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Abstract

A simple yet effective method for occlusion-robust 3D
human mesh reconstruction from a single image is pre-
sented in this paper. Although many recent studies have
shown the remarkable improvement in human mesh recon-
struction, it is still difficult to generate accurate meshes
when person-to-person occlusion occurs due to the ambigu-
ity of who a body part belongs to. To address this problem,
we propose an instance-aware contrastive learning scheme.
Specifically, joint features belonging to the target human
are trained to be proximate with the center feature (i.e.,
feature extracted from the body center position). On the
other hand, center features of different human instances are
forced to be far apart so that joint features of each per-
son can be clearly distinguished from others. By interpret-
ing the joint possession based on such contrastive learning
scheme, the proposed method easily understands the spa-
tial occupancy of body parts for each person in a given im-
age, thus can reconstruct reliable human meshes even with
severely overlapped cases between multiple persons. Ex-
perimental results on benchmark datasets demonstrate the
robustness of the proposed method compared to previous
approaches under person-to-person occlusions. The code
and model are publicly available at: https://github.
com/DCVL-3D/InstanceHMR_release.

1. Introduction
Recently, 3D human mesh reconstruction has become a ma-
jor research topic with the increasing demand in entertain-
ment areas such as AR/VR and sports broadcasting. In
line with this trend, considerable efforts have been made
to predict reliable meshes from a single image by using
deep learning techniques. Specifically, model-based meth-
ods, which aim to reconstruct human poses and shapes by
estimating parameters of the skinned multi-person linear
(SMPL) model [32], have been introduced. Since the prob-
lem of inferring a large number of vertices is simplified to
the problem of estimating a few parameters through various
network architectures, model-based approaches have been
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actively explored while bringing the significant progress in
human mesh reconstruction [2, 4, 15, 18, 19, 21, 24, 25,
37, 46]. On the other hand, model-free approaches also
have drawn a lot of attentions due to their ability to ex-
press local details of mesh surfaces by directly regress-
ing every vertex without any constraint of the parameter
space. In particular, the transformer architecture has been
widely adopted to reconstruct accurate meshes by consid-
ering the relationship between vertices in a global man-
ner [5, 17, 27, 28, 44, 45, 50, 51].

Despite meaningful advances in the field of 3D hu-
man mesh reconstruction, person-to-person occlusions fre-
quently occurring in crowd scenes still remain a challeng-
ing issue due to ambiguities of possession for body parts.
To resolve this issue, several approaches have recently be-
gun to be introduced. For example, there have been at-
tempts to estimate discriminative locations of each person
in the 2D space and utilize them to extract features for in-
dividual mesh regression [7, 16, 38]. Reasoning the depth
order of multiple people also has been considered to un-
derstand the relationship between overlapped subjects in a
given image [11, 39, 47]. Some methods first predict the
occlusion-robust 3D skeletons, which form reliable poses
even for invisible body parts, and then lift them to mesh
structures [31]. Even though considerable efforts have been
consistently devoted to this task, attempts to exploit contex-
tual cues of the occluded area, which is occupied by each
person, are still insufficient.

In this paper, a new perspective for effectively han-
dling person-to-person occlusions is presented. In the scene
where people are overlapped, one of the biggest obstacles is
the uncertainty about the ownership of a body part. While
it is relatively easy to semantically understand which area
in a given image corresponds to which type of body part
(e.g., hand or foot), it can be challenging to determine who
owns that body part. This makes the model confused and
eventually yields unnatural reconstruction results. To deal
with this problem, we propose to guide the network to learn
discriminative representations of body parts for each person
by our instance-aware contrastive learning scheme. Specif-
ically, two novel feature maps, i.e., center-aligned instance
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Figure 1. (a) An example of person-to-person occlusion. (b), (c), and (d) Visualizations of the information adopted to guide the feature
encoding for human mesh reconstruction in OCHMR [16], 3DCrowdNet [7], and the proposed method, respectively. For better visibility,
all joints are represented in a single image at the 2D pose heatmap of (c) and the joint heatmap of (d), and only a few of joint features (e.g.,
right hand, left elbow, and right foot) are shown in the joint-aligned instance map of (d).

map and joint-aligned instance map, are encoded in the pro-
posed architecture, which can describe the possession rela-
tionship between all human instances and their visible body
joints. These maps learn to represent the identity informa-
tion of each human instance by forcing the center feature
to pull joint features of the same person while pushing out
center features of non-target persons in the latent space.
Note that center features and joint features are sampled at
the body center position and joint locations in the center-
aligned instance map and the joint-aligned instance map,
respectively, as shown in Fig. 1(d). Such identity represen-
tations make it easy to distinguish which instance each joint
belongs to, thus the model can better understand the oc-
cluded context and determine the area of the image to focus
on for occluded human mesh reconstruction. A compari-
son between previous approaches and the proposed method
for handling person-to-person occlusions is illustrated in
Fig. 1. In [16], relative positions of multiple persons are
given to the model in the form of global and local center
maps as shown in Fig. 1(b). However, since the center po-
sition is an extremely small amount of information com-
pared to the complex body structure, the model may hardly
figure out details of body part regions in occlusion situa-
tions. On the other hand, the spatial guidance of the body
region for the target person is provided to the network based
on the 2D pose heatmap in [7]. However, features of non-
target person areas also can be unnecessarily fused into fea-
tures for target mesh reconstruction (see the bottom part of
Fig. 1(c)). Unlike such previous approaches, the proposed
method clearly indicates the possession of all body parts by
expressing the identity information at joint locations as well
as body center positions via the instance-aware contrastive
learning scheme as shown in Fig. 1(d). Moreover, meshes
for every person can be reliably reconstructed in a single
stream (i.e., without using the bounding box) by consider-
ing the mutual relationship among the spatial occupancy of
each person’s body part. The main contributions of this pa-
per are summarized as follows:

• We propose to indicate the spatial occupancy of
body parts corresponding to each human instance for
occlusion-robust 3D human mesh reconstruction. With
the awareness of the body part possession of every
person, the model can easily understand the person-
to-person occlusion and successfully generate human
meshes with natural poses.

• We represent the relationship between human in-
stances and their spatial keypoints (i.e., body cen-
ters and joints) at the feature level via the proposed
instance-aware contrastive learning scheme. Specifi-
cally, by guiding the center feature of the target person
to push out that of non-target persons and pull corre-
sponding joint features in the latent space, identities of
different persons can be distinctively embedded into
center and joint features.

2. Related Works
In this Section, we present a systematic review of previous
methods for monocular 3D human mesh reconstruction and
explore various approaches for handling person-to-person
occlusions.

2.1. 3D Human Mesh Reconstruction

Deep learning-based methods for 3D human mesh recon-
struction can be divided into two main groups, i.e., model-
based and model-free methods. The former aims to estimate
pose and shape parameters of the SMPL [2] model. In the
early stage, Kanazawa et al. [15] proposed to regress SMPL
parameters by using the end-to-end convolutional neural
network and devised the adversarial loss for plausible mesh
generation. Kolotouros et al. [19] designed the optimiza-
tion loop that can be combined with end-to-end regression
frameworks such as [15], to further refine reconstruction re-
sults. Moreover, Zhang et al. [46] tried to rectify meshes by
iteratively feeding pyramidal mesh-aligned features into the
mesh regression network. A bottom-up framework, which
predicts meshes of multiple persons in a given image dur-
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ing a single inference, was introduced by Sun et al. [38] for
the first time. Specifically, they proposed to extract SMPL
parameters by the sampling process based on body center
positions. Li et al. [26] incorporated the bounding box lo-
cation into the network for accurately estimating the global
orientation. To reconstruct the human mesh that is aligned
well to the image pixel, Shetty et al. [37] proposed to first
predict vertices on the input image plane, and then com-
pute SMPL parameters by comparing them with the tem-
plate mesh part by part based on inverse kinematics. Cho et
al. [4] attempted to learn the consistency of human pose and
shape in arbitrary view directions by using neural feature
fields. In contrast to such model-based approaches, model-
free methods directly estimate 3D coordinates of mesh ver-
tices. As a pioneer, Kolotouros et al. [20] adopted the graph
convolutional neural network (GraphCNN) to effectively
transform image features into vertex coordinates. Choi et
al. [6] also utilized GraphCNN to lift estimated 2D and 3D
poses to the 3D mesh. Meanwhile, Lin et al. [27] presented
a new direction in model-free approaches, by employing
the transformer encoder with the dimension reduction tech-
nique for mesh regression. They further improved the per-
formance by incorporating GraphCNN into the transformer
encoder block [28]. To alleviate the computational burden
of the transformer-based architecture, Cho et al. [5] pro-
posed to disentangle image features and geometric param-
eters of the human body based on the cross-attention mod-
ule. Kim et al. [17] designed a point-guided feature sam-
pling scheme to effectively extract vertex-relevant features
for the transformer-based mesh regressor. More recently,
Foo et al. [8] adopted the diffusion model for the human
mesh reconstruction by leveraging the pose heatmap in the
diffusion process to enable the mesh estimation conditioned
on the input image.

2.2. Handling Person-to-Person Occlusions

Even though many studies mentioned above have brought
significant advances for monocular 3D human mesh re-
construction, they still suffer from ambiguities driven by
person-to-person occlusions, which often occur in real-
world environments. To cope with this problem, there have
been various technical attempts. For example, Jiang et al.
[11] introduced a new loss function that minimizes the dis-
crepancy between the human segmentation masks and pro-
jected meshes to arrange the depth order of the people. In
a similar vein, Zhang et al. [47] tried to learn the ordinal
relation by supervising the difference between depth values
of multiple persons. Instead of simply guiding the network
via loss functions, Sun et al. [39] incorporated the bird’s-
eye-view body center heatmap into the pipeline of mesh es-
timation to consider the depth cue. Yang et al. [43] adopted
to synthesize the other people to the input data for consid-
eration of more variants from person-to-person occlusions.
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Figure 2. The detailed process of the instance-aware contrastive
learning scheme. Note that the ground truth of body center and
joint positions is used for the feature sampling.

To specify the position of the target person, Khirodkar et
al. [16] introduced the context normalization block, which
fuses global and local center heatmaps with corresponding
features. Choi et al. [7] utilized the 2D pose heatmap to
focus on the feature belonging to the area of the target per-
son in crowded scenes. Cha et al. [3] attempted to refine
multiple human meshes based on inter-person relations that
are computed by the transformer architecture. Liu et al.
[31] proposed to apply the knowledge transfer technique
to the 3D keypoint detection [49] for successfully reason-
ing invisible body parts under occlusions. Li et al. [22]
proposed a body center attention mechanism to consider
spatial-temporal relations of multiple persons at the pixel
level. To complement the lack of the training data under
multi-person scenes, Sun et al. [40] tried to synthesize plau-
sible crowded examples by putting human samples at ap-
propriate places of the given image with a reasonable scale
according to the scene context. Moreover, they also pro-
posed to learn the consistency between features extracted
from the same human sample with and without occlusions.

3. Proposed Method
The proposed method aims to learn the spatial occupancy of
body parts for each person by using the instance-aware con-
trastive learning scheme as shown in Fig. 2. By incorporat-
ing the identity information into encoded features, the pro-
posed method can achieve the robust performance against
person-to-person occlusions. The overall architecture of the
proposed method is illustrated in Fig. 3.

3.1. Instance-aware Contrastive Learning

In the bottom-up approach for human mesh reconstruction,
it is important to grasp the individual cue between multiple
persons. To this end, we guide the process of mesh estima-
tion based on the regional distinction of each human area,
i.e., 24 body joints defined by the SMPL model [2]. Specif-
ically, the backbone feature is encoded into two different
feature maps, i.e., center-aligned instance map and joint-
aligned instance map, through the corresponding network
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Figure 3. The overall architecture of the proposed method for occluded human mesh reconstruction. h and w are set to 64. θ and β denote
pose and shape parameters of the SMPL model. Note that instance-aware contrastive learning is conducted only in the training phase.

branch as shown in Fig. 3. Note that the predicted center
heatmap HC and joint heatmap HJ are adopted in this en-
coding process to provide the spatial information of body
centers and joints. In addition, the positional encoding is
also applied to the center-aligned instance map to prevent
ambiguous representations between different people who
have similar appearances. After that, center features and
joint features are sampled at body center locations and vis-
ible joint positions of the center-aligned instance map and
the joint-aligned instance map, respectively. These sampled
features are subsequently projected into the latent space by
using the nonlinear projector, which consists of fully con-
nected layers and ReLUs (see PC and PJ in Fig. 3).

Now, such projected features are fed into our instance-
aware contrastive learning scheme. The detailed process is
shown in Fig. 2. First, the center feature of the target person
(i.e., anchor) is forced to push out those of other persons. By
placing different human instances far apart from each other
in the latent space, center features can implicitly represent
the identity information for each person in a discriminative
way. Second, the center feature pulls joint features belong-
ing to the same person to a close distance. This facilitates
the joint feature to express the human instance to which it
belongs, by embedding the target identity information. To
this end, two loss functions are designed based on the cosine
similarity, which is suitable for measuring the directional
coherence between embedding vectors, as follows:

Lpush(a, b) = 1 +
a · b

∥a∥∥b∥
,

Lpull(a, b) = 1− a · b
∥a∥∥b∥

.

(1)

Specifically, Lpush is used to maximize the distance be-
tween center features of different people and Lpull is used
to minimize the distance between the center feature and the
joint feature of the same person in the latent space. By con-
sidering every possible center-to-center and center-to-joint
combination, the proposed contrastive loss is defined as fol-
lows:

Lcont =
2

N(N − 1)

N∑
i ̸=j

Lpush(ui, uj)

+
1

N

N∑
i=1

1

Ki

Ki∑
k=1

Lpull(ui, v
k
i ),

(2)

where u and v indicate the center feature and the joint fea-
ture, respectively. N and Ki denote the number of peo-
ple and the number of visible joints belonging to the i-
th person in the input image, respectively. The effect of
the proposed instance-aware contrastive learning scheme is
shown in Fig. 4. As can be seen, the identity informa-
tion is embedded into latent features during our instance-
aware contrastive learning. Consequently, it is thought that
both center-aligned instance map and joint-aligned instance
map play an important role to describe the possession rela-
tionship between human instances and their visible joints.
Note that the instance-aware contrastive learning part is
conducted only in the training phase.

In order to utilize this possession cue in the process
of mesh regression, we incorporate the center-aligned in-
stance map and the joint-aligned instance map into the net-
work branch for estimating the SMPL parameter map (see
the second branch from bottom in Fig. 3). To accurately
indicate valid locations, the center heatmap and the joint
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(a) (d)(b) (c)

Figure 4. A visualization example of center features and joint features in the latent space. The feature dimension is reduced from 64 to
3 by using [33] for the visualization. (a) Input image with marks for positions of body centers (dark) and joints (bright). Note that points
belonging to the same person are represented as the same color attribute. The effect of the proposed instance-aware contrastive learning
scheme is shown sequentially, i.e., (b) before training, (c) middle of training, and (d) after training.

heatmap are also employed for this concatenation process.
Finally, pose and shape parameters of each person are sam-
pled from the SMPL parameter map according to the pre-
dicted center position in a similar way of [38]. It is notewor-
thy that the model can precisely consider the occupancy of
each human instance via such identity representation in the
feature space, which leads to generation of reliable human
meshes even with various person-to-person occlusions. An
example of occluded human mesh reconstruction is shown
in the bottom right of Fig. 3.

3.2. Loss functions

The proposed method is trained based on nine loss terms,
i.e., contrastive loss Lcont (which is explained in subsec-
tion 3.1), body center heatmap loss Lcenter, joint heatmap
loss Ljoint, pose loss Lpose, shape loss Lshape, Mixture
Gaussian prior loss Lprior, 3D joint loss L3d, Procrustes-
aligned 3D joint loss Lpa3d, and 2D joint loss L2d. First,
the focal loss [30, 38] is adopted to train the body center
heatmap HC and the joint heatmap HJ , which is defined as
follows:

Lfocal(H, H̃, H̃
′
) = −Lpos(H, H̃

′
) + Lneg(H, H̃, H̃

′
)∑

H̃ ′ ,

Lneg(H, H̃, H̃
′
) = log(1−H)H2(1− H̃)4(1− H̃

′
),

Lpos(H, H̃
′
) = log(H)(1−H)2H̃

′
,

(3)

where H and H̃ denote a single heatmap and the corre-
sponding ground truth, respectively. H̃

′
indicates the binary

map that is marked on the location of the positive class in
H̃ . By using the focal loss, Lcenter and Ljoint are formu-
lated as follows:

Lcenter = Lfocal(HC , H̃C , H̃
′

C),

Ljoint =
1

J

J∑
j=1

Lfocal(H
j
J , H̃

j
J , H̃

′j
J ),

(4)

where J is the number of joint heatmaps which is set to 24
according to the SMPL model. The remaining loss terms

are used to directly supervise the process of human mesh
reconstruction. In particular, Lpose and Lshape compute
the difference between predicted pose and shape parame-
ters and the corresponding ground truth based on L2 loss,
respectively [15, 20]. Mixture Gaussian prior loss Lprior

is employed to attain the naturalness of body meshes as in-
troduced in [2]. In our work, Euclidean distance is utilized
to calculate the spatial gap in the coordinate system for fol-
lowing three loss terms. The distance between estimated
3D joints and the corresponding ground truth is computed
by L3d [15, 20]. Lpa3d indicates L3d after Procrustes align-
ment is conducted to the reconstructed mesh [38]. The co-
ordinates of joints projected onto the 2D space are used to
measure L2d [15, 20]. Finally, the total loss function is de-
fined by using the weighted sum of all the aforementioned
loss terms as follows:

Ltotal = λcontLcont + λcenterLcenter + λjointLjoint

+ λposeLpose + λshapeLshape + λpriorLprior

+ λ3dL3d + λpa3dLpa3d + λ2dL2d,
(5)

where λcont, λcenter, λjoint, λpose, λshape, λprior, λ3d,
λpa3d, and λ2d are the balancing factor for each loss term,
which are set to 50, 160, 50, 80, 6, 1.6, 200, 360, and 400,
respectively.

4. Experimental Results
4.1. Implementation Details

The proposed method is implemented on the PyTorch
framework with an Intel E5-1650@3.60GHz CPU and two
NVIDIA GeForce RTX 3090 GPUs. All the parameters of
the proposed network are updated by the Adam optimizer,
where momentum factors are set to 0.9 and 0.999, respec-
tively. We use the batch size of 64 and the learning rate is
set to 5× 10−6 during 30 training epochs. Input images are
randomly cropped and rotated before they are resized to the
resolution of 512× 512 pixels by using zero padding.

4.2. Benchmark Datasets
The proposed method is trained by using three 3D human
pose datasets (i.e., Human3.6M [10], MPI-INF-3DHP [34],
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Figure 5. Results of 3D human mesh reconstruction on the CrowdPose [23] dataset. From top to bottom: input images, results by
ROMP [38], 3DCrowdNet [7], and the proposed method.

Methods
3DPW-PC OCHuman CrowdPose

MPJPE(↓) PA-MPJPE(↓) MPVPE(↓) AP(↑) AP50(↑) AP75(↑) APM(↑) APL(↑) AP(↑) AP50(↑) AP75(↑)

SPIN* [19] 129.6 82.6 157.6 12.7 46.8 19.4 17.8 26.2 16.4 40.1 10.6
PyMAF* [46] 126.7 81.3 154.3 14.3 48.7 21.5 18.0 28.7 17.4 42.7 13.0
ROMP* [38] 119.7 79.7 152.8 15.6 55.0 23.6 18.7 30.0 18.9 44.6 13.8
ROMP [38] 115.6 75.8 147.5 19.8 56.2 25.0 19.3 32.9 28.5 58.8 24.7
OCHMR* [16] 117.5 77.1 149.6 24.8 60.7 28.6 22.3 34.2 21.4 48.3 16.5
CLIFF* [26] – – – 23.2 49.8 20.4 – – 27.4 51.5 25.9
HMDiff* [8] 114.2 73.5 143.1 – – – – – – – –
CoordFormer* [22] 101.5 79.3 – – – – – – – – –

Ours* 99.9 76.3 126.4 30.5 75.8 17.3 35.1 30.5 28.5 61.6 23.2
Ours 102.0 77.2 131.0 34.9 80.0 24.0 27.1 35.0 31.6 65.7 26.7

Table 1. Performance comparison of occluded human mesh reconstruction based on 3DPW-PC, OCHuman, and CrowdPose datasets
(best results and second results are shown in bold and underlined, respectively). Note that * denotes the performance without using the
CrowdPose dataset for training.

and MuCo-3DHP [35]) and four 2D human pose datasets
(i.e., MPII [1], LSP [12], COCO [29], and CrowdPose [23]).
In particular, only 2D pose labels are used for [23] while
pseudo mesh labels, which are generated by [14], are em-
ployed to utilize other 2D human pose datasets [1, 12, 29]
for training.

For the performance evaluation of the proposed method,
four person-to-person occlusion datasets (i.e., 3DPW-
PC [41], OCHuman [48], CrowdPose [23], and CMU-
Panoptic [13]) are adopted. Specifically, the 3DPW-PC
dataset is a subset of the 3DPW dataset where images
taken under person-to-person occlusions are collected ac-

cording to [38]. The OCHuman dataset consists of se-
vere occlusion cases between multiple persons while the
CrowdPose dataset contains various person-to-person oc-
clusions occurring in crowded scenes. Moreover, the CMU-
Panoptic dataset includes multi-person sequences with di-
verse inter-person interactions. Based on such occlusion-
oriented benchmark datasets, the performance of the pro-
posed method will be evaluated and analyzed in-depth in
the following subsection.

4.3. Performance Evaluation
Quantitative Evaluation. To show the effectiveness of the
proposed method, we compare ours with previous meth-
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Figure 6. More results of 3D human mesh reconstruction by the proposed method on 3DPW-PC [41] (1st row) and OCHuman [48] (2nd
row) datasets.

Methods Haggl. Mafia Utim. Pizza Mean

SPIN [19] 124.3 132.4 150.4 153.5 133.1
CRMH [11] 129.6 133.5 153.0 156.7 143.2
BMP [47] 120.4 132.7 140.9 147.5 135.4
PARE [18] 143.1 193.1 219.8 190.4 186.6
ROMP [38] 111.8 129.0 148.5 149.1 134.6
OCHMR [16] 115.5 123.7 142.6 150.6 133.1
3DCrowdNet [7] 109.6 135.9 129.8 135.6 127.6

Ours 109.1 122.5 137.8 135.0 126.1

Table 2. Performance comparison by MPJPE based on the CMU-
Panoptic dataset (best results and second results are shown in bold
and underlined, respectively).

ods for 3D human mesh reconstruction, i.e., SPIN [19],
CRMH [11], BMP [47], PyMAF [46], PARE [18],
ROMP [38], OCHMR [16], 3DCrowdNet [7], HMDiff [8],
and CoordFormer [22], based on person-to-person occlu-
sion benchmarks. To evaluate the proposed method on
3D human mesh datasets, three metrics are adopted, i.e.,
mean per joint position error (MPJPE) [10], Procrustes-
aligned mean per joint position error (PA-MPJPE) [52], and
mean per vertex position error (MPVPE) [36]. Specifically,
MPJPE indicates the average value of the Euclidean dis-
tance between the predicted 3D joint and the corresponding
ground truth. PA-MPJPE means MPJPE that is calculated
after applying the Procrustes analysis to the estimated body
mesh. MPVPE is computed by averaging the Euclidean
distance between the predicted vertex and the correspond-
ing ground truth. For 2D human pose datasets, the per-
formance is evaluated by using the average precision (AP),
which is calculated based on the object keypoint similarity
(OKS) [29]. In addition, AP according to different thresh-
old values (i.e., AP50 and AP75) and scales of the human
object (i.e., APM and APL) is also adopted for the perfor-
mance comparison. Note that ResNet-50 [9] is employed as
the backbone network of the proposed method, which is the
default setting for the performance report in this subsection.

Methods MPJPE(↓) PA-MPJPE(↓) MPVPE(↓)

METRO [27] 77.1 47.9 88.2
PARE [18] 74.5 46.5 88.6
ROMP [38] 76.7 47.3 93.4
MeshGraphormer [28] 74.7 45.6 87.7
FastMETRO [5] 73.5 44.6 84.1
CLIFF [26] 72.0 45.7 85.3
PointHMR [17] 73.9 44.9 85.5
ImpHMR [4] 74.3 45.4 87.1
HMDiff [8] 72.7 44.5 82.4
CoordFormer [22] 79.4 46.5 94.4

Ours (ResNet-50) 78.0 47.8 85.6
Ours (HRNet-32) 73.2 44.3 80.3

Table 3. Performance comparison based on the 3DPW dataset by
following the protocol 3, i.e., fine-tuned on 3DPW (best results and
second results are shown in bold and underlined, respectively).

First of all, the performance comparison based on
3DPW-PC, OCHuman, and CrowdPose datasets is shown
in Table 1. As can be seen, the proposed method shows the
meaningful performance improvement compared to previ-
ous approaches. Specifically, MPJPE and MPVPE on the
3DPW-PC dataset prove that our model can successfully
estimate both pose and shape for occluded human mesh re-
construction. Moreover, the proposed method outperforms
all state-of-the-art methods in terms of AP and AP50 with
the significant performance gain on OCHuman and Crowd-
Pose datasets. In Table 2, MPJPE of the proposed method
on the CMU-Panoptic dataset is compared with others. We
can see that the proposed method yields the reliable per-
formance in most sequences while achieving the best re-
sult in the average MPJPE (see the rightmost column of Ta-
ble 2). From the result reported in Tables 1 and 2, we could
confirm that the proposed instance-aware contrastive learn-
ing scheme is effective to reconstruct human meshes under
various person-to-person occlusions. Furthermore, we also
evaluate the proposed method on the entire test set of 3DPW
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Methods MPJPE(↓) PA-MPJPE(↓)

Baseline 104.2 80.2(i.e., w/o center and joint features)
Ours† 102.2 78.2
Ours 102.0 77.2

Table 4. Performance analysis according to the change of the net-
work architecture. † denotes the performance without applying
positional encoding to the center-aligned instance map.

Feature Dimension MPJPE(↓) PA-MPJPE(↓)

32 103.5 78.3
64 102.0 77.2
128 103.1 78.0
256 104.2 78.6

Table 5. Performance variations according to the change of the
feature dimension for the center-aligned instance map and the
joint-aligned instance map.

by following the protocol 3 [41]. In particular, we conduct
the experiment by using two different backbone networks,
i.e., ResNet-50 [9] and HRNet-32 [42], and the correspond-
ing results are shown in Table 3. As can be seen, the pro-
posed method performs robustly in a variety of real-world
environments, not just for occlusion cases.
Qualitative Evaluation. The qualitative comparison of the
proposed method with ROMP [38] and 3DCrowdNet [7]
based on the CrowdPose dataset is shown in Fig. 5. As
can be seen, the proposed method can successfully recon-
struct multiple human meshes in complicated person-to-
person occlusions. Specifically, the reconstructed mesh is
well algined to the target person without confusion with
other persons (see the left two examples in Fig. 5). This
is because the proposed method is able to effectively uti-
lize the identity information of each person in the feature
space. The fourth and fifth columns of Fig. 5 show the ro-
bustness of our method in crowded scenes. Furthermore, the
proposed method works reliably even under severe occlu-
sions between multiple persons as shown in the rightmost
three examples in Fig. 5. More reconstruction results by the
proposed method on 3DPW-PC and OCHuman datasets are
also shown in Fig. 6. Based on this, it is thought that our
instance-aware contrastive learning scheme is greatly help-
ful in understanding the occlusion context by overlapped
persons and generating the plausible human mesh.

4.4. Ablation Study

In this subsection, several comparative experiments are con-
ducted to demonstrate the effectiveness of the proposed
method. The performance for all the experiments in this
subsection is evaluated on the 3DPW-PC [41] dataset. First

(b)(a) (c)

Figure 7. (a) Input image. (b) Reconstruction result by baseline.
(c) Reconstruction result by the proposed method.

of all, the effect of our instance-aware contrastive learning
scheme is analyzed and the corresponding result is shown
in Table 4. As can be seen in Table 4, the performance
for occluded human mesh reconstruction is significantly im-
proved by leveraging the identity information into latent
features for centers and their related joints. Furthermore,
we can see that applying positional encoding to the center-
aligned instance map is also useful for the model to dis-
criminatively represent each center feature under severe oc-
clusion cases. The effect of our instance-aware learning
scheme is shown in Fig. 7. In the following, we check the
performance variation by the change of the feature dimen-
sion for both center-aligned and joint-aligned instance maps
is shown in Table 5. The best performance is achieved when
the feature dimension is set to 64, thus this setting has been
used as default for the performance evaluation of the pro-
posed method. Note that the performance in all the settings
is better than our baseline (i.e., the first row of Table 4).
Based on ablation studies, we can conclude that the pro-
posed instance-aware contrastive learning scheme is effec-
tive for occluded human mesh reconstruction under various
real-world environments.

5. Conclusions
In this paper, we present a simple yet powerful method for
occluded human mesh reconstruction, especially focusing
on person-to-person occlusions. The core of the proposed
method is to embed the identity information into latent fea-
tures for body centers and joints of each person. To do
this, we propose a novel instance-aware contrastive learn-
ing scheme. Experimental results on benchmark datasets
show that the proposed method works reliably even under
various person-to-person occlusions occurring in real-world
environment.
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