - 37.7 - - 40.8 -
NtV-b 31.7 - - 35.1 - -
NtV-U 34.3 - - 37.5 - -
UADT-b 33.2 36.5 18.0 36.0 39.1 19.4
UADT 35.2 38.5 18.8 38.2 41.4 20.3

Table 5. Ablation study of encoder uncertainty on EK100 val.
“b” denotes the baseline version and “U” denotes the uncertainty-
based version.

Method K400 (Top-5 recall) K700 (Top-5 recall)
Verb Noun Action Verb Noun Action

Baseline 33.2 36.5 18.0 36.0 39.1 19.4
Total-U 34.7 38.0 18.5 37.7 41.0 20.1
Aleatoric-U 33.6 37.1 18.2 36.8 40.2 19.6
Epistemic-U 35.2 38.5 18.8 38.2 41.4 20.3

Table 6. Ablation study of different types of uncertainties on
EK100 val. Epistemic uncertainty is the most effective.

stream VtN/NtV and UADT outperform their baseline ver-
sion, which demonstrates the effectiveness of the encoder
uncertainty modeling.
Types of uncertainty. We quantify the epistemic uncer-
tainty in Eq. 5, aleatoric uncertainty in Eq. 6, as well as the
total uncertainty. Then we generate the uncertainty masks
based on different types of uncertainties and test the model.
The comparison is shown in Table 6. The baseline method is
implemented in same architecture without uncertainty mod-
eling. From the results, the epistemic uncertainty is more
effective than the other two types of uncertainties, which
demonstrates our claim in Sec. 3.3.
Uncertainty sampling. In the uncertainty quantification
process, we repeat the forward process to obtain N predic-
tions. The number of samples affects the accuracy of un-
certainty and further affects the anticipation performance.
We varied the number of samples for different types of un-
certainties. A comparison is shown in Figure 4. From the
plots, it takes around 25 sampling times to obtain the rela-
tively stable performance. Although the performance is still
improving by increasing sampling times, we reported the
performance of 25 sampling times in this paper due to the
efficiency concern. The inference latency comparison with
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(a) K400 features (b) K700 features
Figure 4. Ablation study of the uncertainty sampling and dif-
ferent types of uncertainty on EK100 val. By increasing the
number of samples, the uncertainty quantification is more accu-
rate and it further improves the anticipation.

Training Feature
Top-5 Recall

Verb Noun Action
Two-stage

K400
35.2 38.5 18.8

E2E-one-stage 37.3 40.1 19.3
E2E-two-stage 37.4 40.4 19.5
Two-stage

K700
38.2 41.4 20.3

E2E-one-stage 41.2 42.8 21.1
E2E-two-stage 41.5 43.0 21.2

Table 7. Ablation study of training strategies on EK100 val.
The proposed two-stage training can be improved by E2E training.

different sampling times can be found in the supplementary.

Training strategies. For UADT, we adopt a two-stage (2S)
training mechanism. The encoders are fixed after the first-
stage training and decoders are trained afterwards. To bet-
ter optimize the model for anticipation, we also trained the
model in an end-to-end (E2E) manner. We implemented
two types of E2E training, namely the one-stage version and
two-stage version. Specifically, the one-stage E2E trains
the encoders and decoders together from scratch. For the
two-stage E2E, we train the encoders first by minimizing
Len. Then we jointly train the encoders and decoders in
the second stage by minimizing Lde. The experiment re-
sults are shown in Table 7. The end-to-end methods obtain
better results because the encoders are further optimized for
anticipation after being trained for generating embeddings.
The two-stage E2E converges faster than the one-stage E2E
since the encoders are learned beforehand. In the compar-
ison with state-of-the-art methods, we reported the results
obtained by the 2S training instead of E2E training because
the latter increases the training cost. A detailed comparison
of training cost is available in supplementary.
Loss function. The encoder loss function Len is composed
of a top-K verb/noun loss and mean-squared error feature
loss. To study the effect of K and the balance between two
terms. We varied K and λ during training. The results with
different K on EK100 val are shown in Figure 5a. Note
the top-K loss becomes standard cross-entropy loss when
K = 1. So the comparison also demonstrates the superi-
ority of the top-K loss against the standard cross-entropy
loss. The ablation study of λ is plotted in Figure 5b. From

(a) Top-K loss (b) Feature loss
Figure 5. Ablation study of encoder loss function on EK100
val. The top-K loss effectively improve the performance. We set
K = 5 and λ = 6 since they output the best results under different
settings.

Method K400 (Top-5 recall) K700 (Top-5 recall)
Verb Noun Action Verb Noun Action

VtN - 37.7 - - 40.8 -
NtV 34.3 - - 37.5 - -
Early fusion 32.1 35.9 17.9 36.1 38.9 19.2
Late fusion 34.5 37.8 18.3 37.7 40.9 20.0
Attention [20] 34.8 38.0 18.5 37.8 41.1 20.1
Uncertainty (§ 3.5) 35.2 38.5 18.8 38.2 41.4 20.3

Table 8. Ablation study of fusion strategies on EK100 val. All
methods use by two-stage training with epistemic uncertainty.

the results, we empirically set K = 5 and λ = 6 since
these settings output best performance under different set-
tings. The ablation studies of λ1 and λ2 in the decoder loss
function can be found in the supplementary.
Comparison of fusion strategies. In this work, we pro-
posed an uncertainty-based fusion strategy of the verb-to-
noun model and noun-to-verb model. To demonstrate its ef-
fectiveness, we compare it with other types of fusion meth-
ods. First, we test the early fusion method by combing the
predictions of verb and noun encoders. Second, we test
late fusion by combing the predictions of both verb-to-noun
model and noun-to-verb model. Additionally, we test the
attention fusion method proposed in [20]. The results and
comparison are shown in Table 8. The uncertainty-based fu-
sion outperforms other methods using either K400 or K700
features, which demonstrates its effectiveness.

5. Conclusion and Future Work

In this paper, we introduced UADT for action anticipation.
By combining a verb-to-noun model and a noun-to-verb
model, the verb and noun predictions assist each other to
improve joint action anticipation.

In the future, we plan to extend it for long-term action
anticipation that aims at predicting a larger number of
future actions. And we also plan to leverage large language
models to capture the verb and noun dependencies.
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