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Abstract

Video harmonization is an important and challenging
task that aims to obtain visually realistic composite videos
by automatically adjusting the foreground’s appearance to
harmonize with the background. Inspired by the short-term
and long-term gradual adjustment process of manual har-
monization, we present a Video Triplet Transformer frame-
work to model three spatio-temporal variation patterns
within videos, i.e., short-term spatial as well as long-term
global and dynamic, for video-to-video tasks like video har-
monization. Specifically, for short-term harmonization, we
adjust foreground appearance to consist with background
in spatial dimension based on the neighbor frames; for
long-term harmonization, we not only explore global ap-
pearance variations to enhance temporal consistency but
also alleviate motion offset constraints to align similar con-
textual appearances dynamically. Extensive experiments
and ablation studies demonstrate the effectiveness of our
method, achieving state-of-the-art performance in video
harmonization, video enhancement, and video demoiréing
tasks. We also propose a temporal consistency metric to
better evaluate the harmonized videos. Code is available at
https://github.com/zhenglab/VideoTripletTransformer.

1. Introduction

Video compositing is a typical operation that involves ex-
tracting a desired region (as foreground) from one video clip
and pasting it into another video (as background) to create
unique visual effects. However, composite video inevitably
suffers from visual inconsistencies due to differences in
appearance between foreground and background, such as
color, brightness, and contrast [5, 13]. The manual creation
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Figure 1. We present harmonized results from image-based
(HT+ [14]) and video-based (CO2Net [31] and Ours) methods
(left), along with the inter-frame foreground brightness differences
in the video (right). In the radar chart, values that differ greatly
with “Real” indicate potential flickering, and the closer the overlap
with “Real”, the better the visual effect. HT+ and CO2Net exhibit
flickering, while our method closely resembles the real video.

of a visually natural composite video is a labor-intensive
and expert-level work that demands careful adjustment of
pixel intensities frame-by-frame. Thus, video harmoniza-
tion (VH), aiming to automatically align the foreground
appearance with the background in composite videos, has
emerged as a critical and challenging task [17, 31].
Applying image harmonization methods [5, 13, 14, 41]
to composite videos leads to undesirable inter-frame flicker-
ing, as evident in Figure 1, where HT+ [14] exhibits signif-
icant brightness differences in the harmonized video (pink
area marked by “HT+” in the radar chart). Indeed, videos
capture object motion and appearance changes within the
scene, and these continuous spatio-temporal variations pro-
vide crucial guidance and constraints for most video tasks,
e.g. video action recognition [10, 45] and inpainting [21].
Therefore, modeling the spatio-temporal variation patterns
within videos is fundamental and reasonable for VH.
Similar to the local and global properties observed in
images, videos also exhibit short-term and long-term tem-
poral characteristics. Various video processing techniques
(e.g., SlowFast [10], TDN [45], and TSN [44]) have demon-
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strated the advantages of considering these different multi-
frame changing motions in the temporal dimension. How-
ever, unlike high-level tasks such as video classification and
action recognition, which rely on detecting changes in mo-
tion, video-to-video tasks like video harmonization primar-
ily concentrate on appearance changes while keeping their
semantic features constant [13].

Actually, human tackles video harmonization as a grad-
ual optimization process that handles short-term differences
based on neighbor frames and progressively extends to
long-term frames. This iterative process involves adjusting
the foreground appearance from coarse to fine to achieve
overall spatio-temporal consistency across the video. In-
spired by this intuition, we describe the iterative adjustment
in manual harmonization as a mechanism of triplet joint
harmonization, which internally captures spatio-temporal
variation patterns within different numbers or locations of
frames, gradually optimizing the composited video.

Technically, we leverage Transformer [29, 42] to con-
struct an innovative framework, i.e., Video Triplet Trans-
former (VIT). Triplet Transformer consists of short-term
spatial, long-term global, and long-term dynamic Trans-
former modules, each module aims to capture and process
spatio-temporal variation patterns across different frame
counts or locations within videos. Specifically, in the short-
term spatial module, we leverage both spatial global fea-
tures and temporal subtle changes between neighbor frames
to improve the spatial consistency of the video; in the long-
term global module, we explore spatio-temporal appearance
variation trends to enhance the global temporal consistency
within videos, besides, inspired by the powerful represen-
tation capabilities of BERT [9] and MAE [16] in capturing
intrinsic relationships within sequential data, we introduce
a masked prediction strategy to stimulate its potential for
modeling long-term variation patterns; in the long-term dy-
namic module, we utilize dynamic spatial feature matching
to alleviate motion offset effects, ensuring that appearances
of similar contextual elements (e.g., objects and textures)
align across different spatial positions and frames.

Furthermore, human visual system is highly sensitive
to the flickering phenomenon in videos [4], which can be
caused by sudden alterations in pixel intensities of individ-
ual frames. However, previous temporal consistency met-
rics often fail to capture these abrupt changes, as they rely
on averaging results over all frames [8, 18, 23]. Hence, we
present a temporal consistency metric tailored for video-
to-video tasks, particularly video harmonization, which can
detect and magnify the impact of outlier values on final eval-
uation results using an anchor value.

Our contributions include: (1) We build a Video Triplet
Transformer framework that can effectively explore spatio-
temporal variation patterns across frames with different
lengths and locations; (2) We propose a temporal consis-

tency metric that is suitable for video-to-video tasks. (3)
We present comprehensive experiments to demonstrate the
effectiveness of our framework, achieving state-of-the-art
performance on video harmonization and two related tasks,
i.e., video enhancement and video demoiréing.

2. Related Work

Image and Video Harmonization. Existing learning-
based image harmonization methods can be categorized
as semantic guidance [38, 41], domain verification [5, 6],
intrinsic images [12, 13], style transfer [27], color space
transformation [7, 11, 20, 24, 48], and self-supervised pre-
training [19, 28, 33]. The lack of temporal coherence in im-
age harmonization leads to flickering in harmonized videos.
Recently, Huang ef al. [17] made an alignment between
harmonized consecutive frames by optical flow to constrain
temporal consistency. Lu et al. [31] utilized assumption of
color mapping consistency of neighboring frames to refine
current frame of the videos. However, these methods rely on
specific training data or prior assumptions and harmonize
videos frame-by-frame without considering long-term rela-
tionships, yielding a slight boost on spatio-temporal consis-
tency of harmonized videos. Different from these, we de-
vote to solving video harmonization from a novel perspec-
tive of modeling triplet spatio-temporal variation patterns.

Video Temporal Consistency (TC). Previous methods
mainly relied on optical flow to align objects across frames,
improving temporal consistency in tasks like video in-
painting [21], video denoising [49, 50], and video super-
resolution [37]. Recently, Deformable DETR [51] ex-
tended into some video tasks, such as classification [43]
and restoration [25], by using motion displacements or op-
tical flow between consecutive frames to sample relevant
points. But the computation of motion displacements or op-
tical flow pose significant challenges and introduce poten-
tial inaccuracies. And these methods handle fixed-term TC
of few frames, while ours implement iterative harmoniza-
tion of short- and long-term. Especially, long-term global
and long-term dynamic modules adjust spatio-temporal ap-
pearance at global and similar contexts cooperatively.

Video TC Metrics. Relation-based TC metrics [8, 18]
are commonly utilized for video quality assessment, pri-
marily calculating differences in temporal relations between
generated and ground-truth videos. However, we observe
existing metrics failing to capture flickering due to the aver-
age over all frames, thus we seek to provide a better metric
for evaluating TC especially flickering. Besides, flow-based
TC metrics [23, 31] calculate pixel differences of aligned
frames with estimated optical flow and deem smaller value
as better (= 0). We obtained a value of 527 on 636 real
videos, so we omitted these metrics considering their con-
tradiction with the natural scene changes and their reliance
on optical flow accuracy.
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Figure 2. Our Video Triplet Transformer (VTT) framework
consists of patch embedding, multi-layer Triplet Transformer
with Short-Term Spatial Transformer (ST-ST), Long-Term Global
Transformer (LT-GT), and Long-Term Dynamic Transformer (LT-
DT) modules, and Decoder. The three Transformer modules aim
to model three spatio-temporal variation patterns in videos: spa-
tial, global, and dynamic. The LT-GT improves its ability to en-
hance global appearance consistency through our masked predic-
tion strategy, and the LT-DT aligns appearance in dynamic con-
texts by using a reference token and sampled tokens of the context.

3. Framework and Method

We strive to exploit the spatio-temporal variation patterns
of varying durations for video-to-video tasks (e.g., video
harmonization), which receive a source video and produce
the target video that closely resembles the real video. As
shown in Figure 2, we present our Video Triplet Trans-
former (VTT) framework, which comprises a patch embed-
ding, a multi-layer Triplet Transformer, and a decoder. Our
approach starts by tokenizing long-term frames from the
source video into token sequences using the patch embed-
ding. These token sequences are then fed into the multi-
layer Triplet Transformer for iterative adjustments guided
by three spatio-temporal variation patterns. Finally, these
refined token sequences are utilized by the decoder to re-
construct the target video. Next, we will describe our Triplet
Transformer and its application in video harmonization.

3.1. Video Triplet Transformer

The spatio-temporal consistency of video primarily depends
on three aspects: spatial content and temporal appearance
on global and object motion trajectories, which are crucial
for humans to perceive integrality, coherence, and conti-
nuity in scenes, respectively. Specifically, each frame in a

video captures specific momentary scene information, and
the integrity of its content is the foundation of high-quality
videos. Moreover, global temporal appearance determines
visual coherence, mainly influenced by how objects interact
with lighting conditions [13]. Meanwhile, object motion
trajectories track the movement and interaction of elements
within the scene, providing a sense of dynamic continuity.
These factors fundamentally impact the viewer’s experience
and perception of the video’s realism and naturalness.

Evidently, spatial and temporal consistency manifest
themselves at both short-term and long-term temporal
scales. Therefore, we aim to enhance the spatio-temporal
consistency of videos within long sequences by considering
three key aspects: short-term spatial appearance, long-term
global appearance, and long-term dynamic context. We col-
lectively refer to the three aspects of spatial, global, and
dynamic as the triplet spatio-temporal variation patterns in
videos, with each corresponding to short-term spatial Trans-
former, long-term global Transformer, and long-term dy-
namic Transformer in our Triplet Transformer.

Short-Term Spatial Transformer (ST-ST). We aim to
build a specialized module that focuses on adjusting the
spatial features to promote visual effects. Meanwhile, we
intend to leverage the subtle variations from the neigh-
bor frames as a reference to ensure their appearance is
consistent within the neighbor frames. Moreover, Trans-
former architecture [2, 29, 42] has emerged as a fundamen-
tal paradigm for most computer vision tasks with promising
performance. Thus, we leverage the powerful contextual ca-
pabilities of Transformer to explore and concurrently adjust
the spatial features within neighbor frames.

Specifically, our ST-ST receives an input token sequence
z € RT*N*C" and partitions it into independent short-term
groups as 2 € RT//Tstx (Tt xNxC") Thege groups are then
flattened into 1D token sequences and fed into Transformer
to produce adjusted spatial features as z*¢, which subse-
quently are inversely reshaped to their original dimensions
as 2t € RT*NxC" Here, z is obtained from long-term
frames using the patch embedding, 7" and T; represent the
total number of input frames and the number of frames in
each short-term group, respectively, P is the patch size, C’
is the token dimensions, and IV represents the number of
patches within each frame calculated by N = % X %,
where H and W are height and width of the source video.

Long-Term Global Transformer (LT-GT). Indeed,
motion variations across long-term frames provide valuable
temporal information for understanding object structure and
shape, yielding discriminative features for high-level video
tasks, such as video action recognition [10, 45] and video
semantic segmentation [44]. These established and effec-
tive methods further support the idea exploring global ap-
pearance variation patterns in videos over long temporal se-
quences will be highly appreciated for video-to-video tasks.
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However, existing video-to-video methods often lack the
utilization of long-term scene change information, typically
concentrating on only a few consecutive frames [17, 31, 49].
Hence, we seek to enhance the global consistency of videos
by capturing long-term appearance variations.

Many video-to-video tasks, such as video harmonization
and enhancement, aim to address appearance inconsisten-
cies and degradation problems caused by imaging condi-
tions. Essentially, these tasks revolve around exploring and
adjusting the low-level features of the video to improve vi-
sual quality. Meanwhile, unlike the semantic differences in-
troduced by motion offset, the temporal and spatial appear-
ance variations in real videos are typically consistent and
gradual, influenced by lighting conditions with a smooth
transition [12, 13]. Therefore, to enhance the target video’s
temporal consistency, we leverage the long-context capabil-
ities of Transformer to explore the spatio-temporal global
appearance variation patterns across long-term frames.

Specifically, our LT-GT receives 25 € RT*N*C" from
ST-ST and segments it into independent windows in the
spatial dimensions to obtain z5f € RT*(N//M)xMxc”
(where M represents the product of the window’s width and
height). Then, we reshape and flatten z_gi across the tem-
poral dimensions to obtain z’;i € RIV//M)XT-MxC’ 44
feed it into Transformer to produce adjusted features, which
subsequently are inversely reshaped to their original shape
29t RTXNXC/.

Furthermore, we consider that the abundance of redun-
dant similar features within windows at the same spatial po-
sitions hinders the learning of temporal appearance varia-
tion patterns across long-term frames. To alleviate this is-
sue and unlock the full potential of the LT-GT, we investi-
gate the performance of two self-supervised learning mech-
anisms in video-to-video tasks: autoregressive (e.g., GPT
[36]) and masked prediction (e.g., BERT [9], MAE [16]).
Refer to Section 5.4 for empirical study and analysis.

Long-Term Dynamic Transformer (LT-DT). Then, we
direct our attention towards the issue of ensuring dynamic
contextual continuity within the target video. Since the tar-
get video maintains the same content information as the
source video, we are mainly concerned with the appearance
continuity of similar objects between long-term frames.
However, the spatial location misalignment of objects be-
tween frames is an inherent characteristic of videos, and it
presents a substantial challenge to enhance the temporal ap-
pearance continuity of target video.

To mitigate the impact of motion offset, we expand the
use of deformable attention [51] to dynamically locate and
align the temporal appearance of similar contexts within
videos. This dynamic is achieved by employing relative po-
sition offsets and attention weights to sample tokens across
long-term frames that share similarities with a reference to-
ken and assigning them varying levels of attention.
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o ‘\1%» ‘ma g= Pri]

Api— 3 T M O t T
t=19 T Linear |—>Atrk~>| Aggregate ) Aux - 24 |—>| Linear

Figure 3. Implementation process of our LT-DT module.
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Figure 3 illustrates LT-DT’s process, involving sampling
tokens by position offsets Ap!, and aggregating them using
attention weights Ay, to align the appearance of moving
objects. Specifically, LT-DT receives 25t € RT*V*C" from
ST-ST and divides it into iterative groups, each consisting of
Ty frames, denoted as 25 € RT//Tarx(TaexNxC")  Thege
groups are then flattened into 1D token sequences and fed
into Transformer with the deformable attention to produce
aligned features, which subsequently are inversely reshaped
to their original dimensions as 2% € RT*N*C"_ For sim-
plicity, we present a formalization of the single-header de-
formable attention operation as follows:

Tat

ZZAM Wa ap |- D

t=1 k=1

DeAtin(z.) =

where z, and p, represent the r-index reference token and
normalized coordinates of the 2D reference token, respec-
tively, Ap}. denotes the sampling offset of the k-th sampling
token in the ¢-th frame, W and W’ represent the weights of
linear projections and the attention weight Ay, normal-
ized by ZtT‘“l k 1 A = 1. Besides, Ay and Apf are
learnable through linear projection over z,.

Overall, we sum the outputs 29" and z%* from LT-GT and
LT-DT as the outputs of our Triplet Transformer.

3.2. Video Harmonization Triplet Transformer

Given a composite video V and a foreground mask M
which indicates the inharmonious region, our goal is to
learn a model that takes V and M as inputs and produces a
harmonized video V as output, where V is expected to be
as harmonious as the real video V.

Based on our VTT framework, we devise a Video Har-
monization Triplet Transformer (VHTT) method, which
aims to harmonize V to V by exploiting spatio-temporal
variation patterns within triplet groups of varying temporal
lengths and locations. In VHTT, we first employ a multi-
layer ST-ST to harmonize the foreground, making it coarse
harmony with the background. Then, we apply a multi-
layer Triplet Transformer to refine foreground appearance
and enhance temporal consistency iteratively.

Formally, we first concatenate V and M, and embed
them into token sequence z € RT*N*%" through a linear
projection, then feed it into m layers of ST-ST for produc-
ing spatial harmonized tokens zs;. Further, we employ n
layers of Triplet Transformer, consisting of ST-ST (T'Rsr),
LT-GT (T Rgr), and LT-DT (T Rpr), taking z4, as input for
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producing spatio-temporal consistency tokens z;;. Finally,
we inversely reshape z;; back to 3D feature maps and feed
it into 2D-CNN decoder for yielding harmonized video V.
The Triplet Transformer process is formulated as follows:

Z;t = TRST(Zst)7 2
2t = TRGT(th) + TRDT(Z;t). 3)

The loss function £ of our VHTT model comprises a
reconstruction error £1 and a relation-based penalty [8] LR,
which constrain the spatial and temporal consistency of the
harmonized video, respectively.

T—-1
1 o
=gy Ve Vo)~ (Ve = Vo)l @

T
1 ~
L=r ;Ilvt —Velli +A\Cr, (5)

where A is the weight to control the contribution of Lg.

4. Temporal Consistency Metric

Relation-based Temporal Consistency (RTC) metrics [8,
18] establish the temporal relation within a video by cal-
culating the mean of pixel intensity gradients from frames
(t + 1)-th to t-th, then measuring the differences in tem-
poral relations between the target video and the paired real
video, which we denote RTC;. The RTC is calculated by
averaging all time steps:

K

K
1 1 . .
RTC; = |52 > (Vi = Vi) = 2 > (Vi = Vi,
k=1 k=1
1 T—1
RIC = —— RTC?, te (1.2,....T —1). 6
thl Z; t E( <y 9 ) ()

where K is the pixel number of ¢-th frame.

Indeed, flickering in videos is a particularly troublesome
issue that often stems from various distortions [4]. This phe-
nomenon can be reflected by the value of RTC,, which in-
volves rapid and frequently irregular fluctuations in bright-
ness or color. Human visual system is naturally adapted
to consistent lighting and color conditions, and such rapid
fluctuations disrupt the smooth visual processing that the
human eye is accustomed to, leading to a noticeable inter-
ruption in the viewing experience and causing discomfort
to viewers [1, 32, 39]. Therefore, considering flickering in
videos is crucial for temporal consistency evaluation.

As indicated by Equation 6, the abrupt increase in RTCy,
which reflects video flickering, will be significantly reduced
when averaged with the other intensity differences over
T — 1 frames. Based on this clue, we seek to address this
limitation in RTC by introducing variance to identify and
amplify signals associated with abrupt changes in RTC,.
We then propose a Refined RTC (R-RTC) metric, which has

a robust ability to capture the appearance of flickering in
target videos without compromising its original evaluation
capabilities. The calculation process is as follows:

T—1
1
n=m 3" RTC,, RTC; = maz(RTC; — 11,0) (7)
t=1
1 T—1
R-RTC = 3" (RTC? + RTC,). (8)
t=1

Due to our visual system’s high sensitivity to changes
in brightness, using the brightness may be more suitable
for evaluating temporal consistency [15, 26, 40]. Moreover,
the HSV color space aligns more closely with human visual
perception than the RGB color space [34]. Thus, we con-
duct further investigations into R-RTC’s performance in dif-
ferent color spaces, i.e., Value in the HSV, RGB, and Gray.
Experimental results indicate that Value channel yields the
best for R-RTC. Refer to Section 5.5 for empirical analysis.

Similar to analysis of MSE and fMSE [13], metrics for
temporal consistency in harmonized videos should focus on
the changes in foreground region between frames. How-
ever, the inter-frame foreground regions may shift positions,
making it impossible to calculate the RTC; within the fore-
ground region directly pixel-by-pixel using Equation 6.

In fact, human visual system typically perceiving tem-
poral appearance changes at the region level. Therefore, we
extend the calculation of RTC; from pixel intensity to the
mean region pixel intensity, without being constrained by
position offset. Thus, we provide a temporal consistency
metric in the foreground, named fR-RTC. First, we calcu-
late the mean vtf within foreground region of each frame.
Then, we compute the RTC{c values between harmonized
video and real video, formulated as:

K
1
ol =37 kz ViM; ©
=1

RTC] = |[(v]sy = of) = @]y — o), (10)

where K/ is the foreground pixel number of ¢-th frame,
and M denotes the foreground mask. Finally, we compute
the R-RTC using Equations 7 and 8 by providing RTC{ as
RTC,, yielding our fR-RTC (the computed R-RTC).

5. Experiments on Video Harmonization
5.1. Dataset and Metrics

Dataset. We conduct experiments on the public synthesized
HYouTube dataset [31], created by adjusting the appearance
of foreground regions in videos from the YouTube-VOS
dataset [47]. HYouTube consists of 3194 pairs of synthetic
and real videos, with 2558 pairs used for training and 636
pairs for testing [31]. Each video is composed of 20 frames
along with their corresponding foreground masks.
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Figure 4. Qualitative comparison of different harmonization methods on HYouTube dataset [31]. The white and green numbers represent
fMSE| and inter-frame brightness difference (the closer to “Real”, the better). Red boxes in composite frames mark foreground.

Evaluation Metrics. We evaluate the quality of harmo-
nized videos from both spatial and temporal dimensions.
For spatial dimensions, we use PSNR and foreground re-
gion metrics (fMSE and fPSNR) for a better indication of
evaluating harmonization ability of the method. For tempo-
ral dimensions, we employ our fR-RTC metric to evaluate
the temporal consistency of harmonized videos. Addition-
ally, we consider fMSE and fR-RTC as the primary metrics.

5.2. Implementation Details

We train our model using Adam optimizer [22] with param-
eters of 5, = 0.5, B2 = 0.999 for 400 epochs. The initial
learning rate is 10~# for the first 200 epochs and linearly
decayed to zero over the next 200 epochs. We resize source
videos as 256 x 256 for training and testing, and our model
produces harmonized videos of the same size. During the
training phase, we randomly sample 5 frames with varying
frame rates from a video for each batch, while during the
inference phase, we use sequences of 20 or more consecu-
tive frames for each batch. We empirically set A = 5 for
training our model. More details are in supplementary file.

5.3. Comparison with State-of-the-arts

We compare our VHTT method with state-of-the-art video
harmonization methods: TCVHAN [17] and COsNet [31],
as well as image harmonization methods: IIH [13], Rain-
Net [27], BargainNet [6] and HT+ [14].

Table | shows the quantitative comparison of video har-
monization on HYouTube dataset [31]. Columns 2 to 4
and columns 5 to 6 represent the evaluation results in spa-
tial and temporal dimensions, respectively. As we can
see, our VHTT model achieves state-of-the-art performance
across all spatial and temporal metrics, demonstrating the

Method Spatial Temporal Inference
PSNRT{PSNRT fMSE| [R-RTC|{fR-RTCJ|FLOPs/Times
Composite ‘30.14 19.92 1029.50‘ 0.52 113 ‘ -
RainNet [27] |35.47 25.22 330.50| 0.38 11.13 |379G/2.15s
IIH [13] 35.59 25.85 296.24| 0.39  7.60 [3778G/0.50s
BargainNet [6]| 35.41 26.00 293.09| 0.30 8.23 |385(G/2.68s
HT+ [14] 38.55 29.44 154.20| 0.6  12.51 |212G/0.42s

TCVHAN [17]/37.44 27.34 199.89| 0.59 15.23 |301G/0.22s
CO2Net [31] |37.61 27.56 186.72| 0.24  6.07 [5190G/1.65s

VHTT |40.03 3123 9035 | 0.03 126 [1727G/1.24s

Table 1. Quantitative comparisons of different harmonization
methods on HYouTube dataset [31], with Inference FLOPs/Times
measured on a 20-frame video using one 3090 GPU.

advanced capabilities and effectiveness of our VIT frame-
work, which adeptly extracts and adjusts triplet spatio-
temporal variation patterns in videos. Furthermore, the low
R-RTC values across all methods can be attributed to nu-
merous pixels having zero changes, significantly impact-
ing the overall average. This phenomenon occurs because
the harmonized video shares the same background as the
real video. In contrast, fR-RTC exclusively considers the
foreground region, providing a more accurate reflection of
the harmonization effect. Besides, column 7 indicates that
HT+ has lower costs but disregards the indispensable tem-
poral consistency in video tasks, while VHTT outperforms
COgNet in cost-efficiency and speed.

Figure 4 illustrates the qualitative comparison results of
video harmonization on HYouTube dataset [31]. It demon-
strates that our VHTT method, benefiting from the VIT
framework’s capacity to handle triplet variation patterns,
achieves the best visual effect comparable to real videos
across spatial and temporal dimensions.
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ST-ST

Method | ST-ST| &G | 51T | STST - VHTT Hyprp
w/o masked | &LT-GT | &LT-DT | w/o masked

fMSE| |111.59| 99.97 | 95.64 | 105.24 | 91.97 |90.35

fR-RTCY| 248 | 1.39 | 130 | 210 | 136 | 1.26

Table 2. Quantitative comparison of using our Triplet Transformer
with different modules. “w/o masked” means vanilla self-attention
in LT-GT is used without the masked prediction strategy.

Auto-regressive Masked prediction
F-D | Bi-D |FB-D| MS |[MS&50| M50 | M75 | M90

fMSE| [99.97]106.57|104.05/98.83]98.54| 94.16 |94.76]95.64|96.29
fR-RTC{|1.39| 1.80 | 1.58 |1.45]1.46] 1.41 |1.35]|1.30|1.46

Metric ‘ TR ‘

Table 3. Quantitative comparison of using different mechanisms
for LT-GT. TR denotes the vanilla self-attention mechanism.

5.4. Ablation Studies

Analysis of Triplet Transformer. We then conduct ex-
periments to analyze the efficacy of our Triplet Trans-
former with ST-ST, LT-GT, and LT-DT as follows: (1)
Triplet Transformer with only ST-ST as baseline (ST-ST),
(2) Triplet Transformer with ST-ST and LT-GT, where LT-
GT uses vanilla self-attention (ST-ST&LT-GT w/o masked),
(3) Triplet Transformer with ST-ST and LT-GT (ST-ST&LT-
GT), (4) Triplet Transformer with ST-ST and LT-DT (ST-
ST&LT-DT), (5) our VHTT model with LT-GT using
vanilla self-attention (VHTT w/o masked), and we also
present the results of our VHTT model as reference.

The quantitative comparison in Table 2 shows that: (1)
both ST-ST&LT-GT and ST-ST&LT-DT outperform ST-ST
in terms of spatial and temporal consistency, demonstrat-
ing the effectiveness of maintaining consistency in long-
term global and dynamic contexts, especially concerning
the long-term global appearance, although achieving further
performance improvements becomes increasingly challeng-
ing when the similarity between harmonized videos and real
videos reaches a certain limit, (2) ST-ST&LT-GT outper-
forms ST-ST&LT-GT w/o masked, as well as VHTT out-
performs VHTT w/o masked, indicating that our masked
prediction strategy can enhance the ability of LT-GT to cap-
ture long-term global variations, (3) VHTT w/o masked
outperforms ST-ST&LT-GT w/o masked and ST-ST&LT-
DT, as well as VHTT outperforms ST-ST&LT-GT and ST-
ST&LT-DT, demonstrating the effectiveness of our process-
ing triplet spatio-temporal variation patterns in videos, i.e.,
spatial, global, and dynamic. Moreover, we also analyze
the boundaries between ST and LT in supplementary file.

Analysis of LT-GT. To explore LT-GT’s ability to cap-
ture long-term temporal global appearance variation pat-
terns, we introduce three mechanisms: (1) vanilla self-
attention (TR), (2) auto-regressive with different direction-
alities, including forward (F-D), bidirectional (Bi-D), and
separate forward and backward (FB-D), (3) masked pre-

- »
frame2 frame3° 12345678 5nnnnusLyL  frame 16 frame 17

Figure 5. Comparison of the differences RTC{ between the har-
monized video’s and real video’s inter-frame relations, as well as
examples of harmonized frames. p is the mean of RTC{ .

Value (HSV) RGB Gray
Method ‘ fRTC| | fR-RTC| | fR-RTC| | fR-RTC|

HT+ [14] 5.16 7.07 3.96 3.47
COg2Net [31] | 4.56 5.51 3.60 3.30

Table 4. Comparison of different temporal consistency metrics on
the video shown in Figure 5, as well as different color spaces.

diction with different masking strategies, including self-
window masking (MS), self-window along with random
50% masking (MS&50), random 50% masking (M50), ran-
dom 75% masking (M75), and random 90% masking (M90)
within the current temporal windows.

The quantitative comparison in Table 3 shows that, com-
pared to the TR, auto-regressive strategies (F-D, Bi-D, and
FB-D) perform poorly both on fMSE| and fR-RTCJ, possi-
bly due to insufficient data. In contrast, M75 and M50 show
significant improvements, benefiting from masking a sub-
stantial amount of redundant information across the tempo-
ral dimension and providing diverse data for model training.

5.5. Analysis of R-RTC and fR-RTC

We delve into the temporal consistency metrics to analyze
the effectiveness of our R-RTC and fR-RTC, comparing
them with the RTC metrics [8, 18]. As discussed in Sec-
tion 5.3, fR-RTC better reflects the temporal consistency of
the harmonized video. Here, we use fR-RTC to analyze
its effectiveness corresponding to R-RTC, and similarly, we
calculate RTC using only the foreground, named fRTC.
The chart in Figure 5 shows the differences RTC{ be-
tween the inter-frame relations (from ¢ + 1 to t) of the har-
monized video and those of the paired real video. Com-
pared to CO2oNet [31], HT+ [14] exhibits abrupt changes in
RTC£ and RTC{ﬁ, indicating flickering occurring between
frames 2 and 3 as well as frames 16 and 17. The frames
in Figure 5 highlight brightness changes within the facial
region in the HT+ method, whereas COyNet exhibits sub-
tle variations. Meanwhile, Table 4 shows that HT+ and
COgNet yield close fRTC results (5.16 vs. 4.56), indicating
that fRTC is not sensitive to flickering. In contrast, our fR-
RTC metric captures flickering effectively (7.07 vs. 5.51).
We further explore by calculating RTC{ in HSV, RGB,
and Gray color spaces. Results in Table 4 show that fR-
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Real Composite

Method HYouTube

Times?T ‘ Degreel ‘ fRTCJ ‘ fR-RTCJ | Times?T ‘ Degree|
HT+ [14] 25.0% | 2.54 7.62 10.23 | 21.6% | 2.48
COgNet [31]| 13.5% | 1.79 4.21 6.03 24.1% | 1.92
VHTT ‘ 61.5% ‘ 0.85 ‘ 0.73 ‘ 1.27 ‘ 54.3% ‘ 1.01

Table 5. User study comparison on HYouTube dataset and Real
Composite Videos [31]. “Times” and “Degree” represent the frac-
tion of times the video was selected as the best and the degree of
video flickering rated on a 5-point Likert scale [35], respectively.

Method | PSNRT SSIMt LPIPS| | RTC, R-RTCJ
Source | 1912 04724 04724 | 003 0.03
VEN-Retinex [46] | 26.10  0.7450 0.0832 | 0.37  0.46

Ours | 26.61 07507 0.0747 | 0.06  0.08

Table 6. Quantitative comparison of video enhancement on SDSD
dataset [46].
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Figure 6. Visual comparison of video enhancement on SDSD
dataset [46].

RTC calculated in the Value channel of HSV performs bet-
ter, aligning with human sensitivity to brightness changes.

5.6. User Study

We finally conduct user study to evaluate our VHTT method
alongside CO;Net[31] and HT+[14] on both HYouTube
dataset and Real Composite Videos [31]. The results listed
in Table 5 illustrate that our VHTT model achieves the best
performance in terms of visual quality and flickering de-
gree. A higher flickering degree indicates more significant
flickering, and the degree results also confirm the superior-
ity of our fR-RTC metric over fRTC in capturing flickering
within videos. More details are in supplementary file.

6. Beyond Video Harmonization
6.1. Video Enhancement

We apply our VHTT method to the video enhancement task
on SDSD dataset [46], compared to state-of-the-art VEN-
Retinex [46]. Insufficient lighting can lead to video degra-
dation. Table 6 demonstrates our model’s superior perfor-
mance, and Figure 6 further validates the effectiveness of

Method | PSNRT  SSIMf  LPIPS| | RTC| R-RTC|
Source | 1621  0.6720 0.2073 | 1.23 1.73
VDRTC[8] | 23.71 0.8104 0.0696 | 1.02  1.32
Ours | 2856 0.8387  0.0494 | 0.86 1.24

Table 7. Quantitative comparison of video demoiréing on video
demoiréing dataset [8].
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Figure 7. Visual comparison of video demoiréing on video
demoiréing dataset [8].

our model in enhancing contrast and color. Besides, all
the methods listed may destroy the temporal consistency of
source videos, as they are captured in real-world scenarios
with inherent consistency characteristics. In contrast, our
model excels in maintaining temporal consistency.

6.2. Video Demoiréing

We further employ our VHTT method to video demoiréing
task on the video demoiréing dataset [8], compared to state-
of-the-art VDRTC [8]. Video demoiréing aims to remove
undesirable moiré patterns in videos, which is caused by
frequency aliasing in photographs. Table 7 and Figure 7
demonstrate our model’s superior performance in detail re-
covery and consistency enhancement, thanks to our frame-
work’s robust spatio-temporal context capabilities.

7. Conclusion

In this paper, we build a novel framework for video harmo-
nization modeling triplet spatio-temporal variation patterns
to address both spatial inharmonies and temporal inconsis-
tencies. We conduct comprehensive experiments to demon-
strate the effectiveness of our Video Triplet Transformer
framework and employ our method on video harmonization,
video enhancement, and video demoiréing tasks, achieving
state-of-the-art performance. Besides, we propose a new
temporal consistency metric that aligns better with human
visual perception. We hope that our work opens up new av-
enues for further study of video-to-video tasks. Addition-
ally, our work’s limitation and societal impact are discussed
in supplementary file.
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