
From Variance to Veracity: Unbundling and Mitigating Gradient Variance in
Differentiable Bundle Adjustment Layers

Swaminathan Gurumurthy1, Karnik Ram1 → 2, Bingqing Chen3,
Zachary Manchester1, Zico Kolter1,3

1Carnegie Mellon University 2TU Munich
3Bosch Center for Artificial Intelligence

Abstract

Various pose estimation and tracking problems in
robotics can be decomposed into a correspondence estima-
tion problem (often computed using a deep network) fol-
lowed by a weighted least squares optimization problem to
solve for the poses. Recent work has shown that coupling
the two problems by iteratively refining one conditioned
on the other’s output yields SOTA results across domains.
However, training these models has proved challenging, re-
quiring a litany of tricks to stabilize and speed up training.
In this work, we take the visual odometry problem as an
example and identify three plausible causes: (1) flow loss
interference, (2) linearization errors in the bundle adjust-
ment (BA) layer, and (3) dependence of weight gradients on
the BA residual. We show how these issues result in noisy
and higher variance gradients, potentially leading to a slow
down in training and instabilities. We then propose a sim-
ple, yet effective solution to reduce the gradient variance by
using the weights predicted by the network in the inner opti-
mization loop to weight the correspondence objective in the
training problem. This helps the training objective ‘focus’
on the more important points, thereby reducing the variance
and mitigating the influence of outliers. We show that the
resulting method leads to faster training and can be more
flexibly trained in varying training setups without sacrific-
ing performance. In particular we show 2–2.5× training
speedups over a baseline visual odometry model we modify.

1. Introduction

Ego and exo pose estimation are essential for agents to
safely interact with the physical world. These tasks have
a long history of being tackled using geometry-based opti-
mizaton [23, 24, 36, 42], and in the last decade, using deep
networks to directly map inputs to poses [43, 57, 59, 62].
However, both these classes of approaches have shown brit-

Corresponding author: gauthamsindia95@gmail.com
Code: https://github.com/swami1995/V2V

δ
T, d

ℒ = 𝛽ℒflow + ℒpose

Σ
BA

Feature
Extractor

Update
Operator

Optimizer

Inner Loop

(a) SOTA pose estimation methods [37, 54, 55] tightly-couple learned
front-ends with traditional BA optimizers. However, they can be slow
to converge.

δ
Σ

Ti+1
di+1

ℒflow

Bundle Adjustment

Weight-
Residue

Dependency Linearization Errors

Flow Loss
Interference

p̄jk = p̄jk,i + δ

argmin ∑
j,k

∥p̄jk − ωjk(Ti, di))∥2Σ

ω(T, d) = ω(Ti, di) + JTΔTi + JdΔdi

Gauss-Newton Steps

(b) We identify three factors that lead to high variance in gradients
during their training.

Figure 1. We propose a simple, yet effective solution to stabi-
lize and speed-up the training of SOTA pose estimation meth-
ods. (b) We first analyze the causes for their instability related
to variance in their gradients, and (a) then mitigate them by using
weights from the inner-loop optimization to weigh the correspon-
dence outer objective, which leads to improved performance.

tleness — not being robust to outliers in the data or having
poor accuracy in unseen scenes.

More recently, approaches that combine the best of both
worlds in learning to optimize have demonstrated substan-
tially better performance than previous methods [37, 54,
55]. These approaches combine a learned iterative update
operator that mimics an optimization algorithm with im-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

27507

https://github.com/swami1995/V2V

plicit layers that enforce known geometric constraints on
the outputs. This general architecture has appeared across
many tasks even beyond pose estimation [1, 2, 9, 27], where
in each case an accurate and robust task-specific optimiza-
tion solver is learned. In [37, 54, 55], for the task of pose
estimation, a recurrent network that iteratively updates pose
and depth is learned through a differentiable weighted bun-
dle adjustment (BA) layer that constrains the updates. Fea-
ture correspondences are also iteratively refined together
with the poses, thereby dynamically removing outliers and
leading to better accuracy.

Although these methods achieve state-of-the-art (SOTA)
results, they take exceedingly long to train. [54] mention
that DROID-SLAM takes 1.5 weeks to train with 4x RTX
3090, while [55] mention that DPVO takes 3.5 days to train
on a RTX 3090. Likewise, in our experiments, training the
object pose estimation method from [37] took 1 week with
2x RTX 6000 for the smallest dataset reported in their paper.

In this paper, we first investigate the reasons for the slow
training convergence speeds of these methods, using deep
patch visual odometry (DPVO) [55] as an example problem
setting for this analysis. We find that the bundle adjustment
layer and the associated losses used in this setting lead to
a high variance in the gradients. We identify three reasons
contributing to the high variance. First, improper credit as-
signment arising from the specific choice of flow loss used
which leads to interference between the gradients of outlier
and inlier points. Second, improper credit assignment aris-
ing from the linearization issues in the bundle adjustment
layer. And lastly, the dependence of the weight gradients
on the residual of the BA objective resulting in the outliers
dominating those gradients. We show how each of these
problems lead to an increase in the gradient variance.

Next, we leverage the analysis to propose a surpris-
ingly simple solution to reduce the variance in gradients
by weighting the flow loss according to the ‘importance’
of the points for the problem, resulting in significant im-
provements in training speed and stability while achieving
better pose estimation accuracy. We also experiment with
other variance reduction techniques and demonstrate the
superior performance of our proposed solution (Appendix
Sec. 8.7). Using DPVO as an example, we demonstrate
2-2.5x speedups with these simple modifications. Further-
more, we show that the modifications also make the train-
ing less sensitive to specific training setups. As a result, we
are able to train in a non-streaming setting, while reaching
similar accuracies in the streaming setting, thereby lead-
ing to a further 1.2-1.5x speedup in training. Lastly, we
apply the modifications to DROID-SLAM [54] with little
hyperparameter tuning to show that the proposed modifica-
tions transfer to a completely new pipeline providing sim-
ilar speedups and stable training. Furthermore, we show
that our best models achieve about 50% improvement on

the TartanAir validation set and a 24% improvement on the
TartanAir test set. To summarize, the contributions of this
paper are as follows:
• We identify three candidate reasons for high variance in

the gradients when differentiating through the BA prob-
lems for Visual Odometry (VO) and SLAM and show
how they are all affected by the presence of outliers.

• Using DPVO [55] as an example VO pipeline, we propose
a simple modification to the loss function that reduces the
variance in the gradients by mitigating the effect of out-
liers on the objective.

• We show that the above modification results in signifi-
cant speedups and improvements in accuracy of the model
on the TartanAir [58] validation and test splits used in
the CVPR 2020 challenge. Further, we show that the
modifications can be applied out-of-the-box to other set-
tings/methods that use differentiable BA layers, such as
DROID-SLAM and the non-streaming version of DPVO
to obtain similar benefits.

2. Related Work
Pose Estimation using Deep Learning. A large body
of works have tackled pose estimation, and we describe a
few representative works that use deep learning here. For
a broader overview, we refer the reader to [13, 17, 25].
[57, 59, 62] proposed deep networks to directly estimate
ego pose between pairs of frames. [34, 40, 48, 53] integrate
learned representations (features or depth) into traditional
ego-pose estimation pipelines. [19, 52, 60] imposed geo-
metric constraints on ego-pose network outputs via differ-
entiable optimization layers. Similar approaches have been
proposed for the task of multi-object pose estimation where
2D-3D correspondences are directly regressed [43, 45] and
then passed through a differentiable PnP solver [16] for
pose estimation. Overall, these works showed that deep
learning could be applied to these tasks but fell short in ac-
curacy and generalization.

Optimization-inspired iterative refinement methods have
been applied to ego-pose [18, 32, 56, 61] and exo-pose
estimation [31, 35] where the network iteratively refines
its pose estimates as an update operator in order to sat-
isfy geometric constraints. More recently, methods that
iteratively refine poses and correspondences in a tightly-
coupled manner have been proposed [37, 54, 55]. In these
works, a network predicts patch correspondences [55] or
dense flow [37, 54] which are then updated together with
poses and depths in an alternating manner where one feeds
into the other through differentiable geometric operations.
In addition to correspondences, these methods also predict
weights for the correspondences which have been shown to
be important for pose estimation accuracy in many indepen-
dent works [11, 33, 41, 46]. Overall, these iterative methods
have achieved impressive performance in terms of accuracy

27508

and generalization, but they still need large GPU memories
[55] and their training times are prohibitively long which
has limited their adoption for research.
Challenges with Implicit Optimization Layers. With
the advent of implicit layers, it is possible to incorporate
an optimization problem as a differentiable layer [3, 4, 44],
which captures complex behaviours in a neural network.
The BA layer [52] used in this work is an instance of such
layers. In the forward pass, an implicit optimization layer
solves a regular optimization problem given the current es-
timate of problem parameters. In the backward pass, one
differentiates through the KKT conditions of the optimiza-
tion problem to update the problem parameters.

While these implicit optimization layers boast expres-
sive representational power, there exist challenges with such
layers. Firstly, these problems naturally take on a bilevel
structure, where the inner optimization learns the problem
parameters and the outer problem optimizes for the deci-
sion variables given the current estimation of problem pa-
rameters. As a result, these problems are inherently hard
to solve[4, 5, 29], as their easiest instantiation, e.g., lin-
ear programs for both inner and outer problems, can be
non-convex [8]. While the convergence issues may be al-
leviated by techniques such as using good initialization [4]
or robust solvers, there does not exist a general solution
to the authors’ best knowledge. Secondly, a range of nu-
merical issues can arise from implicit optimization layers.
The gradients derived from KKT conditions are only valid
at fixed points of the problem. In practice, the solver may
need to run long enough to reach a fixed point or a fixed
point may not exist at all [5, 22]. The problem may be ill-
conditioned due to reasons such as stiffness or discontinu-
ities from physical systems [51] or compounding of gradi-
ents in chaotic systems [39]. A number of problem-specific
solutions have been proposed [29, 30, 51] to these prob-
lems. For example, [6, 51] use zeroth-order methods to
deal with non-smoothness and non-convexity in the prob-
lem. [29, 30] use interior point relaxations to smooth the
discontinuities. Similarly, [10, 22] use penalty-based relax-
ations to handle the discontinuities. It’s also common to
regularize the inner problem during the backward pass to
deal with ill-conditioning [5, 28]. However, given the vast-
ness of the problems, we are of the opinion that this is still
a broadly under-studied area.

3. Background
In this section, we review the approach of DPVO [55] for
iterative ego-pose estimation, which serves as an example
setting for all our analysis and experiments.

Feature Extraction. A scene, as observed from an input
video, is represented as a set of camera poses Tj ∈ SE(3)
and square image patches Pk. Patches are created by ran-
domly sampling 2D locations in the image and extracting

p × p feature maps centered at these coordinates pk. A bi-
partite patch-frame graph is constructed by placing an edge
between every patch k and each frame j within distance r
of the patch source frame. The reprojections of a patch in
all of its connected frames form the trajectory of the patch.

Update Operator. The update operator iteratively up-
dates the optical flow of each patch over its trajectory. The
operator updates the embedding of each edge (k, j) of the
patch graph via temporal convolutions and message pass-
ing. These updated embeddings are used by two MLPs to
predict flow revisions δjk ∈ R2 and confidence weights
for each patch Σjk ∈ R2 between [0, 1]. The flow revi-
sions are used to update the reprojected patch coordinates
p̄jk := p̄jk + δjk, which are passed to a differentiable BA
layer along with their confidence weights Σjk.

Differentiable Bundle Adjustment. The bundle adjust-
ment (BA) layer solves for the updated poses and depths
that are geometrically consistent with the predicted flow re-
visions. The BA layer operates on a window of the patch
graph to update the camera poses and patch depths, while
keeping the revised patch coordinates p̄jk fixed. The BA
objective is as follows:

 \label {eqn:bundle_adjustment} \min _{\mathbf {T}_{ij}, d_k} \sum _{(k, j)} ||\bar {\mathbf {p}}_{jk}-\Pi (\mathbf {T}_{ij}, \Pi ^{-1}(\mathbf {p}_k,d_{k}))||^2_{\Sigma _{jk}}

(1)

where Π denotes the projection operation, dk denotes the
depth of the kth patch in the source frame i, and Tij is the
relative pose TiT

−1
j . This objective is optimized using two

Gauss-Newton iterations. The optimized poses and depths
are then passed back to the update operator to revise the
patch coordinates, and so on in an alternating manner.

Training Loss. The network is supervised using a flow
loss and pose loss computed on the intermediate outputs of
the BA layer. The flow loss computes the distance between
the ground truth patch coordinates and estimated patch co-
ordinates over all the patches and frames:

 \label {eq:floss} \mathcal {L}_{\text {flow}} = \sum _{j,k} \Vert \mathbf {p}^*_{jk} - \mathbf {\hat {p}}_{jk}\Vert _2

 (2)

where p̂jk = Π(Tij ,Π
−1(pk, dk)) and p∗

jk is the cor-
responding reprojection of patch k in frame j using the
ground truth pose and depth. Note that this loss amounts
to a difference in the patch coordinates and not in the flows
as the source patch coordinates in each flow term cancel out.

The pose loss is the error between the ground truth poses
G and estimated poses T for every pair of frames (i, j):

 \mathcal {L}_{\text {pose}} = \sum _{(i,j)} \Vert \text {Log}_{\mathbb {SE}(3)}[(\mathbf {G}_i.\mathbf {G}_j^{-1})^{-1}.(\mathbf {T}_i.\mathbf {T}_j^{-1})] \Vert _2

 (3)

27509

The total loss is a weighted combination of the flow loss
and pose loss,

 \label {eq:dpvoloss} \mathcal {L} = 10\mathcal {L}_{\text {flow}} + 0.1\mathcal {L}_{\text {pose}} (4)

The original DPVO model is trained on random se-
quences of 15 frames, where the first 8 frames are used to-
gether for initialization and the subsequent frames are added
one at a time. Their model is trained for 240K iterations
using 19GB of GPU memory which takes 3.5 days on an
RTX 3090. A total of 18 iterations of the update operator
is applied on each sequence, where the first 8 iterations are
applied during initialization as a batch-optimization, and the
subsequent iterations are for every new, added frame. In our
paper, we refer to these update iterations as the ‘inner-loop
optimization’, this mode of training as the ‘streaming’ set-
ting, and training models in our experiments to only batch-
optimize the first 8 frames as the ‘non-streaming’ setting.

4. Factors Affecting Training Convergence
In this section, we identify three possible causes for slow
training convergence. We show how each of these result in
noisier/higher variance gradients during training, and con-
sequently result in instabilities and slowdowns.

4.1. Flow loss interference

The flow loss defined in Eq. 2 operates on the reprojected
patch coordinates p̂jk which are computed using the op-
timized poses Ti,Tj and depth dk outputs from the BA
layer. Thus, the gradient of the loss with respect to dk (and
similarly for poses Ti,Tj) can be written as follows,

 \label {eq:graddk} \nabla _{d_k} \mathcal {L}_{\text {flow}} \propto \sum _j \nabla _{d_k} \Pi (\mathbf {T}_{ij}, (\mathbf {p}_k,d_k)).\\ \nabla _{T_i} \mathcal {L}_{\text {flow}} \propto \sum _{k,j} \nabla _{T_i} \Pi (\mathbf {T}_{ij}, (\mathbf {p}_k,d_k)).

 (5b)

Thus, the gradients with respect to each reprojected patch
p̂jk gets aggregated in the computation graph at the corre-
sponding depth dk (likewise for poses Ti,Tj) at the output
of the BA layer. This becomes problematic when a signif-
icant fraction of the projections are noisy/outliers, as the
noisy/outlier gradients would dominate the inlier gradients
in the sum in Eq. 5a, leading to more noise in the total gra-
dient estimate.

Since these gradients are also backpropagated through
the BA layer, it results in noisy gradient estimates for the
network parameters as well. Specifically, in the BA layer,
each di/Ti are again a function of all the predicted flows and
weights associated with that point/frame. Thus, the same
noisy gradient computed at di/Ti, gets backpropagated to
all the associated points. This leads to the gradient estimates
being noisy even at the ‘good’ predictions by the network.

4.2. Linearization errors in BA gradient

Given gradient estimates at the output poses and depth of
the BA layer ∇dL,∇TL, the gradients with respect to its
input flows and weights are computed as follows:

 \label {eq:flgrads} \nabla _\delta \mathcal {L} &= -(\nabla _{\mathbf {T}}\mathcal {L})^T(\mathbf {J}_{\mathbf {T}}^T\Sigma \mathbf {J}_{\mathbf {T}})^{-1}\mathbf {J}_{\mathbf {T}}^T\Sigma \nonumber \\& \quad -(\nabla _{d}\mathcal {L})^T(\mathbf {J}_{d}^T\Sigma \mathbf {J}_{d})^{-1}\mathbf {J}_{d}^T\Sigma

 (6a)

 \label {eq:wt_grads} \nabla _\Sigma \mathcal {L} &= -(\nabla _{\mathbf {T}}\mathcal {L})^T(\mathbf {J}_{\mathbf {T}}^T\Sigma \mathbf {J}_{\mathbf {T}})^{-1}\mathbf {J}_{\mathbf {T}}^T \text {diag}(\mathbf {r})\nonumber \\& \quad -(\nabla _{d}\mathcal {L})^T(\mathbf {J}_{d}^T\Sigma \mathbf {J}_{d})^{-1}\mathbf {J}_{d}^T\text {diag}(\mathbf {r})

 (6b)

where, r = (p̄kj − p̂kj) is the bundle adjustment
residual, Jd and JT are the jacobians of the projection
Π(Tij ,Π

−1(pk, dk)) with respect to depth d and pose T
respectively. This expression can be derived by applying
the implicit function theorem (Theorem 1B.1) [21], on the
BA problem as shown in Appendix Sec. 8.3.

Since the projection is non-linear containing multiple
multiplicative operations, we observe that the Jacobians Jd

and JT themselves are a function of d and T. Thus, a high
variance in the initialized d or T naturally lead to a high
variance in the Jacobians, thereby leading to a high vari-
ance in the corresponding gradients ∇Σ and ∇δ , which are
then backpropagated through the network. In our setup, d
is initialized to random values and T is initialized to iden-
tity. Thus, the variance from linearization is primarily con-
tributed by the linearization around the current d.

The use of a weighted objective in the BA problem par-
tially mitigates this issue by masking out the gradients on
the flows corresponding to the outlier points (which con-
tribute the most to this high variance). However, the high
variance remains problematic especially in the initial itera-
tions of training (when the weight estimates themselves are
not very accurate) and in the initial iterations of the inner-
loop optimization when a large fraction of the depth and
pose estimates are inaccurate.

4.3. Dependence of weight gradients on the BA
residual

In the previous section, we discussed the effect of outliers
on the BA linearization and consequently on the gradients.
However, outliers in the BA problem contribute to an in-
crease in gradient variance in a more straightforward way.
Specifically, they have a direct effect on the gradient of the
weights, as can be seen from the expression in Eq. 6b. The
expression shows the direct dependence of the weight gra-
dients on the residual, r = (p̄jk− p̂jk), of the BA problem.
Thus, the presence of high residual points in the optimiza-
tion problem result in high variance in the weight gradients.

In fact, the presence of outliers also biases the weight
gradients towards highly positive values as the training ob-
jective tries to reduce the influence of the outliers. This

27510

consequently leads to a collapse in the weight distribution.
However, we observe that a straightforward fix used by
prior work[54, 55], i.e, clipping the magnitude of gradient
passing through the weights easily mitigates this bias. We
discuss more details on this effect with a simple illustrative
example in Appendix Sec. 8.4.

To summarize, the above section highlights various as-
pects of the existing setup that contribute to noisy/high vari-
ance gradients. The noise and high variance in gradient es-
timates leads to ineffective parameter updates, thereby lead-
ing to training instabilities and slowdown. Furthermore, it’s
also important to note that the aforementioned effects ex-
acerbate each other. For example, worse weight estimates
result in bad BA outputs, which in turn contribute to wors-
ening the flow loss interference and BA linearization errors,
which further leads to noisier gradients thereby slowing
down weight/flow updates, thus repeating the vicious cycle.
By the same argument, mitigating either of these effects can
also provide significant improvements on other problems!

5. A very simple solution: Weighted flow loss

We start with observing that all three problems mentioned
in the previous section get exacerbated by the presence of
outliers or computing gradients through outliers. So the nat-
ural question is if there exist obvious solutions to mask out
the outliers in the outer training problem.

One of the tricks used by [54, 55] already partially ac-
counts for this in the pose loss, i.e, they do not include the
pose loss for the first couple of inner-loop iterations, thereby
mitigating some of the issues discussed in Sec. 4.2. This
simple modification in [54, 55] seems to provide a signif-
icant boost in training speeds as we show in our ablation
experiments in Appendix Sec. 8.6.

Similar heuristics for the flow loss are harder to find as
the depth/flow estimates of a significant fraction of points
are bad even at the latter inner-loop iterations. Convention-
ally, SLAM and visual odometry problems define heuristic
kernels on the flow residuals [7, 15] depending on the ex-
pected distribution of residuals/errors to trade-off between
robustness and accuracy. Unfortunately, coming up with
a similar simple/consistent heuristic to define ‘outliers’ in
the outer training problem is more challenging as the errors
and distribution of errors vary across examples, training it-
erations and inner optimization iterations. This requires a
heuristic that adapts to the specific example, training con-
vergence, and inner-loop optimization iteration.

Conveniently, we find that the weights learnt by the inner
update operator for the bundle adjustment problem satisfy
all these properties as they adapt online with the changing
distribution of errors/residuals. Moreover, empirically we
observe that the network learns a reasonable weight distri-
bution very early on in training, while adapting the weight
distribution rapidly to any changes in flows. Thus, we ob-

serve that using these weights to weight the flow loss works
surprisingly well. The resulting flow loss is as follows.

 \label {eq:wtdfloss} \mathcal {L}_{\text {flow}} = \sum _{j,k} \Vert \mathbf {p}^*_{jk} - \mathbf {\hat {p}}_{jk}\Vert _{\Sigma _{jk}^\perp }

(7)

where ⊥ denotes the stop gradient operator to prevent the
objective from directly driving the weights to zero (We pro-
vide more discussion on what factors prevent these weights
from collapsing to zero in Appendix Sec. 8.5). The main
difference between this and Eq. 2 is that each residual in
this objective is weighted by the weights Σjk predicted by
the network for the inner BA problem. Intuitively, this ob-
jective incentivizes the network to focus on the points which
are important for the inner optimization problem at that op-
timizer step / training iteration for that particular example.

Although the modification seems trivial and obvious in
hindsight, we observe that it is significantly more effective
than various other (more complicated) variance reduction
approaches we tried (studied in Appendix Sec. 8.7). This
apparent simplicity and effectiveness underscore the value
of the proposed modifications!

Balancing loss gradients. The introduction of the
weighted flow loss changes the gradient contribution from
the flow loss throughout training as the weight distribution
changes. Thus, instead of using fixed coefficients to trade-
off between pose and flow loss as in Eq. 4, we periodically
(every 50 training iterations) update the flow loss coefficient
β to ensure the gradient contributions of the pose and flow
loss remain roughly equal throughout training. Given the
infrequency in these updates, they barely affect the training
speed and hence are cheap to compute amortized over the
entire training run.

 \beta = \frac {\|\nabla _\theta \mathcal {L}_{\text {pose}}\|_2}{\|\nabla _\theta \mathcal {L}_{\text {flow}}\|_2}

(8)

 \mathcal {L} = \mathcal {L}_{\text {pose}} + \beta \mathcal {L}_{\text {flow}} (9)

6. Results and Analysis

We analyze the effect of the factors discussed in Sec. 4 on
the original DPVO model on the TartanAir [58] dataset. We
then analyze a version trained with our proposed weighted
flow objective. We show that the weighted objective helps
increase the signal to noise ratio in the gradients throughout
training and show the improvements in performance as a re-
sult. We also evaluate the pose estimation performance of
this version on the TartanAir [58], EuRoC [12], and TUM-
RGBD [50] benchmarks. We use the average absolute tra-
jectory error (ATE) after Sim(3) alignment of the trajecto-
ries, as the evaluation metric for pose estimation.

27511

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Noise added to depth

2

0

2

4

6

SN
R

(d
b)

Flow loss gradient
Pose loss gradient

(a) Impact of depth noise on linearization.

0.0 0.2 0.4 0.6 0.8 1.0
Noise added to depth

0

5

10

15

20

Av
g

Gr
ad

 E
rro

r N
or

m

Pose gradient error
Depth gradient error

(b) Impact of depth noise on flow loss gradients.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Noise added to pose

20

30

40

50

60

70

80

Av
g

Gr
ad

 E
rro

r N
or

m

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
g

Gr
ad

 E
rro

r N
or

m

Pose gradient error
Depth gradient error

(c) Impact of pose noise on flow loss gradients.

Figure 2. (a) We compute the signal-to-noise ratio (SNR) in the loss gradients as we artificially add depth noise while linearizing the BA
problem for gradient computation. We observe that the SNR in the flow loss deteriorates rapidly indicating its sensitivity to linearization
errors. (b) We artificially add noise to a subset of depths right before the flow loss computation. We show the average gradient errors on all
the pose and ‘clean’ depth variables as a result of the added noise. We see a monotonic increase in gradient error in pose gradients as we
increase the noise added showing the impact ‘outliers’ have on the gradients of even the ‘inlier’ variables. (c) Similar to (b), here we add
noise to the the first frame’s pose and show the gradient errors on the rest of the frames and depths.

6.1. Analyzing factors affecting gradient variance
To understand the impact of linearization on the gradient
variance (Sec. 4.2), we analyze the impact of adding noise
to the depth used to compute the Jacobians in the BA prob-
lem. We leave the rest of the forward and backward pass
unaltered and only add noise to the depth while computing
the linearization for the backward pass in the BA problem.
This helps us isolate the effects of linearization on the gradi-
ent computations. Specifically, Fig. 2a shows the signal-to-
noise ratio (SNR) of the flow and pose loss gradients with
respect to δ with increasing levels of noise. The SNR is
computed assuming the no-depth-noise gradient as the true
signal and treating any deviations from it as noise. The SNR
computation details are provided in Appendix Sec. 8.8. This
yields two interesting observations. First, the SNR deteri-
orates rapidly in the beginning indicating that the gradients
are indeed sensitive to the noise in the iterates used for lin-
earization. Second, the SNR in the flow loss gradients is
high initially, but deteriorates rapidly compared to the pose
loss gradients with increasing noise. This highlights the
need to make flow loss robust to noisy points.

To analyze the effect of flow loss on the gradient noise
(Sec. 4.1), we introduce noise on a few depth points or a
single frame pose right before computing the flow loss and
study the effect of the noise on the gradients of all the other
points/poses. Fig. 2c shows a monotonic increase in gradi-
ent errors on the depths as well as all poses as we increase
the noise added to the first pose. Likewise, Fig. 2b shows
the monotonic increase in gradient errors of all poses as we
add increasing amounts of noise to all depths on the first
frame. This shows how outliers with increasingly large er-
rors can have an increasingly adverse effect on the gradients
of the non-outlier points/frames as well. The gradient er-
rors are computed as the average L2 norm of the deviation
in gradient from the no-noise gradients.

We analyze the weight residual dependence (Sec. 4.3)
and the resulting variance / bias in Appendix Sec. 8.4, as its
connections to the use of weighted loss are less direct.

6.2. Effect of the weighted flow loss on training
To understand the effect of the weighted flow loss on the
variance of the gradients, we study the SNR of the gradients
on the flow network parameters. Fig. 3 shows the SNR with
the flow loss and the weighted flow loss at different points
during training. The SNR computation details are provided
in Appendix Sec. 8.8. The plots clearly demonstrate that
the usage of weighted flow loss results in a boost in SNR
throughout training. The boost is especially prominent in
the initial stages of training, when the impact of outliers
and noise in the pose/depth estimates are most significant.
This clearly shows the promise of using the weighted flow
loss instead of the regular flow loss for training.

We retrain DPVO with our modified weighted flow loss
on the TartanAir dataset and show its validation error per-
formance across training iterations. We observe in Fig. 4
that the average ATE of our method drops rapidly com-
pared to the original. While our model takes only 80K it-
erations to reach an average error of ∼ 0.2 m, the original
model reaches the same performance at 180K iterations. In
fact, while that’s the peak performance reached by the base
model, our model continues to improve and reaches a fi-
nal convergence error of ∼ 0.10 m, achieving half the base
model’s convergence error on the validation set. We also
observe that, unlike the original model, the errors don’t fluc-
tuate rapidly over epochs and is more stable.

Further, the reduced variance in gradients allows us to
train in other setups as well. For example, Fig. 5 shows
the ATE of our model against the base model trained in the
non-streaming setting, i.e. using just 8 frame initialization
sequences instead of 15 frame sequences. This allows the

27512

0 50000 100000 150000 200000 250000
Train Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SN
R

Weighted flow loss
Flow loss

Figure 3. We compute the signal-to-noise ratio in the gradients of
the flow loss and the weighted flow loss w.r.t flow network param-
eters at different training iterations of the base model. Specifically,
we use the last linear layer’s weights of the flow computation head
of the network. We find that the weighted flow loss gradients have
a higher SNR throughout the training. This is especially true in the
initial iterations of training when the outlier count is very high.

0 50000 100000 150000 200000 250000
Training Iteration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

AT
E

(m
et

er
s)

Vanilla DPVO
Weighted Flow Loss

Figure 4. We observe that DPVO when trained with our weighted
flow loss achieves much faster training, reaching ∼0.2 m accuracy
in only 80K iterations, and is much more stable. We report the
median ATE across three trials on the validation split of TartanAir.

models to be trained faster (with per iteration cost of 0.6s
vs 1.6s for the streaming version on an RTX A6000 GPU)
and with lower GPU memory (7.2GB as opposed to 19.2GB
GPU memory). Note that the evaluations are still done as
earlier, i.e, by rolling out the model on the full validation
sequences in the streaming setting. Yet, we observe that de-
spite being trained to only batch-optimize over 8 frames, it
generalizes to the streaming setting with our modified mod-
els obtaining a peak performance of ∼ 0.2m pose errors
in 180K iterations (i.e, 2.7× faster than the base stream-
ing model). Furthermore, we also test our modifications
on DROID-SLAM, a completely different pipeline that also
uses Bundle Adjustment layers with little to no hyperparam-
eter tuning. We present the results in Appendix Sec. 8.2.

0 50000 100000 150000 200000 250000
Training Iteration

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

AT
E

(m
et

er
s)

Vanilla DPVO - 8 step
Weighted Flow Loss - 8 step

Figure 5. We retrain DPVO with and without the modified flow
loss in the non-streaming batch setting and evaluate both models
on validation sequences from TartanAir in the streaming setting.
We observe that, beyond training faster and being more stable,
the modified version generalizes better than the original model.
This allows the model to be trained on shorter sequences without
suffering high performance drops, thanks to the reduced gradient
variance. We report the median ATE across three trials.

0 50000 100000 150000 200000 250000
Training Iteration

0

2

4

6

8

10

AT
E

(m
)

SIFT
ORB
Superpoint
Gradient-Bias
Random
Random+Ours

Figure 6. We retrain the original DPVO model with standard fea-
ture detection methods and observe that our method of random
sampling with the modified flow objective has much improved
training convergence. We report the median ATE across three tri-
als on the validation split of TartanAir.

Again, we observe that the modifications result in signifi-
cant speedups and stability during training suggesting that
the methods and analysis discussed in this paper applicable
broadly to approaches using differentiable BA layers.

Finally, to evaluate the ability of our modified model to
weight patches effectively, we compare against other stan-
dard methods for selecting patches. Specifically, we re-
train the original DPVO model with patches selected us-
ing SIFT [38], ORB[47], Superpoint[20], and naive gradi-
ent based sampling instead of the default random sampling.
As shown in Fig. 6, we observe that random sampling along
with the weights learned by our network is much more sta-
ble and accurate than other patch selection methods.

27513

ME ME ME ME ME ME ME ME MH MH MH MH MH MH MH MH Avg000 001 002 003 004 005 006 007 000 001 002 003 004 005 006 007

ORB-SLAM3* [14] 13.61 16.86 20.57 16.00 22.27 9.28 21.61 7.74 15.44 2.92 13.51 8.18 2.59 21.91 11.70 25.88 14.38
COLMAP* [49] 15.20 5.58 10.86 3.93 2.62 14.78 7.00 18.47 12.26 13.45 13.45 20.95 24.97 16.79 7.01 7.97 12.50
DSO [24] 9.65 3.84 12.20 8.17 9.27 2.94 8.15 5.43 9.92 0.35 7.96 3.46 - 12.58 8.42 7.50 7.32
DROID-SLAM* [54] 0.17 0.06 0.36 0.87 1.14 0.13 1.13 0.06 0.08 0.05 0.04 0.02 0.01 0.68 0.30 0.07 0.33
DROID-VO 0.22 0.15 0.24 1.27 1.04 0.14 1.32 0.77 0.32 0.13 0.08 0.09 1.52 0.69 0.39 0.97 0.58

DPVO 0.16 0.11 0.11 0.66 0.31 0.14 0.30 0.13 0.21 0.04 0.04 0.08 0.58 0.17 0.11 0.15 0.21
Ours 0.08 0.05 0.16 0.30 0.27 0.08 0.20 0.10 0.18 0.03 0.03 0.02 0.58 0.30 0.08 0.05 0.16

Table 1. ATE [m] results on the TartanAir [58] test split compared to other SLAM methods. For our method and DPVO, we report the
median of 5 runs. (*) indicates the method used global loop closure optimization.

MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg

TartanVO [59] 0.639 0.325 0.550 1.153 1.021 0.447 0.389 0.622 0.433 0.749 1.152 0.680
SVO [26] 0.100 0.120 0.410 0.430 0.300 0.070 0.210 - 0.110 0.110 1.080 0.294
DSO [24] 0.046 0.046 0.172 3.810 0.110 0.089 0.107 0.903 0.044 0.132 1.152 0.601
DROID-VO [54] 0.163 0.121 0.242 0.399 0.270 0.103 0.165 0.158 0.102 0.115 0.204 0.186

DPVO 0.087 0.055 0.158 0.137 0.114 0.050 0.140 0.086 0.057 0.049 0.211 0.105
Ours 0.081 0.067 0.171 0.179 0.115 0.046 0.160 0.097 0.056 0.059 0.252 0.117

Table 2. ATE [m] results on the EuRoC dataset [12] compared to other visual odometry methods. For our method and DPVO, we report
the median of 5 runs. The performance of our model is similar to DPVO.

360 desk desk2 floor plant room rpy teddy xyz Avg

ORB-SLAM3 [14] x 0.017 0.210 x 0.034 x x x 0.009 -
DSO [24] 0.173 0.567 0.916 0.080 0.121 0.379 0.058 x 0.036 -
DSO-Realtime [24] 0.172 0.718 0.728 0.068 0.167 0.767 x x 0.031 -
DROID-VO [54] 0.161 0.028 0.099 0.033 0.028 0.327 0.028 0.169 0.013 0.098

DPVO 0.135 0.038 0.048 0.040 0.036 0.394 0.034 0.064 0.012 0.089
Ours 0.145 0.026 0.044 0.064 0.031 0.434 0.045 0.046 0.012 0.094

Table 3. ATE [m] results on the freiburg1 set of TUM-RGBD [50]. We evaluate monocular visual odometry, and is identical to the
evaluation setting in DPVO [55]. For all methods, we report the median of 5 runs. (x) indicates that the method failed to track. The
performance of our model is similar to DPVO.

6.3. Test results for pose estimation

We report pose estimation results on the TartanAir [58] test-
split from the CVPR 2020 SLAM competition in Tab. 1,
and compare to results from other baseline methods as
reported in DPVO [55]. Traditional optimization-based
approaches such as ORB-SLAM3 [14], COLMAP [49],
DSO [24] fail to track accurately and have absolute trajec-
tory errors (ATE) in the order of meters. Iterative learning-
based DROID-SLAM [54] and its variant without global
loop-closure correction (DROID-VO) show reasonable per-
formance, but DPVO is able to show much better accu-
racy by only tracking a sparse number of patches instead of
dense flow. Our modified version, is able to show even bet-
ter accuracy with a 24% lower error on average. Morever,
we observe that our model outperforms DPVO on all but
two sequences in the dataset. Using the same models trained
on the TartanAir train set, we also report the results on the
EuRoC [12] and the TUM-RGBD [50] benchmark datasets
in Tab. 2 and Tab. 3. Here, we obtain similar performance
to DPVO. This suggests that, although the weighted flow
loss helps improve the model accuracy on similar datasets, it
doesn’t resolve generalization issues related to domain shift
from the TartanAir dataset to the real world.

7. Conclusions and Future work
In this paper, we analyze the high variance in gradients dur-
ing the training of pose estimation pipelines that use differ-
entiable bundle adjustment layers. We identify three plau-
sible causes for the high variance and show how they lead
to slower training and instability. We then propose a simple
solution for these problems involving a weighted correspon-
dence loss. We implement this on a SOTA VO pipeline and
demonstrate improved training stability and a 2.5x training
speedup. We also observe a 24% accuracy improvement on
the TartanAir test split and similar accuracy as the vanilla
model on other benchmarks. Unsurprisingly, the modifi-
cations don’t automatically improve the model’s ability to
tackle distribution shift. We also observe that the depth ac-
curacy for low-weight points, which might be important for
dense SLAM approaches, deteriorates.

We see our work as an initial attempt at understand-
ing the numerical issues stemming from the usage of bun-
dle adjustment layers and optimization layers more broadly
within deep learning pipelines. There are likely more fac-
tors contributing to issues like slower training, instability
and generalization. We believe this broader area is relatively
under-studied and requires more research to fully leverage
the structure found in various real world problems.

27514

References
[1] Jonas Adler and Ozan Öktem. Solving ill-posed inverse

problems using iterative deep neural networks. Inverse Prob-
lems, 2017. 2

[2] Jonas Adler and Ozan Öktem. Learned primal-dual recon-
struction. IEEE transactions on medical imaging, 2018. 2

[3] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen
Boyd, Steven Diamond, and J Zico Kolter. Differentiable
convex optimization layers. Advances in neural information
processing systems, 32, 2019. 3

[4] Brandon Amos and J Zico Kolter. Optnet: Differentiable
optimization as a layer in neural networks. In International
Conference on Machine Learning, pages 136–145. PMLR,
2017. 3

[5] Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots,
and J Zico Kolter. Differentiable mpc for end-to-end plan-
ning and control. Advances in neural information processing
systems, 31, 2018. 3

[6] Rika Antonova, Jingyun Yang, Krishna Murthy Jatavallab-
hula, and Jeannette Bohg. Rethinking optimization with dif-
ferentiable simulation from a global perspective. In Confer-
ence on Robot Learning, pages 276–286. PMLR, 2023. 3

[7] Jonathan T. Barron. A general and adaptive robust loss func-
tion. In CVPR, 2019. 5

[8] Yasmine Beck and Martin Schmidt. A gentle and incomplete
introduction to bilevel optimization. 2021. 3

[9] Mohak Bhardwaj, Byron Boots, and Mustafa Mukadam.
Differentiable gaussian process motion planning. In 2020
IEEE international conference on robotics and automation
(ICRA), 2020. 2

[10] Bibit Bianchini, Mathew Halm, and Michael Posa. Simul-
taneous learning of contact and continuous dynamics. arXiv
preprint arXiv:2310.12054, 2023. 3

[11] Keenan Burnett, David J Yoon, Angela P Schoellig, and Tim-
othy D Barfoot. Radar odometry combining probabilistic
estimation and unsupervised feature learning. In Robotics:
Science and Systems, 2021. 2

[12] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas
Schneider, Joern Rehder, Sammy Omari, Markus W Achte-
lik, and Roland Siegwart. The euroc micro aerial vehicle
datasets. The International Journal of Robotics Research,
2016. 5, 8

[13] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,
Davide Scaramuzza, José Neira, Ian Reid, and John J
Leonard. Past, present, and future of simultaneous localiza-
tion and mapping: Toward the robust-perception age. IEEE
Transactions on robotics, 2016. 2

[14] Carlos Campos, Richard Elvira, Juan J Gómez Rodrı́guez,
José MM Montiel, and Juan D Tardós. Orb-slam3: An accu-
rate open-source library for visual, visual–inertial, and mul-
timap slam. IEEE Transactions on Robotics, 2021. 8

[15] Nived Chebrolu, Thomas Läbe, Olga Vysotska, Jens Behley,
and Cyrill Stachniss. Adaptive robust kernels for non-linear
least squares problems. IEEE Robotics and Automation Let-
ters, 2021. 5

[16] Bo Chen, Alvaro Parra, Jiewei Cao, Nan Li, and Tat-Jun
Chin. End-to-end learnable geometric vision by backprop-
agating pnp optimization. In CVPR, 2020. 2

[17] Changhao Chen, Bing Wang, Chris Xiaoxuan Lu, Niki
Trigoni, and Andrew Markham. A survey on deep learn-
ing for localization and mapping: Towards the age of spatial
machine intelligence, 2020. 2

[18] Ronald Clark, Michael Bloesch, Jan Czarnowski, Stefan
Leutenegger, and Andrew J Davison. Learning to solve non-
linear least squares for monocular stereo. In ECCV, 2018.
2

[19] Jan Czarnowski, Tristan Laidlow, Ronald Clark, and An-
drew J Davison. Deepfactors: Real-time probabilistic dense
monocular slam. IEEE Robotics and Automation Letters,
2020. 2

[20] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In CVPR Workshops, 2018. 7

[21] Asen L Dontchev, R Tyrrell Rockafellar, and R Tyrrell Rock-
afellar. Implicit functions and solution mappings: A view
from variational analysis. Springer, 2009. 4

[22] Priya L. Donti, David Rolnick, and J Zico Kolter. DC3:
A learning method for optimization with hard constraints.
In International Conference on Learning Representations,
2021. 3

[23] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-
slam: Large-scale direct monocular slam. In ECCV, 2014.
1

[24] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct
sparse odometry. IEEE transactions on pattern analysis and
machine intelligence, 2017. 1, 8

[25] Zhaoxin Fan, Yazhi Zhu, Yulin He, Qi Sun, Hongyan Liu,
and Jun He. Deep learning on monocular object pose detec-
tion and tracking: A comprehensive overview. ACM Com-
puting Surveys, 2022. 2

[26] Christian Forster, Matia Pizzoli, and Davide Scaramuzza.
Svo: Fast semi-direct monocular visual odometry. In 2014
IEEE international conference on robotics and automation
(ICRA). IEEE, 2014. 8

[27] Lanke Frank Tarimo Fu and Maurice Fallon. Batch differen-
tiable pose refinement for in-the-wild camera/lidar extrinsic
calibration. In Conference on Robot Learning, 2023. 2

[28] Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKen-
zie, Stanley Osher, and Wotao Yin. Jfb: Jacobian-free
backpropagation for implicit networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 6648–
6656, 2022. 3

[29] Taylor A Howell, Simon Le Cleac’h, J Zico Kolter, Mac
Schwager, and Zachary Manchester. Dojo: A differentiable
simulator for robotics. arXiv preprint arXiv:2203.00806, 9,
2022. 3

[30] Taylor A Howell, Kevin Tracy, Simon Le Cleac’h, and
Zachary Manchester. Calipso: A differentiable solver for
trajectory optimization with conic and complementarity con-
straints. In The International Symposium of Robotics Re-
search, pages 504–521. Springer, 2022. 3

27515

[31] Shun Iwase, Xingyu Liu, Rawal Khirodkar, Rio Yokota, and
Kris M Kitani. Repose: Fast 6d object pose refinement via
deep texture rendering. In ICCV, 2021. 2

[32] Krishna Murthy Jatavallabhula, Ganesh Iyer, and Liam Paull.
slam: Dense slam meets automatic differentiation. In 2020
IEEE International Conference on Robotics and Automation
(ICRA), 2020. 2

[33] Y. Kanazawa and K. Kanatani. Do we really have to consider
covariance matrices for image features? In ICCV, 2001. 2

[34] Lukas Koestler, Nan Yang, Niclas Zeller, and Daniel Cre-
mers. Tandem: Tracking and dense mapping in real-time us-
ing deep multi-view stereo. In Conference on Robot Learn-
ing, 2022. 2

[35] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef
Sivic. Cosypose: Consistent multi-view multi-object 6d pose
estimation. In ECCV, 2020. 2

[36] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.
Ep n p: An accurate o (n) solution to the p n p problem. IJCV,
2009. 1

[37] Lahav Lipson, Zachary Teed, Ankit Goyal, and Jia Deng.
Coupled iterative refinement for 6d multi-object pose esti-
mation. In CVPR, 2022. 1, 2

[38] David G Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 2004. 7

[39] Luke Metz, C Daniel Freeman, Samuel S Schoenholz, and
Tal Kachman. Gradients are not all you need. arXiv preprint
arXiv:2111.05803, 2021. 3

[40] Zhixiang Min, Yiding Yang, and Enrique Dunn. Voldor: Vi-
sual odometry from log-logistic dense optical flow residuals.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020. 2

[41] Dominik Muhle, Lukas Koestler, Krishna Murthy Jatavallab-
hula, and Daniel Cremers. Learning correspondence uncer-
tainty via differentiable nonlinear least squares. In CVPR,
2023. 2

[42] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D
Tardos. Orb-slam: a versatile and accurate monocular slam
system. IEEE transactions on robotics, 2015. 1

[43] Kiru Park, Timothy Patten, and Markus Vincze. Pix2pose:
Pixel-wise coordinate regression of objects for 6d pose esti-
mation. In ICCV, 2019. 1, 2

[44] Luis Pineda, Taosha Fan, Maurizio Monge, Shobha
Venkataraman, Paloma Sodhi, Ricky TQ Chen, Joseph Ortiz,
Daniel DeTone, Austin Wang, Stuart Anderson, Jing Dong,
Brandon Amos, and Mustafa Mukadam. Theseus: A Library
for Differentiable Nonlinear Optimization. Advances in Neu-
ral Information Processing Systems, 2022. 3

[45] Mahdi Rad and Vincent Lepetit. Bb8: A scalable, accurate,
robust to partial occlusion method for predicting the 3d poses
of challenging objects without using depth. In ICCV, 2017.
2

[46] René Ranftl and Vladlen Koltun. Deep fundamental matrix
estimation. In ECCV, 2018. 2

[47] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. Orb: An efficient alternative to sift or surf. In ICCV,
2011. 7

[48] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks. In CVPR, 2020. 2

[49] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In CVPR, 2016. 8

[50] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram
Burgard, and Daniel Cremers. A benchmark for the evalua-
tion of rgb-d slam systems. In 2012 IEEE/RSJ international
conference on intelligent robots and systems, 2012. 5, 8

[51] Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ
Tedrake. Do differentiable simulators give better policy gra-
dients? In International Conference on Machine Learning,
pages 20668–20696. PMLR, 2022. 3

[52] Chengzhou Tang and Ping Tan. BA-net: Dense bundle ad-
justment networks. In ICLR, 2019. 2, 3

[53] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir
Navab. Cnn-slam: Real-time dense monocular slam with
learned depth prediction. In CVPR, 2017. 2

[54] Zachary Teed and Jia Deng. DROID-SLAM: Deep visual
SLAM for monocular, stereo, and RGB-d cameras. In Ad-
vances in Neural Information Processing Systems, 2021. 1,
2, 5, 8, 11, 12, 13

[55] Zachary Teed, Lahav Lipson, and Jia Deng. Deep patch vi-
sual odometry. Advances in Neural Information Processing
Systems, 2023. 1, 2, 3, 5, 8, 12, 13

[56] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Niko-
laus Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas
Brox. Demon: Depth and motion network for learning
monocular stereo. In CVPR, 2017. 2

[57] Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni.
Deepvo: Towards end-to-end visual odometry with deep re-
current convolutional neural networks. In IEEE Int. Conf.
Robotics and Automation, 2017. 1, 2

[58] Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu,
Yuheng Qiu, Chen Wang, Yafei Hu, Ashish Kapoor, and Se-
bastian Scherer. Tartanair: A dataset to push the limits of
visual slam. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2020. 2, 5, 8

[59] Wenshan Wang, Yaoyu Hu, and Sebastian Scherer. Tartanvo:
A generalizable learning-based vo. In Conference on Robot
Learning, 2021. 1, 2, 8

[60] Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cre-
mers. D3vo: Deep depth, deep pose and deep uncertainty for
monocular visual odometry. In CVPR, 2020. 2

[61] Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox.
Deeptam: Deep tracking and mapping. In ECCV, 2018. 2

[62] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
Lowe. Unsupervised learning of depth and ego-motion from
video. In CVPR, 2017. 1, 2

27516

