
NICE: Neurogenesis Inspired Contextual Encoding for Replay-free Class
Incremental Learning

Mustafa Burak Gurbuz
Georgia Institute of Technology, USA

mgurbuz6@gatech.edu

Jean Michael Moorman
Georgia Institute of Technology, USA

jmoorman9@gatech.edu

Constantine Dovrolis
The Cyprus Institute, Cyprus

Georgia Institute of Technology, USA
constantine@gatech.edu

Abstract

Deep neural networks (DNNs) struggle to learn in dy-
namic settings because they mainly rely on static datasets.
Continual learning (CL) aims to overcome this limitation by
enabling DNNs to incrementally accumulate knowledge. A
widely adopted scenario in CL is class-incremental learn-
ing (CIL), where DNNs are required to sequentially learn
more classes. Among the various strategies in CL, replay
methods, which revisit previous classes, stand out as the
only effective ones in CIL. Other strategies, such as ar-
chitectural modifications to segregate information across
weights and protect them from change, are ineffective in
CIL. This is because they need additional information dur-
ing testing to select the correct network parts to use. In this
paper, we propose NICE, Neurogenesis Inspired Contex-
tual Encoding, a replay-free architectural method inspired
by adult neurogenesis in the hippocampus. NICE groups
neurons in the DNN based on different maturation stages
and infers which neurons to use during testing without any
additional signal. Through extensive experiments across 6
datasets and 3 architectures, we show that NICE performs
on par with or often outperforms replay methods. We also
make the case that neurons exhibit highly distinctive acti-
vation patterns for the classes in which they specialize, en-
abling us to determine when they should be used. The code
is available at https://github.com/BurakGurbuz97/NICE.

1. Introduction

Deep neural networks (DNNs) are typically trained on static
data distributions, where training batches are drawn from
a fixed dataset adhering to the independent and identically
distributed (i.i.d.) assumption. While this approach has ad-

vanced the field, it overlooks a key facet of intelligence:
the ability to continuously learn from non-stationary distri-
butions over time. In such continual learning (CL) scenar-
ios, when DNNs process new data, they tend to suffer from
catastrophic forgetting (CF) of prior knowledge [25, 44].

Recent interest in CL has led to various scenarios [21, 48,
71]. Widely adopted are class-incremental learning (CIL)
and task-incremental learning (TIL) [67, 68]. In both, learn-
ers process series of datasets and classify test samples into
previously seen classes. The difference between them lies
in the handling of test samples. In TIL, a task identifier
indicates the originating dataset of the test sample. In con-
trast, CIL lacks this information, requiring learners to also
distinguish classes appearing at different timepoints.

This subtle distinction leads to significant variations in
performance. Many TIL approaches either fail or show sub-
stantial drops in performance when adapted to CIL. Among
the various strategies to address CL, replay stand out as the
only effective ones in the CIL setting [23, 31, 36, 67]. In
their basic form, replay methods retain a subset of samples
from all previously seen classes [19]. When introduced to a
new class, they augment the training batches with samples
from earlier classes and train on all classes simultaneously.

Despite the success of replay methods, they have faced
some criticism. For example, [50] proposed the GDumb
algorithm, which keeps a subset of samples and retrains
a model from scratch on these samples at test time, as a
critique of prevailing replay methods. Surprisingly, this
straightforward approach often outperforms well-known re-
play methods, suggesting that the performance of these
methods may largely depend on the samples retained in
memory. Another work [16] indicates that in the Experience
Replay (ER) algorithm [19], which has inspired numerous
replay methods, representations of older classes are rapidly
disrupted when training on new classes. Consequently, the

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

23659

Figure 1. Top: DER & FDR trained on MNIST, with vertical
dashed lines indicating the introduction of two novel classes. Bot-
tom: Accuracy across all classes after sequentially learning Fash-
ionMNIST and CIFAR10. Results are averaged across 3 seeds.

model must relearn representations for these older classes.
Following these critiques, we evaluated some common

replay methods and observed similar issues. For instance,
Figure 1 shows the performance of the Dark Experience
Replay (DER) [14] and Function Distance Regularization
(FDR) [9] methods on the first two classes of MNIST as we
introduce more classes. Both methods exhibit a drastic drop
in accuracy for the first two classes after few updates with
new data, despite using replay. After this drop, they recover
performance on previous classes with the aid of replay. Sup-
plementary Material Section-D.1 presents similar observa-
tions on larger datasets. This drop in performance does not
necessarily mean complete forgetting, as knowledge may
be kept in earlier layers. To investigate this, we reset the
weights of the replay methods each time new classes were
introduced. As shown in Figure 1, they experienced a mild
drop in accuracy due to the weight reset. This mild drop
indicates that information is not entirely forgotten. How-
ever, these results also suggest that the accuracy of replay
methods fluctuates erratically with the new data.

We argue that this issue arises because the architecture
does not recognize the sequential nature of learning. Re-
play primarily focuses on inputs and outputs. With this
approach, the network distributes information across all
weights, optimizing for i.i.d. input. However, in CL, in-
put is not i.i.d., and new classes can cause rapid disrup-
tion in representations, leading to performance fluctuations
and abrupt forgetting. For instance, when new data is
introduced, neurons representing old classes are likely to
make overconfident, incorrect predictions because standard
DNNs suffer from a calibration problem – that is, a model’s
predicted class probabilities do not accurately estimate the
true likelihood of correctness [26, 27]. Thus, output neu-
rons of old classes receive significant penalties, and class
representations rapidly change, especially in the top layers.

Consequently, we are motivated to develop an architec-
ture that recognizes the sequential aspect of CL. Our inten-
tion is not to discredit replay. Biology has taught us that the
replay of neural patterns is essential in memory formation,
retrieval, and consolidation in the brain. It stands as a valu-
able model, inspired by nature, for achieving CL desiderata
[29, 30, 38, 66]. However, nature also offers architectural
insights to preserve knowledge while continuing to learn
progressively. Hence, this paper seeks to identify neuro-
inspired architectural strategies to address CIL. We do not
perform any replay and focus on the architecture alone. In
the long run, architectures with CIL capabilities can serve as
a backbone for hybrid systems that use other CL strategies,
including replay – briefly discussed in Section 5.

Note that while architectural strategies are common in
CL, their effectiveness is largely limited to TIL [31, 36].
The few methods developed for CIL still tend to signifi-
cantly underperform in comparison to even simple replay
[62, 63]. We propose an architectural approach that not only
rivals but often outperforms replay methods in CIL.

Our approach, Neurogenesis Inspired Contextual Encod-
ing (NICE), is inspired by adult neurogenesis observed in
the hippocampus. This process continuously introduces
adult-born granule cells into the dentate gyrus, providing
a unique form of plasticity not found in most other brain
regions [2, 3, 46]. As these newly introduced cells ma-
ture, they help to form disentangled representations for ex-
periences and play a crucial role in contextual discrimina-
tion [20, 47, 65, 74]. This process facilitates the efficient
integration of new information without causing forgetting.
In DNNs, we emulate this by introducing neurons at dif-
ferent maturation stages. Furthermore, we have devised a
context-detector that identifies which neurons are most pre-
dictive for a sample. During testing, this detector predicts
the context and sends inhibitory signals to certain neurons
that would otherwise cause interference. A comprehensive
discussion of the neuroscientific underpinnings of NICE is
presented in the Supplementary Material Section-E.

2. Related Work
More detailed overviews can be found in [21, 48, 71].

2.1. Replay Methods for CL

Raw Replay: The most common form of replay is revisit-
ing old examples [6, 11, 12, 14, 16, 19, 41, 50, 52, 60, 76].
They employ an extra memory and fill it by sampling from
seen examples. The batches are formed by mixing examples
from new dataset with memory examples. Although it is an
effective strategy, raw replay may not be feasible in settings
where the indefinite retention of previous data is prohibited
due to regulatory restrictions or compute limitations.

Generative Replay: Some studies have suggested using
a generative model to produce samples that resemble seen

23660

examples [7, 8, 15, 35, 51, 54, 61]. They address data reten-
tion concerns, but with high computational costs. Training
generative models is challenging since they also forget [66].

Activation Replay: Some works suggested replaying
activations [29, 49, 66, 70]. They pass examples through
a frozen feature extractor, storing the activations output by
the feature extractor rather than the examples. Thus, they
can store more within the same memory budget, and they
do not access old data. However, they depend on pretrain-
ing and freezing. Without these steps, stored activations
become outdated once the feature extractors are updated.

Lastly, replay methods revisit all classes to create
batches, which introduces significant computational over-
head. Furthermore, they focus on engineering the input
rather than addressing forgetting within the architecture.

2.2. Replay-free Approaches in CL

Regularization Methods: Regularization methods modu-
late updates to protect important weights and preserve past
knowledge [5, 17, 37, 40, 55, 58, 59, 78]. However, they
primarily work in TIL and perform poorly in CIL settings
[31, 36, 67], as their training does not enforce discrimina-
tion across classes that appear at different time points.

Architectural Methods: Some work modifies the DNN
structure to perform CL. They allocate distinct parameters
for tasks (e.g., set of classes) to segregate the knowledge
of different classes. This segregation is often achieved by
expanding new branches/modules [4, 45, 56, 57, 69, 75]
or partitioning existing connections through weight pruning
[1, 28, 33, 42, 62, 63]. Additionally, another approach en-
tails learning unique masks for each task to select a subset
of weights for a given task [34, 43, 72, 73]. A common is-
sue with these architectural methods is their heavy reliance
on task identifiers to determine which branches, modules,
or masks to use for predictions, rendering them effective
only in TIL settings. As far as we are aware, only SpaceNet
[62] and AFAF [63] demonstrate good performance in CIL
scenarios among architectural methods. However, they sig-
nificantly lag behind replay methods. Our approach, NICE,
is an architectural method; however, it does not rely on task-
identifiers and often outperforms replay methods.

3. Neurogenesis Inspired Contextual Encoding
3.1. Problem Formulation and Notation

We focus on CIL through a series of E episodes where each
episode e has a training dataset De. Although the term task
is commonly used in the literature, we avoid using it due to
its various meanings in different contexts. A neural network
f with L layers is trained sequentially on one dataset per
episode. At test time, f is given a new example x and must
predict its label from the set of classes observed so far.

In NICE, neurons in f are denoted as N and are assigned

ages. These ages start at 0 and can increase up to the num-
ber of episodes observed, reflecting the neurons’ maturation
levels. We represent the neuron i in layer l as nl

i ∈ N l. Ad-
ditionally, we use subscripts to denote neurons with certain
ages; for example, N l

=1 represents all neurons in layer l that
are age 1. Furthermore, A(nl

i, x, α) denotes the activation
of the neuron nl

i for the sample x, considering only incom-
ing activations from previous layer neurons of age α.

3.2. Neuron Ages

Neurogenesis (from age 0 to 1): NICE draws inspiration
from biological neurogenesis, which continually integrates
new neurons into neural circuits. However, the growing ar-
chitectures introduce complexity and computational over-
head. Thus, we have adapted the neurogenesis idea to a
fixed architecture. In this model, neurons are initially as-
signed an age of 0, indicating that they are in surplus ca-
pacity (i.e., neurons to be added to the architecture). As
network learns, we periodically transition neurons between
age-0 and age-1 to determine which neurons should be per-
manently integrated into the network. When learning begins
with the new dataset De, all neurons at age 0 are temporarily
set to age 1. Subsequently, every p epochs, we revert some
neurons back to age 0 based on their activations. Here, p
is NICE’s only additional hyperparameter. To revert neu-
rons back to age-0, first, we calculate the activations (after
ReLU) of the neurons at age 1 in each layer, using a subset
of the episode examples (1024 for experiments):

Al
=1 =

∑
xk∼De

∑
nl
i∈N l

=1

A(nl
i, xk, 1) (1)

Here, Al
=1 the total activation for layer l, considering

only neurons at age 1. Next, we select age-1 neurons to
keep at layer l denoted by set Sl

1 by solving the following
discrete constrained optimization problem:

min
Sl
1⊆N l

=1

∣∣Sl
1

∣∣ subject to
∑

xk∼De

∑
nl
i∈Sl

1

A(nl
i, xk, 1) ≥ τAl

=1

(2)
Simply put, we aim to keep the smallest subset of age-

1 neurons that, in combination, contribute to at least a τ
fraction (set at 0.95 in our experiments) of the layer’s to-
tal activation. The problem can be solved optimally using a
greedy algorithm. First, sort the neurons based on their ac-
tivations in descending order. Then, select neurons with the
highest activation until the target is achieved or exceeded
(see Supplementary Material Section-C for the proof).

We assume that the activation of a neuron is a reliable
indicator of its importance in learning. This assumption is
supported by previous research in CL [24, 28, 33], network
pruning [32, 39, 53], and model interpretation [22, 77].
Nevertheless, it is possible to substitute this score of im-
portance with more complex scores. Note that the τ value

23661

Figure 2. a) Transition diagram of neuron ages. b) Paths within the network and their roles. c) Diagram of NICE operations. d) Overview
structure of the NICE. Gray neurons are reserved for the future, green neurons are receiving gradient updates, and blue neurons are frozen.

that is set to 0.95 may require adjustment for different im-
portance scores. Excessively high values of τ could result
in the selection of too many neurons, thereby diminishing
the capacity available for future tasks. Conversely, setting τ
too low could lead to aggressive elimination, which might
not allocate sufficient capacity to learn current classes.

Maturation (from age 1 to beyond): At the end of each
episode, a subset of neurons maintains age-1, while the re-
mainder revert to N=0 because of the iterative elimination.
We then age all neurons above age-0 by one, allowing those
that survived the elimination to mature to age-2. These neu-
rons will continue to age incrementally after each episode,
as shown in Figure 2-a. As neurons age, they lose plastic-
ity and connections, which we will explain next. By design,
input neurons always have the maximum age (i.e., E), and
output neurons are aged to 1 when their class is first seen.

3.3. Avoiding Interference Between Neurons

We group neurons by their age, which indicates the episode
during which they were introduced. For example, in episode
3, age-1 neurons are newly selected, while age-2 and age-3
neurons were selected at the end of episodes 2 and 1, re-
spectively. The formula is: at episode E, the neurons re-
sponsible for episode e are at the age of E − e+ 1.

Now, we will avoid modifying neurons age-2 or older so
that NICE does not forget earlier episodes. Learning mod-
ifies a neuron in two ways: (a) by directly changing the in-
coming connections and (b) by altering the connections of
ancestors. To address (a), we freeze incoming connections
to neurons older than 1. We tackle (b) by pruning connec-
tions from age-u to age-v neurons where u < v, applying
this every p epochs. So, neurons cannot have younger an-
cestors that will receive updates. This does not completely
isolate neurons of different ages; we keep connections from
older to younger ones to allow knowledge transfer between
episodes. The combination of these two operations ensures
neurons age-2 or older never change. Note that when train-
ing with cross-entropy loss, we only consider the activations
of output neurons that correspond to batch classes prior to
the softmax. This is a pivotal step as it avoids including
frozen neurons whose classes are not in the batch. These

frozen neurons, if included, cannot decrease in activation
due to their state. This could potentially lead to an unin-
tended escalation in the activity of other neurons as they try
to compensate, which could cause training instability.

To summarize, age-0 neurons act as excess capacity, age-
1 neurons are immature neurons that are plastic and learn,
and neurons older than age 1 are mature neurons serving as
memory. Another way to view this is in terms of paths from
layer-1 to outputs. If we traverse along the paths, we can
only have monotonically non-increasing paths in terms of
ages. Here, decreasing paths are knowledge transfer paths
that carry information from older episodes to newer ones.
Paths that form only same age neurons are backbones for
particular episode’s knowledge, while increasing paths are
not permitted because of pruning (see Figure 2-b).

In NICE, a subnetwork comprising neurons of a cer-
tain age and older is isolated from future updates by means
of freezing and pruning, ensuring that these neurons re-
main unchanged (i.e., they neither forget nor learn). Conse-
quently, this approach guarantees zero forgetting, provided
that we are able to identify the ages associated with pre-
dicting the class of a test example. Let us assume we are
in episode E, we encounter a test example that pertains to
a class taught in episode e (although this is unknown to
the model). Then the correct output neuron would be one
from age E − e+ 1. Therefore, our focus is on the subnet-
work connected to these output neurons (comprising neu-
rons N≥E−e+1). In the following, we explain how to infer
which neuron ages should be utilized during prediction.

3.4. Context-Detector

NICE infers which ages to use during predictions through
a context-detector, akin to the hippocampus where neurons
at different maturation stages enable contextual discrimina-
tion. However, the underlying mechanisms involve com-
plex recurrent relationships between hippocampal regions
[20, 47, 65, 74]. We adopt a simplified perspective and use
the network’s global activation patterns to infer context.

Firstly, we periodically store information on neurons
N>0 that exhibit high activation for some recently seen ex-
amples. Specifically, every p epochs, we input m randomly

23662

Figure 3. Left: Example memory for a network with 8 neurons and
m = 3. Right: Illustration of chaining conditional probabilities.

selected examples into the f and get activations. Next, we
apply threshold tl on each layer activations, with tl defined
as the mean plus one standard deviation of the activations in
layer l after episode-1 (for simplicity, we rely on statistics
from the first episode). This yields a binary vector, repre-
senting the neurons that were notably active for the samples
in the current episode. To illustrate this with a simplified
example, imagine we have 8 neurons, and during episode 3,
our neurons are grouped as follows: N=3 = {n1, n2, n3},
N=2 = {n4, n5}, N=1 = {n6, n7}, and N=0 = {n8}.
Also, let’s assume that m = 3. An example memory state
for this case is shown on the left side of Figure 3. Note that
if we already have memory allocated for current episode
classes, incoming ones will replace the existing ones.

Next, we learn a set of conditional probabilities using
this binary memory of activations. We model these con-
ditional probabilities by fitting a logistic regression model.
Suppose we are at episode E. First, we calculate the condi-
tional probability that a sample belongs to episode 1 (e = 1)
given observations N=E , or P (E1|N=E), using memory
(recall formula E − e + 1). For instance, in our example,
the first three rows and columns act as positive samples, and
the remaining six rows as negative samples. Then, we de-
termine the probability for episode 2, given it is not episode
1, or P (E2|N=E , N=E−1, Ē1), using memory samples ex-
cluding episode 1. In our example, this involves using the
first five columns, with rows 4-6 as positive and 7-9 as nega-
tive samples. We continue this process up to Episode E−1.
The derived conditional probabilities are then chained, as
depicted in Figure 3. More specifically, the probability of
a sample belonging to episode e (except when E = e) is:

pe =P (Ee|N≥E−e+1, Ē1, . . . , Ēe−1) (3)

×
e−1∏
i=1

(1− P (Ei|N≥E−i+1, Ē1, . . . , Ēi−1)) (4)

Here, the second term represents the probability of the sam-
ple not belonging to earlier episodes, and the first term is
the probability of the sample belonging to episode e given
that it does not belong to any of the earlier episodes. If we
are calculating p1, the second term is omitted. If we are
calculating pE , the formula is simply pE = 1−

∑E−1
i=1 pi.

Given a test sample, we input it to the network, gen-
erate a binary activation vector, and evaluate it using our
chained probabilities. This results in a probability distribu-
tion across episodes, helping us identify the most probable
episode and inhibiting irrelevant outputs. Note that the neu-
rons used for learning these conditional probabilities are al-
ready frozen and isolated from the younger ones. Therefore,
they remain constant despite training, ensuring that memory
entries do not become outdated. While this method requires
fitting logistic regressions, the cost is negligible compared
to training DNN on older classes (i.e., replay).

3.5. Summary

Over the course of training, we select neurons (Section 3.2),
update connections (Section 3.3), train for p epochs, and up-
date the memory and context detector (Section 3.4). We re-
peat this cycle until an episode ends. Once an episode ends,
we increment the ages and freeze certain neurons (Section
3.3). Figure 2-c shows a diagram of these operations. Note
training always ends with memory and context detector up-
date. The pseudo-code for the NICE is provided in the Sup-
plementary Material Section-B. At test time, we input the
test example x into the network, generate activations and
then feed the thresholded binary vector into the context-
detector to infer the episode (see Figure 2-d). Suppose the
current episode is E, and our context indicates that the test
sample x belongs to Ep; in that case, we mask out output
neurons except for those of age-(E−Ep+1). This let us use
the subnetwork that is composed of neurons N≥E−Ep+1.
For instance, the context-detector predicts that an input im-
age is an animal, then the subnetwork deduces it is a cat.

4. Experimental Results
Our experiments cover six datasets: MNIST, FashionM-
NIST, EMNIST, CIFAR10, CIFAR100, and Tiny ImageNet.
For the first three, we utilize a network comprising two con-
volutional layers with 32 filters each and a fully connected
layer with 500 neurons. For CIFAR10 and CIFAR100, we
employ a modified version of VGG11 to adapt it to smaller
datasets. For Tiny ImageNet, we use ResNet18. Table 1
shows how we slice the datasets to create learning episodes.
We keep the original class order, and episodes have the same
number of non-overlapping classes. For more details on ex-
periments, see the Supplementary Material Section-A.

In convolutional layers, 3D filters replace neurons, and
2D kernels replace connections. We define a convolutional
neuron’s activation as the average of the feature map it pro-
duces. Freezing a neuron entails freezing the correspond-
ing dimensions in the batch normalization, which includes
learnable parameters, running mean, and variance. Note
that logistic regressions introduce extra parameters; how-
ever, pruning reduces NICE’s parameters. So, the number
of parameters in NICE is lower than those of a standard

23663

Table 1. Episode details and memory budgets (denote with M).

Datasets

Details MNIST/Fashion EMNIST CIFAR10/100 TinyImgNet

Classes 10 26 10/100 200
Episodes 5 13 5/10 5
Neurons 575 591 3437/3527 4107
M (activations) 500 1300 1500/5000 5000
M (byte) 35.2 KB 91.2 KB 0.6/2.1 MB 2.5 MB
M (images) 46 120 210/718 210

dense network—see Supplementary Material Section-A.5.
Furthermore, the training time for logistic regression is neg-
ligible compared to the replay, which effectively doubles
training costs by increasing the batch size with replay sam-
ples. Lastly, to maintain a fair comparison, the NICE algo-
rithm uses all age-0 neurons in the final episode.

4.1. Comparison with Replay Methods

We compare NICE with eight replay methods1. We only
consider raw replay methods because generative and activa-
tion replay often attempt to approximate raw replay. We es-
tablish a lower bound by employing SGD without any mea-
sures to prevent forgetting, and we denote an upper bound
as Joint, which involves training on all classes simultane-
ously. We ensure that the same memory budget is main-
tained for both NICE and the replay methods. This is done
by computing NICE’s memory usage in the worst-case sce-
nario. For instance, in the early episodes, we store only ac-
tivations of neurons of certain age rather than all. However,
we calculate memory usage assuming that each memory en-
try occupies a number of bits equal to the total number of
neurons. Therefore, NICE’s actual memory usage remains
significantly below the allocated budget.

Table 2 presents the average accuracy across all classes
following the last episode. We report results for a standard
memory budget (refer to Table 1) and for increased bud-
gets (doubled, denoted as ×2, and quadrupled, denoted as
×4). Note that NICE does not require a large memory, and
our estimates are based on a worst-case, while actual mem-
ory usage is significantly lower. Nevertheless, to provide a
comprehensive overview, we include experiments with in-
creased memory budgets. Also, Figure 4 shows the accu-
racy after each learning episode across three datasets for the
top-performing methods (NICE, iCaRL, TAMiL, x-DER).

We observe that NICE outperforms all baselines when
utilizing standard and ×2 budgets in terms of final accuracy
(Table 2). The only exceptions are on CIFAR100 and Tiny
ImageNet with the ×2 budget. Furthermore, in the Sup-
plementary Material Table 5, we present forgetting scores
for the top-performing methods. We observe that NICE ex-
hibits less forgetting across all datasets on both standard and

1We implemented all the baselines by customizing the PyTorch contin-
ual learning framework, Mammoth [14].

×2 budgets. To our knowledge, this is the first instance
of a replay-free CL approach outperforming replay-based
methods in a CIL context, an achievement that we believe
will encourage further exploration into architectural meth-
ods functioning without artificial task identifiers.

Surprisingly, iCaRL, one of the earliest replay meth-
ods in the literature, shows robust performance across all
datasets and memory budgets. For instance, iCaRL is
among the top-3 performing methods on all datasets for
standard and ×2 memory budgets, while more recent base-
lines such as x-DER and TAMiL lag behind significantly on
some datasets like CIFAR10. The robustness of iCaRL can
be attributed to its sample selection strategy, which selects
images that closely approximate the class mean embedding.
As a result, iCaRL identifies a core subset of examples that
best represent the seen classes, optimizing the use of the
memory budget. Furthermore, its knowledge distillation
component avoids abrupt changes in old class knowledge.
Although these results suggest iCaRL is a robust choice for
replay, it has a practical limitation. iCaRL uses a nearest-
mean-of-exemplars classifier for predictions, which neces-
sitates passing all replay samples through the network to
compute the class mean embeddings before making predic-
tions. This introduces considerable overhead and may be
impractical in scenarios, where the model must be ready to
classify at any moment – not only at episode boundaries.

With a budget quadrupled (×4), replay methods begin
to outperform NICE. In such a high-memory scenario, re-
play is expected to dominate, as the setting starts to resem-
ble i.i.d. conditions where models can access a substantial
number of previously seen examples.

4.2. Relationship between activations and context

NICE infers context through activations, although neurons
are not explicitly trained to respond distinctly to different
episode classes. This poses an intriguing question: How do
neuron activations enable context detection?

To explore this, we ran NICE on the CIFAR10 and scru-
tinize the oldest neurons linked with episode-1 classes. We
examined these neurons’ responses to familiar episode-1
classes and the novel classes that appeared after the neurons
had been frozen. We analyzed 300 thresholded activations
from each episode. Given the extensive number of neurons,
we used a Random Forest to pick the top-250 neurons by
feature importance for visualization. Figure 5 presents the
contrasting activation patterns for episode-1 and the other
classes. Remarkably, the top-250 neurons showed stronger
activations for learned classes, weaker for unfamiliar, which
allows distinguishing between the two types of classes. We
noted similar findings across different datasets and architec-
tures (see the Supplementary Material Section-D.2).

This phenomenon aligns with a recent discovery in the
out-of-distribution (OOD) detection that inspired an OOD

23664

Figure 4. Accuracies for seen classes on EMNIST, CIFAR10, and CIFAR100 throughout training. Standard memory budget.

Table 2. Accuracy after all episodes on three memory budgets.
Results averaged across three seeds. C stands for CIFAR. Standard
deviations presented in Supplementary Material Section-D.

Datasets

Method MNIST Fashion EMNIST C10 C100 TinyImgNet

Joint 98.4 86.8 92.1 75.8 41.3 38.0

NICE 83.4 73.9 66.3 55.1 20.3 11.8
iCaRL [52] 79.7 68.7 65.3 54.2 23.5 10.3
TAMiL [10] 81.1 68.2 58.1 26.8 16.8 7.2
x-DER [13] 77.6 65.3 62.4 37.2 24.7 11.6
DER [14] 67.6 65.4 47.5 27.3 13.1 9.6
GDumb [50] 60.3 62.6 43.8 30.2 10.4 2.7
ER [19] 66.5 58.3 39.0 23.1 8.9 8.8
FDR [9] 64.3 52.7 42.2 27.5 9.6 10.2
A-GEM [18] 33.9 42.6 15.5 21.2 7.7 10.2

NICE (×2) 85.9 75.1 69.4 56.5 22.0 12.2
iCaRL (×2) 84.6 74.5 67.9 56.3 24.6 13.6
TAMiL (×2) 84.4 70.6 67.4 34.1 21.7 11.6
x-DER (×2) 85.6 71.9 68.6 42.6 25.7 14.8
DER (×2) 80.7 73.4 63.6 35.4 18.5 9.8
GDumb (×2) 73.4 66.4 56.7 37.0 14.5 3.8
ER (×2) 79.7 66.6 53.8 31.5 12.7 8.6
FDR (×2) 75.9 64.8 54.0 35.5 12.3 10.1
A-GEM (×2) 64.8 45.5 17.6 21.9 7.8 10.4

NICE (×4) 87.7 76.3 71.7 57.6 23.0 12.3
iCaRL (×4) 85.8 76.1 69.1 59.1 25.8 15.8
TAMiL (×4) 92.7 77.2 78.6 37.2 24.8 13.3
x-DER (×4) 91.6 75.8 74.8 50.0 28.5 16.8
DER (×4) 90.6 77.7 75.3 41.1 25.2 10.0
GDumb (×4) 86.4 74.2 65.8 41.8 20.8 4.7
ER (×4) 88.2 74.9 64.7 38.7 17.8 8.8
FDR (×4) 84.8 72.6 64.8 45.0 18.2 10.1
A-GEM (×4) 71.6 44.5 15.8 21.1 7.7 10.5

SGD 19.9 20.0 6.4 19.1 7.2 10.2

detection method ReACT [64]. They demonstrated that
neurons present highly distinctive activation signatures for
OOD samples. Specifically, for in-distribution (ID) data,
neurons show stable activations, while their responses to
OOD data are more variable. ReACT also provides a the-
oretical explanation for why thresholding reduces OOD ac-
tivations more than ID activations, increasing separability.
Even though all classes originate from the same dataset,
such as CIFAR10, we can regard all classes other than
episode 1 classes as OOD samples for the oldest neurons
since they never learned these classes. Consequently, NICE

Figure 5. Average activations of the top 250 neurons for episode-1
classes (top) and for the remaining classes (bottom).

may be using novelty as a means to determine context.

4.3. Which layers are important for context?

Throughout the experiments, we stored the activations of all
neurons across all layers. This raises an important question:
Is a single layer, or just a few, sufficient to achieve high ac-
curacy in context detection? If this were the case, we could
store the neurons at those layers and reduce memory cost.
To test this, we ran NICE on the CIFAR10 and CIFAR100
separately, using only one layer of the VGG11 architecture
to detect context. Figure 6 (left) displays these results. It is
evident that none of the individual layers matched the per-
formance achieved by using all layers.

Furthermore, Figure 6 (right) shows results where we
considered several layers from input to output (indicated by
the blue line) and from output to input (indicated by the red
line). We observe that overall, we need most of the lay-
ers to perform comparably to using all layers. It seems that
we could avoid storing 1-2 layers from either the bottom
or top of the network without a significant drop in perfor-
mance. However, determining this in a CL setting is chal-
lenging, so we suggest using all layers for context detection.
Nevertheless, in a scenario with limited memory, one could

23665

Figure 6. Left: Context detection accuracy when using only one
layer. “L0” denotes the input layer, or in simpler terms, the aver-
age channel value of the input images. Right: Context detection
accuracy using multiple layers, either cumulatively from input to
output or vice versa. All results are the average of three seeds.

potentially use the coefficients of fitted logistic regression
models to identify the most useful neurons throughout the
architecture and purge the rest from memory. Additionally,
compression algorithms such as Huffman coding could be
employed to represent the memory using fewer bits.

4.4. Which layers are depleted first?

As neurons mature, they lose plasticity and become frozen.
Consequently, NICE will eventually exhaust the available
neurons as we learn more and more classes. Figure 7 il-
lustrates the proportion of mature (frozen) neurons as we
sequentially learn the classes of CIFAR10 and CIFAR100.
We note that the earlier layers become frozen quickly and
are depleted early in training, while the later layers remain
available to learn additional classes. It is believed that the
early layers of DNNs capture low-level features that are
generalizable, while the later layers specialize in memo-
rizing samples to map them to the classes. Therefore, the
depletion of early layers should not impair performance if
future classes are from the same domain. For example, once
the first few layers have learned 20 CIFAR100 classes, their
representations should be useful for the remaining classes.
However, if the domain of future classes changes signifi-
cantly, NICE may need to add neurons into the earlier lay-
ers, which can be accomplished on-the-fly.

5. Limitations and Future Work

Despite the promising results, NICE has several limita-
tions. Firstly, chaining multiple logistic regressions repre-
sents a simplistic method of modeling the relationship be-
tween activations and episode classes. A issue is that obser-

Figure 7. Fraction of mature neurons in the network for CIFAR10
and CIFAR100 experiments. Results are average of three seeds.

vations corresponding to each episode vary in dimensional-
ity, making it challenging to fit a single model effectively.
However, sequential learning techniques, such as attention
mechanisms, could be utilized to learn from these variable-
sized observations. Secondly, NICE eventually exhausts the
available neurons. A potential strategy to mitigate this issue
could be to reduce the age of some neurons to reallocate ca-
pacity, allowing for the graceful forgetting of earlier classes.

Another question for exploration is how to integrate re-
play techniques with NICE. For example, age transitions
and freezing rules can be adjusted to incorporate replay
within a limited window (e.g., replaying classes from the
most recent one or two episodes). Thus, replay does not
need to revisit all classes. Also, NICE could start with raw
replay, and as layers become frozen, it can use these layers
as a frozen feature extractor and switch to activation replay.
So, NICE can enable activation replay without pretraining.
Furthermore, we could explore using replay to encourage
age-1 neurons to fire differently for replayed and current
samples. This could potentially enhance the context detec-
tor’s ability to discriminate between episodes.

6. Conclusion
NICE is a CL method inspired by adult neurogenesis in the
dentate gyrus. It labels neurons according to their stages of
maturation and learns from their binary activations to pre-
dict the appropriate episodic context. Our results demon-
strate that NICE surpasses state-of-the-art replay methods
across various datasets. Additionally, we have analyzed the
activations across different classes and posited that neurons
exhibit unique activation patterns for familiar and unfamil-
iar classes. To the best of our knowledge, NICE is the first
replay-free method to outperform replay methods in Class
Incremental Learning (CIL). We hope this achievement will
inspire further research in developing CL architectures that
do not rely on task identifiers.

Acknowledgements
This work was supported by the National Science Founda-
tion (Award: 2039741). We are grateful to CiCi (Xingyu)
Zheng and the CVPR 2024 reviewers for their constructive
comments.

23666

References
[1] Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup

Moon. Uncertainty-based continual learning with adaptive
regularization. In Advances in Neural Information Process-
ing Systems 32, pages 4394–4404. Curran Associates, Inc.,
2019. 3

[2] James Aimone, Janet Wiles, and Fred Gage. Computational
influence of adult neurogenesis on memory encoding. Neu-
ron, 61:187–202, 2009. 2

[3] James Aimone, Wei Deng, and Fred Gage. Resolving new
memories: A critical look at the dentate gyrus, adult neuro-
genesis, and pattern separation. Neuron, 70:589–96, 2011.
2

[4] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.
Expert gate: Lifelong learning with a network of experts.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3366–3375. IEEE,
2017. 3

[5] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,
Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In The European
Conference on Computer Vision (ECCV), 2018. 3

[6] Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learn-
ing fast, learning slow: A general continual learning method
based on complementary learning system. In International
Conference on Learning Representations, 2022. 2

[7] Craig Atkinson, Brendan McCane, Lech Szymanski, and
Anthony V. Robins. Pseudo-recursal: Solving the catas-
trophic forgetting problem in deep neural networks. arXiv
preprint, abs/1802.03875, 2018. 3

[8] Ali Ayub and Alan Wagner. {EEC}: Learning to encode and
regenerate images for continual learning. In International
Conference on Learning Representations, 2021. 3

[9] Ari S. Benjamin, David Rolnick, and Konrad P. Körding.
Measuring and regularizing networks in function space.
CoRR, abs/1805.08289, 2018. 2, 7

[10] Prashant Shivaram Bhat, Bahram Zonooz, and Elahe Arani.
Task-aware information routing from common representa-
tion space in lifelong learning. In The Eleventh International
Conference on Learning Representations, 2023. 7

[11] Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets
via bilevel optimization for continual learning and stream-
ing. In Advances in Neural Information Processing Systems,
pages 14879–14890. Curran Associates, Inc., 2020. 2

[12] Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo
Porrello, and Simone Calderara. Class-incremental continual
learning into the extended der-verse. CoRR, abs/2201.00766,
2022. 2

[13] M. Boschini, L. Bonicelli, P. Buzzega, A. Porrello, and S.
Calderara. Class-incremental continual learning into the ex-
tended der-verse. IEEE Transactions on Pattern Analysis
amp; Machine Intelligence, 45(05), 2023. 7

[14] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and Simone Calderara. Dark experience for general
continual learning: a strong, simple baseline. In Advances in
Neural Information Processing Systems, 2020. 2, 6, 7

[15] Lucas Caccia, Eugene Belilovsky, Massimo Caccia, and
Joelle Pineau. Online learned continual compression with
adaptive quantization modules. In Proceedings of the
37th International Conference on Machine Learning, pages
1240–1250. PMLR, 2020. 3

[16] Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuyte-
laars, Joelle Pineau, and Eugene Belilovsky. New insights
on reducing abrupt representation change in online continual
learning. In International Conference on Learning Repre-
sentations, 2022. 1, 2

[17] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajan-
than, and Philip HS Torr. Riemannian walk for incremen-
tal learning: Understanding forgetting and intransigence. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2018. 3

[18] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with a-
gem. In International Conference on Learning Representa-
tions, 2019. 7

[19] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,
Thalaiyasingam Ajanthan, Puneet K Dokania, Philip H. S.
Torr, and Marc’Aurelio Ranzato. Continual learning with
tiny episodic memories. In Workshop on Multi-Task and Life-
long Reinforcement Learning, 2019. 1, 2, 7

[20] C.D. Clelland, Minee-Liane Choi, Carola Romberg, Gre-
gory Clemenson, Alexandra Fragniere, Pamela Tyers, S Jess-
berger, Lisa Saksida, Roger Barker, F.H. Gage, and Tim
Bussey. A functional role for adult hippocampal neuroge-
nesis in spatial pattern separation. Science (New York, N.Y.),
325:210–3, 2009. 2, 4

[21] M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A.
Leonardis, G. Slabaugh, and T. Tuytelaars. A continual
learning survey: Defying forgetting in classification tasks.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, pages 1–1, 2021. 1, 2

[22] Dumitru Erhan, Y. Bengio, Aaron Courville, and Pascal Vin-
cent. Visualizing higher-layer features of a deep network.
Technical Report, Univeristé de Montréal, 2009. 3

[23] Sebastian Farquhar and Yarin Gal. Towards robust evalua-
tions of continual learning, 2019. 1

[24] Siavash Golkar, Michael Kagan, and Kyunghyun Cho.
Continual learning via neural pruning. arXiv preprint,
abs/1903.04476, 2019. 3

[25] Ian J. Goodfellow, Mehdi Mirza, Xia Da, Aaron C.
Courville, and Yoshua Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks.
In International Conference on Learning Representations,
2014. 1

[26] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger.
On calibration of modern neural networks. In International
Conference on Machine Learning, 2017. 2

[27] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger.
On calibration of modern neural networks. In Proceedings
of the 34th International Conference on Machine Learning,
pages 1321–1330. PMLR, 2017. 2

[28] Mustafa Burak Gurbuz and Constantine Dovrolis. Nispa:
Neuro-inspired stability-plasticity adaptation for continual

23667

learning in sparse networks. International Conference on
Machine Learning, 30, 2022. 3

[29] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj
Acharya, and Christopher Kanan. Remind your neural net-
work to prevent catastrophic forgetting. In Proceedings
of the European Conference on Computer Vision (ECCV),
2020. 2, 3

[30] Tyler L Hayes, Giri P Krishnan, Maxim Bazhenov, Hava T
Siegelmann, Terrence J Sejnowski, and Christopher Kanan.
Replay in deep learning: Current approaches and missing bi-
ological elements. Neural Computation, 33(11):2908–2950,
2021. 2

[31] Yen-Chang Hsu, Yen-Cheng Liu, and Zsolt Kira. Re-
evaluating continual learning scenarios: A categorization
and case for strong baselines. 2018. 1, 2, 3

[32] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung
Tang. Network trimming: A data-driven neuron pruning ap-
proach towards efficient deep architectures. arXiv preprint,
abs/1607.03250, 2016. 3

[33] Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup
Moon. Continual learning with node-importance based adap-
tive group sparse regularization. In Advances in Neural In-
formation Processing Systems, 2020. 3

[34] Haeyong Kang, Rusty John Lloyd Mina, Sultan Rizky Hik-
mawan Madjid, Jaehong Yoon, Mark Hasegawa-Johnson,
Sung Ju Hwang, and Chang D. Yoo. Forget-free continual
learning with winning subnetworks. In Proceedings of the
39th International Conference on Machine Learning, pages
10734–10750. PMLR, 2022. 3

[35] Ronald Kemker and Christopher Kanan. Fearnet: Brain-
inspired model for incremental learning. In International
Conference on Learning Representations, 2018. 3

[36] Ronald Kemker, Marc Mcclure, Angelina Abitino, Tyler
Hayes, and Christopher Kanan. Measuring catastrophic for-
getting in neural networks. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 32, 2017. 1, 2, 3

[37] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-
maran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National
Academy of Sciences, 114, 2017. 3

[38] Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan
Babb, Maxim Bazhenov, Douglas Blackiston, Josh Bongard,
Andrew Brna, Suraj Chakravarthi Raja, Nick Cheney, Jeff
Clune, Anurag Daram, Stefano Fusi, Peter Helfer, Leslie
Kay, Nicholas Ketz, Zsolt Kira, Soheil Kolouri, Jeff Krich-
mar, Sam Kriegman, and Hava Siegelmann. Biological un-
derpinnings for lifelong learning machines. Nature Machine
Intelligence, 4:196–210, 2022. 2

[39] Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander
Matveev, John Carr, Michael Goin, William Leiserson, Sage
Moore, Nir Shavit, and Dan Alistarh. Inducing and exploit-
ing activation sparsity for fast neural network inference. In
Proceedings of the 37th International Conference on Ma-
chine Learning, 2020. 3

[40] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2017. 3

[41] Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner.
Supervised contrastive replay: Revisiting the nearest class
mean classifier in online class-incremental continual learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 3589–3599,
2021. 2

[42] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 7765–7773, 2018. 3

[43] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-
back: Adapting a single network to multiple tasks by learn-
ing to mask weights. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 67–82, 2018. 3

[44] Michael McCloskey and Neal J. Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. Psychology of Learning and Motivation, 1989. 1

[45] Jorge A Mendez and ERIC EATON. Lifelong learning of
compositional structures. In International Conference on
Learning Representations, 2021. 3

[46] Matı́as Mugnaini, Mariela F. Trinchero, Alejandro F. Schin-
der, Verónica C. Piatti, and Emilio Kropff. Unique potential
of immature adult-born neurons for the remodeling of ca3
spatial maps. Cell Reports, 42(9):113086, 2023. 2

[47] Toshiaki Nakashiba, Jesse Cushman, Kenneth Pelkey, So-
phie Renaudineau, Derek Buhl, Thomas Mchugh, Vanessa
Rodriguez Barrera, Ramesh Chittajallu, Keisuke Iwamoto,
Chris McBain, Michael Fanselow, and Susumu Tonegawa.
Young dentate granule cells mediate pattern separation,
whereas old granule cells facilitate pattern completion. Cell,
149:188–201, 2012. 2, 4

[48] German Parisi, Ronald Kemker, Jose Part, Christopher
Kanan, and Stefan Wermter. Continual lifelong learning with
neural networks: A review. Neural Networks, 113:54–71,
2019. 1, 2

[49] Grégoire Petit, Adrian Popescu, Hugo Schindler, David Pi-
card, and Bertrand Delezoide. Fetril: Feature translation for
exemplar-free class-incremental learning. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision (WACV), pages 3911–3920, 2023. 3

[50] Ameya Prabhu, Philip Torr, and Puneet Dokania. Gdumb:
A simple approach that questions our progress in continual
learning. In The European Conference on Computer Vision
(ECCV), 2020. 1, 2, 7

[51] Jason Ramapuram, Magda Gregorova, and Alexandros
Kalousis. Lifelong generative modeling. Neurocomputing,
404, 2020. 3

[52] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph Lampert. icarl: Incremental classifier
and representation learning. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017. 2, 7

[53] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff
Pool, Youngeun Kwon, and Stephen Keckler. Compressing
dma engine: Leveraging activation sparsity for training deep

23668

neural networks. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2018. 3

[54] Matthew Riemer, Tim Klinger, Djallel Bouneffouf, and
Michele Franceschini. Scalable recollections for continual
lifelong learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 33:1352–1359, 2019. 3

[55] Hippolyt Ritter, Aleksandar Botev, and David Barber. On-
line structured laplace approximations for overcoming catas-
trophic forgetting. In Advances in Neural Information Pro-
cessing Systems, pages 3738–3748, 2018. 3

[56] Amir Rosenfeld and John K Tsotsos. Incremental learning
through deep adaptation. IEEE transactions on pattern anal-
ysis and machine intelligence, 42, 2018. 3

[57] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint, abs/1606.04671, 2016. 3

[58] Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki,
Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pas-
canu, and Raia Hadsell. Progress & compress: A scalable
framework for continual learning. In ICML, 2018. 3

[59] Joan Serra, Didac Suris, Marius Miron, and Alexandros
Karatzoglou. Overcoming catastrophic forgetting with hard
attention to the task. In International Conference on Machine
Learning, 2018. 3

[60] Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott San-
ner, Hyunwoo Kim, and Jongseong Jang. Online class-
incremental continual learning with adversarial shapley
value. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 9630–9638, 2021. 2

[61] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. Advances in
neural information processing systems, 30, 2017. 3

[62] Ghada Sokar, Decebal Constantin Mocanu, and Mykola
Pechenizkiy. Spacenet: Make free space for continual learn-
ing. Neurocomputing, 439, 2021. 2, 3

[63] Ghada Sokar, Decebal Constantin Mocanu, and Mykola
Pechenizkiy. Avoiding forgetting and allowing forward
transfer in continual learning via sparse networks. In Joint
European conference on machine learning and knowledge
discovery in databases. Springer, 2022. 2, 3

[64] Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-
distribution detection with rectified activations. In Advances
in Neural Information Processing Systems, 2021. 7

[65] Sophie Tronel, Laure Belnoue, Noëlle Grosjean, Jean-
Michel Revest, pier-vincenzo Piazza, Muriel Koehl, and Djo-
her Abrous. Adult-born neurons are necessary for extended
contextual discrimination. Hippocampus, 22:292–8, 2012.
2, 4

[66] Gido van de Ven, Hava Siegelmann, and Andreas Tolias.
Brain-inspired replay for continual learning with artificial
neural networks. Nature Communications, 11, 2020. 2, 3

[67] Gido van de Ven, Tinne Tuytelaars, and Andreas Tolias.
Three types of incremental learning. Nature Machine Intel-
ligence, 4:1–13, 2022. 1, 3

[68] Gido M. van de Ven and Andreas S. Tolias. Three scenar-
ios for continual learning. arXiv preprint, abs/1904.07734,
2019. 1

[69] Tom Veniat, Ludovic Denoyer, and MarcAurelio Ranzato.
Efficient continual learning with modular networks and task-
driven priors. In International Conference on Learning Rep-
resentations, 2021. 3

[70] Kai Wang, Joost van de Weijer, and Luis Herranz. Acae-
remind for online continual learning with compressed feature
replay. Pattern Recognition Letters, 150:122–129, 2021. 3

[71] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A
comprehensive survey of continual learning: Theory, method
and application, 2023. 1, 2

[72] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu,
Aniruddha Kembhavi, Mohammad Rastegari, Jason Yosin-
ski, and Ali Farhadi. Supermasks in superposition. In Ad-
vances in Neural Information Processing Systems, 2020. 3

[73] Mengqi Xue, Haofei Zhang, Jie Song, and Mingli Song.
Meta-attention for vit-backed continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 150–159.
IEEE/CVF, 2022. 3

[74] Michael Yassa and Craig Stark. Pattern separation in the
hippocampus. Trends in neurosciences, 34:515–25, 2011. 2,
4

[75] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju
Hwang. Lifelong learning with dynamically expandable net-
works. In International Conference on Learning Represen-
tations, 2018. 3

[76] Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju
Hwang. Online coreset selection for rehearsal-based contin-
ual learning. In International Conference on Learning Rep-
resentations, 2022. 2

[77] Matthew D Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In European conference on
computer vision, 2014. 3

[78] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual learning through synaptic intelligence. In International
Conference on Machine Learning, 2017. 3

23669

