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Abstract ing to solve a single problem: given a Street View image

Planet-scale image geolocalization remains a challeng-
ing problem due to the diversity of images originating from
anywhere in the world. Although approaches based on
vision transformers have made significant progress in ge-
olocalization accuracy, success in prior literature is con-
strained to narrow distributions of images of landmarks,
and performance has not generalized to unseen places. We
present a new geolocalization system that combines seman-
tic geocell creation, multi-task contrastive pretraining, and
a novel loss function. Additionally, our work is the first
to perform retrieval over location clusters for guess refine-
ments. We train two models for evaluations on street-level
data and general-purpose image geolocalization; the first
model, PIGEON, is trained on data from the game of Ge-
oGuessr and is capable of placing over 40% of its guesses
within 25 kilometers of the target location globally. We also
develop a bot and deploy PIGEON in a blind experiment
against humans, ranking in the top 0.01% of players. We
further challenge one of the world’s foremost professional
GeoGuessr players to a series of six matches with millions
of viewers, winning all six games. Our second model, PI-
GEOTTO, differs in that it is trained on a dataset of images
from Flickr and Wikipedia, achieving state-of-the-art re-
sults on a wide range of image geolocalization benchmarks,
outperforming the previous SOTA by up to 7.7 percentage
points on the city accuracy level and up to 38.8 percent-
age points on the country level. Our findings suggest that
PIGEOTTO is the first image geolocalization model that ef-
fectively generalizes to unseen places and that our approach
can pave the way for highly accurate, planet-scale image
geolocalization systems. Our code is available on GitHub.'

1. Introduction

The online game GeoGuessr has recently reached 65 mil-
lion players [22], attracting a worldwide crowd of users try-

https://github.com/LukasHaas/PIGEON.

taken somewhere in the world, identify its location. The
problem of uncovering geographical coordinates from vi-
sual data is more formally known in computer vision as im-
age geolocalization, and, just like the game of GeoGuessr,
remains notoriously challenging. The scale and diversity
of our planet, seasonal appearance disturbance, and climate
change impacts are some among the many reasons why im-
age geolocalization remains an unsolved problem.

Over the past decade, researchers have advanced the
field by casting image geolocalization as a classification
task [38], developing hierarchical approaches to problem
modeling [7, 25, 27], as well as leveraging vision transform-
ers [7, 27] and contrastive pretraining [23]. Yet despite this
progress, the most capable models have been highly depen-
dent on distributional alignments between training and test-
ing data, failing to generalize to more diverse datasets that
predominantly include unseen locations [7].

In this work, we present a two-pronged multi-task mod-
eling approach that both exhibits world-leading perfor-
mance in the game of GeoGuessr and achieves state-of-the-
art performance on a wide range of image geolocalization
benchmark datasets. First, we present PIGEON, a model
trained exclusively on planet-scale Street View data, tak-
ing a four-image panorama as input. PIGEON is the first
computer vision model to reliably beat the most experi-
enced players in the game GeoGuessr, comfortably ranking
within the top 0.01% of players while also beating one of
the world’s best professional players in six out of six games
with millions of viewers. Our model achieves impressive
image geolocalization results on outdoor street-level images
globally, placing 40.4% of its geographic coordinate predic-
tions within a 25-kilometer radius of the correct location.

Subsequently, we evolve our model to PIGEOTTO
which differs from PIGEON in that it takes a single image
as input and is trained on a larger, highly diverse dataset of
over 4 million photos derived from Flickr and Wikipedia
and no Street View data. PIGEOTTO achieves state-of-
the-art results across a wide range of benchmark datasets,
including IM2GPS [14], IM2GPS3k [37], YFCC4k [37],
YFCC26k [25], and GWS15k [7]. The model slashes the
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Figure 1. Prediction pipeline and main contributions of PIGEON. Administrative boundary and training set metadata are hierarchically
ranked, clustered, and Voronoi tessellated to create semantic geocells. The geocell labels are then used to create continuous labels via
haversine smoothing. Additionally, we pretrain CLIP via geographic synthetic captions in a multi-task setting. The pretrained CLIP
model together with an OPTICS clustering model are employed to generate location cluster representations. During inference, an image
embedding is computed and first passed to a linear layer to create geocell predictions and to identify the topK geocell candidates. The
embedding is also used in our refinement pipeline to refine predictions within and across geocells. This is achieved by minimizing the
embedding L-distance between the inference image embedding and all location cluster representations across the fopK geocells. Finally,
predictions are refined within the top identified cluster to generate geographic coordinates as outputs.

median distance error roughly in half on three benchmark
datasets and more than five times reduces the median er-
ror on GWS15k which includes images from predominantly
unseen locations. PIGEOTTO is the first model that is ro-
bust to location and image distribution shifts by picking up
general locational cues in images as evidenced by the of-
ten double-digit percentage-point increase in performance
on larger evaluation radii. By performing well on out-
of-distribution datasets, PIGEOTTO closes a major gap in
prior literature that is essential for solving the problem of
image geolocalization.

As PIGEON and PIGEOTTO only differ in the training
data and hyperparameter settings, the efficacy of our ap-
proach has important implications for planet-scale image
geolocalization. Our contributions of semantic geocells,
multi-task contrastive pretraining, a new loss function, and
downstream guess refinement all contribute to minimizing
distance errors, as shown in our ablation studies in Sec-
tion 4. Still, it is important that future research addresses the
safety of image geolocalization technologies, ensuring re-
sponsible progress in developing computer vision systems.

2. Related work
2.1. Image geolocalization problem setting

Image geolocalization refers to the problem of mapping an
image to coordinates that identify where it was taken. This
problem, especially if planet-scale, remains a very challeng-
ing area of computer vision. Not only does a global problem
formulation render the problem intractable, but accurate im-
age geolocalization is also difficult due to changes in day-
time, weather, seasons, time, illumination, climate, traffic,
viewing angle, and many more factors.

The first modern attempt at planet-scale image geolo-
calization is attributed to IM2GPS (2008) [14], a retrieval-
based approach based on hand-crafted features. Depen-
dence on nearest-neighbor retrieval methods [43] using
hand-crafted visual features [8] meant that an enormous
database of reference images would be necessary for accu-
rate planet-scale geolocalization, which is infeasible. Con-
sequently, subsequent work decided to restrict the geo-
graphic scope, focusing instead on specific cities [40] like
Orlando and Pittsburgh [42] or San Francisco [5]; specific
countries like the United States [32]; and even mountain
ranges [3, 29, 34], deserts [35], and beaches [6].
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2.2. Vision transformers and multi-task learning

With the advent of deep learning, methods in image ge-
olocalization shifted from hand-crafted features to end-
to-end learning [24]. In 2016, Google released the
PlaNet [38] paper that first applied convolutional neural net-
works (CNNG5s) [19] to geolocalization. It also first cast the
problem as a classification task across “geocells” as a re-
sponse to research demonstrating that it was difficult for
deep learning models to directly predict geographic coor-
dinates via regression [9, 33]. This was due to the subtleties
in geographic data distributions and the complex interde-
pendence between latitudes and longitudes. The improve-
ments realized with deep learning led researchers to revisit
IM2GPS [37], apply CNNs to massive datasets of mobile
images [16], and deploy their models in the game of Ge-
oGuessr against human players [23, 32]. Prior literature has
also combined classification and retrieval approaches [18];
our work modernizes this approach via a hierarchical re-
trieval mechanism over location clusters, equivalent to pro-
totypical networks [31] with fixed parameters.

Following the success of transformers [36] in natural lan-
guage processing, the transformer architecture found its ap-
plication in computer vision. Pretrained vision transform-
ers (ViT) [17] and multi-modal derivatives such as Ope-
nAl’s CLIP [28] and GPT-4V [26] have successfully been
deployed to image geolocalization [1, 23, 26, 27, 40, 44].
Our approach is novel in that in pretrains CLIP specifically
for the task of image geolocalization in a multi-task fashion
via auxiliary geographic, demographic, and climate data.
Auxiliary data had previously been shown to aid in image
geolocalization [ 14, 27], but our work is the first to use aux-
iliary data for contrastive pretraining, retaining CLIP’s ex-
ceptional in-domain generalized zero-shot capabilities that
are critical for geolocalization performance [13].

2.3. Geocell partitioning

With image geolocalization framed as a classification prob-
lem, the chosen method of partitioning the world into ge-
ographical classes, or “geocells”, can have an enormous
effect on downstream performance. Previous approaches
rely on geocells that are either plainly rectangular, rect-
angular while respecting the curvature of the Earth and
being roughly balanced in class size [25] (as is the case
of Google’s S2 library?), or geocells that are effectively
arbitrary as a result of combinatorial partitioning, initial-
izing cells randomly but adjusting their shapes based on
the training dataset distribution [30]. Hierarchical ap-
proaches to geocell creation like in individual scene net-
works (ISNs) [25, 33] can help preserve semantic infor-
mation and exploit the hierarchical knowledge at different

2https://code.google.com/archive/p/s2-geometry-
library.

geospatial resolutions, for instance by categorizing the geo-
cells at the city, region, and country levels.

While the semantic construction of geocells has been
found to be of high importance to image geolocaliza-
tion [33], even recently published papers continue to use the
S2 library [7, 18, 27]. One of the possible reasons for this
design choice is that for larger datasets, even the most gran-
ular semantic geocells contain too many data points, caus-
ing the classification problem to be very imbalanced. Our
work addresses this limitation with a novel semantic geo-
cell creation method, combining hierarchical approaches
with clustering based on the training data distribution and
Voronoi tesselation as the missing link between the two. For
the first time, our approach renders semantic geocells useful
for any dataset size and geographic distribution.

2.4. Additional work

Other notable academic work cites the efficacy of cross-
view image geolocalization, especially for rural regions
with sparse, ground-level geo-tagged photos. Cross-view
approaches can combine land cover attributes and ground-
level and overhead imagery to increase robustness through
transfer learning [21, 41, 44]. Using land maps in par-
ticular is an important avenue for future research; in our
work, however, we aim to demonstrate our models’ perfor-
mance relying solely on ground-level images from diverse
settings.

3. Predicting image geolocations

Our image geolocalization system consists of both para-
metric and non-parametric components. This section first
explains our data pre-processing pipeline and then walks
through how we frame geolocalization as a distance-aware
classification problem. We then delineate our pretraining
and training stages, and finally describe how we refine loca-
tion predictions to improve street-level guess performance.

3.1. Geocell creation

Contemporary methods all frame image geolocalization as
a classification exercise, relying on geocells to discretize
the Earth’s surface into a set number of classes. Our work
experiments with two types of geocell creation methods.

Naive geocells. We first employ naive, rectangular geo-
cells inspired by the S2 library, subdividing every geocell
until roughly balanced class sizes are reached. In contrast
to S2 partitioning, our rectangular geocells are not of equal
geographic size, creating even more balanced classes.

Semantic geocells. One limitation of the S2 library and
our naive geocells is that the geocell boundaries are com-
pletely arbitrary and thus meaningless in the context of
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image geolocalization. Ideally, each geocell should cap-
ture the distinctive characteristics of its enclosed geographic
area. Political and administrative boundaries serve this pur-
pose well as they often not only capture country or region-
specific information (i.e. road markings and street signs)
but also follow natural boundaries, such as the flow of rivers
and mountain ranges which encode geological information.
Similar to Theiner et al. [33], we rely on planet-scale
open-source administrative data for our semantic geocell
design, drawing on non-overlapping political shapefiles of
three levels of administrative boundaries (country, admin 1,
and admin 2 levels) obtained from GADM [10]. Starting
at the most granular level (admin 2), our algorithm merges
adjacent admin 2 level polygons such that each geocell con-
tains at least a minimum number of training samples. Our
method attempts to preserve the hierarchy given by admin
1 level boundaries, never merges cells across country bor-
ders (defined by distinct ISO country codes) and, in contrast
to Theiner et al. [33], allows for more granular hierarchies.
Figure 2 shows an example of our semantic geocell design
preserving the semantics of urban and surrounding Paris.

(b) With our semantic geocells.

(a) With naive, rectangular geocells.

Figure 2. Geocell specifications around Paris, France.

OPTICS clustering & Voronoi tessellation. We further
address a major limitation in the semantic geocell design
of Theiner et al. [33] which is that some admin 2 areas are
not fine-grained enough to result in a balanced classifica-
tion dataset. This is especially the case for large training
datasets where the number of training examples for a sin-
gle, urban admin 2 area might greatly exceed the minimum
class size, requiring admin 2 areas to be meaningfully split
further. An important observation is that the geographic dis-
tribution of our training data already gives us an indication
of how to meaningfully subdivide our geocells because it
clusters around popular places and landmarks. We extract
these clusters using the OPTICS clustering algorithm [2].
Finally, we assign all yet unassigned data points to their
nearest clusters and employ Voronoi tessellation to define
contiguous geocells for every extracted cluster.

3.2. Hierarchical image geolocalization using
distance-based label smoothing

By discretizing the problem of image geolocalization, a
trade-off is created between the granularity of geocells and
predictive accuracy. More granular geocells enable fine-
grained predictions but also result in the classification prob-
lem becoming more difficult due to a higher cardinality.
Prior literature addresses this problem by generating sep-
arate geolocalization predictions across multiple levels of
geographic granularity, refining guesses at every subsequent
level [7, 25, 27]. Pramanick et al. [27] and Clark et al. [7]
further propose architectures that share some model param-
eters between different hierarchy levels, improving geolo-
calization performance. Surprisingly, all prior work suffers
from the same limitation: models figuratively guess in the
blind as they do not know which geocells are located next
to each other, learning their representations in isolation.
Our approach addresses this major limitation and im-
proves upon prior work by sharing all parameters between
multiple, implicit levels of geographic hierarchies. We
achieve this through a new loss function that relates adja-
cent geocells to each other, biasing the label based on the
haversine distance which calculates the distance between
two points on the Earth’s surface in kilometers. Given two
points, p; = (A1, ¢1) and py, = (A2, ¢2) with longitude
A and latitude ¢, and the earth’s radius r in kilometers, we
define the haversine distance Hav(p,, p,) as follows:

- X2 — A
Hav(py, pg) = 2r arcsin (Jshﬁ (u> + cos(éy) cos(bg) sin2 (g))
2 2

)

We then “haversine smooth” the original one-hot geocell

classification label using this distance metric according to
the following equation for a given sample n and geocell i:

Yn,i = exp(— [Hav(g;,x,) — Hav(g,,x,)] /7)  (2)

where g, are the centroid coordinates of the geocell polygon
of cell 7, g,, are the centroid coordinates of the true geo-
cell, x,, are the true coordinates of the example for which
the label is computed, and 7 is a temperature parameter
which is set to 75 for PIGEON and to 65 for PIGEOTTO
in our experiments. It is important to note that our “haver-
sine smoothing” is distinct from classical “label smoothing”
because labels are not decayed using a constant factor but
based on both the distance to the correct geocell and the true
location. Since for every training example, multiple geo-
cells will have a target y,, ; that is significantly larger than
zero, our model simultaneously learns to predict the cor-
rect geocell as well as an even coarser level of geographic
granularity. We design the following loss function based on
haversine smoothing for a particular training sample n:

En —— Z IOg (pn,z) . exp (_Hav(gi7xn) — Hav(gn,xn)>

-
gi€G

©))
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where p,, ; is the probability our model assigns to geocell
1 for sample n. An added benefit of using the loss of Equa-
tion (3) is that it aids generalization because hierarchy defi-
nitions vary across every training sample. Additionally, if a
sample lies close to the boundary of two geocells, this fact
will be reflected through approximately equal target labels
for these two geocells. This is especially helpful for larger,
often rural, geocells. Furthermore, because every target la-
bel y,, ; is now continuous and the difficulty of the classifi-
cation problem can be freely adjusted using 7, an arbitrary
number of geocells can be employed as long as geocells are
still contextually meaningful and contain a minimum num-
ber of samples. Finally, we observe that our classification
loss is now directly based on the distance to the true loca-
tion x,, of a given sample while circumventing the regres-
sion difficulties encountered in prior literature [9, 33].

(a) Without haversine smoothing.

(b) With haversine smoothing.

Figure 3. Impact of applying haversine smoothing over neighbor-
ing geocells for a location in Accra, Ghana.

3.3. Contrastive pretraining for geolocalization

To generate visual representations to then project onto our
geocells, our architecture uses OpenAl’s CLIP ViT-L/14
336 model as a backbone which is a multi-modal model that
was pretrained on a dataset of 400 million images and cap-
tions [28]. The reason why we employ CLIP is that it has
been shown to perform exceptionally well in generalized
zero-shot learning setups [28], which is a desirable property
for image geolocalization of both seen and unseen places.

In our experiments, we add a linear layer on top of
CLIP’s vision encoder to predict geocells. For model ver-
sions with multiple image inputs (i.e. four-image panorama
for PIGEON), we average the embeddings of all images.
Averaging embeddings resulted in a superior performance
compared to combining multiple embeddings via multi-
head attention or additional transformer layers.

In Haas et al. [13], the authors demonstrate that contin-
uing the pretraining of CLIP using domain-specific, syn-
thetic captions derived from caption templates improves the
generalized zero-shot performance on image geolocaliza-
tion tasks. We further improve upon their method through
the continued pretraining of CLIP in a multi-task fashion.

To this end, we augment our training datasets with geo-
graphic, climate, and directional auxiliary data, used to cre-
ate synthetic image captions by sampling caption compo-
nents from different category templates and concatenating
them. For PIGEOTTO, we use caption components based
on the location, climate, and traffic direction. Meanwhile,
for PIGEON, the Street View metadata allows us to addi-
tionally infer compass directions and the season, the latter
included to avoid shortcut learning [12] (i.e. snow — polar
latitudes). Examples of caption components include:

¢ Location: “A photo I took in the region of Gauteng in South Africa.”
¢ Climate: “This location has a temperate oceanic climate.”

« Compass direction: “This photo is facing north.”

¢ Season (month): “This photo was taken in December.”

¢ Traffic: “In this location, people drive on the left side of the road.”

All the above caption components contain information
relevant for the geolocalization of an image. Consequently,
our continued contrastive pretraining creates an implicit
multi-task setting and ensures the model learns rich repre-
sentations of the data while learning features that are rele-
vant to the task of image geolocalization.

3.4. Multi-task learning with climate data

We also experiment with making our multi-task setup ex-
plicit by creating task-specific prediction heads for auxil-
iary labels, and adapt our loss function according to Equa-
tion (4), where L, joc corresponds to the loss in Equa-
tion (3). Our multi-task setup further includes a cross-
entropy classification task (L, ciimae) Of the 28 different
Koppen-Geiger climate zones [4], a cross-entropy month
(season) classification task (£,, month), and six mean squared
error (MSE) regression tasks (combined into £,, r,) that at-
tempt to predict values related to the temperature, precipita-
tion, elevation, and population density of a given location.

Ly = £n,loc + aﬁn,climate + Bﬁn,mont.h + ’Yﬁn,reg 4)

We unfreeze the last CLIP layer to allow for parame-
ter sharing across tasks with the goal of observing a posi-
tive transfer from our auxiliary tasks to our geolocalization
problem and to learn more general image representations
reducing the risk of overfitting to the training dataset. Ad-
justing «, B, and -y, our loss function weighs the geolocal-
ization task as much as all auxiliary tasks combined consid-
ering each task’s loss magnitude. A novel contribution of
our work is that we use a total of eight auxiliary prediction
tasks instead of just two compared to prior research [27].

3.5. Refinement via location cluster retrieval

To further refine our model’s guesses within a geocell and to
improve street- and city-level performance, instead of sim-
ply predicting the mean latitude and longitude of all points
within a geocell [27], we perform intra-geocell refinement.
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To this end, we design a hierarchical retrieval mechanism
over location clusters akin to prototypical networks [31]
with fixed parameters. We again use the OPTICS clustering
algorithm [2] to cluster all points within a geocell g and thus
propose location clusters C'y whose representation is the av-
erage of all corresponding image embeddings. To compute
all image embeddings, we use our pretrained CLIP model
f () described in Section 3.3, mapping each image [ in a
cluster ¢ to its embedding f(1).

¢ = arg min (5)

f@) - %'me

lec

2

During inference, we predict the location cluster c* of
an input image x by selecting the cluster with the mini-
mum Euclidean image embedding distance to the input im-
age embedding f(x). Once the cluster ¢* is determined, we
further refine our guess by choosing the single best location
within the cluster, again via minimizing the Euclidean em-
bedding distance. The retrieval over location clusters and
within-cluster refinement add two additional levels of pre-
diction hierarchy to our system, with the number of unique
potential guesses equaling the training dataset size.

While hierarchical refinement via retrieval is in itself a
novel idea, our work goes one step further. Instead of re-
fining a geolocalization prediction within a single cell, our
mechanism optimizes across multiple cells which further
increases performance. During inference, our geocell clas-
sification model outputs the fopK predicted geocells (5 for
PIGEON, 40 for PIGEOTTO) as well as the model’s associ-
ated probabilities for these cells. The refinement model then
picks the most likely location within each of the topK pro-
posed geocells, after which a softmax is computed across
the ropK Euclidean image embedding distances. We use
a temperature softmax with a temperature that is carefully
calibrated on the validation datasets to balance probabilities
across different geocells. Finally, these refinement proba-
bilities are multiplied with the initial topK geocell probabil-
ities to determine a final location cluster and within-cluster
refinement is performed as illustrated in Figure 1.

4. Experimental results and analysis
4.1. Experimental setting

Training PIGEON and PIGEOTTO. Based on our tech-
nical methodology outlined in Section 3, we train two mod-
els for distinct downstream evaluation purposes.

First, inspired by GeoGuessr, we train PIGEON (Predict-
ing Image Geolocations). We collect an original dataset
of 100,000 randomly sampled locations from GeoGuessr
and download a set of four images spanning an entire
“panorama” in a given location, or a 360-degree view, for
a total of 400,000 training images. For each location, we

start with a random compass direction and take four images
separated by 90 degrees, carefully creating non-overlapping
image patches.

Second, motivated by PIGEON’s image geolocalization
capabilities, we train PIGEOTTO (Predicting Image Geolo-
cations with Omni-Terrain Training Optimizations). Un-
like PIGEON, PIGEOTTO is not a Street View photo lo-
calizer but rather a general image geolocator. To that end,
we access the MediaEval 2016 dataset [20] consisting of
geo-tagged Flickr images from all over the world and ob-
tain 4,166,186 images, considering that some images have
become unavailable since 2016. Additionally, recognizing
the importance of geolocating landmarks for general image
geolocalization capabilities, we add 340,579 images from
the Google Landmarks v2 dataset [39] to our training mix
which are all derived from Wikipedia. Importantly, there is
no overlap in the training data we use between PIGEON and
PIGEOTTO, as the models serve different downstream pur-
poses. Unlike PIGEON, PIGEOTTO takes a single image
per location as input, as obtaining a four-image panorama is
often infeasible in general image geolocalization settings.

Evaluation datasets and metrics. Our work defines the
median distance error to the correct location as the primary
and composite metric. In line with the prior literature on
image geolocalization, we further evaluate the “% @ km”
statistic in our analysis as a more fine-grained metric. For
a given dataset, the “% @ km” statistic determines the per-
centage of guesses that fall within a given kilometer-based
distance from the ground-truth location. Just as in the prior
work, we evaluate five distance radii: 1 km (roughly street-
level accuracy), 25 km (city-level), 200 km (region-level),
750 km (country-level), and 2,500 km (continent-level).

For PIGEON, we run evaluations on a holdout dataset
collected from GeoGuessr consisting of 5,000 Street View
locations. We separately conduct extensive blind exper-
iments in GeoGuessr deploying PIGEON against human
players with varying degrees of expertise as well as a sep-
arate match against a world-class professional player. To
quantify which parts of our modeling setup impact perfor-
mance, we further run eight separate ablation studies.

For PIGEOTTO, we focus our evaluations squarely on
the benchmark datasets that are established in the litera-
ture. Namely, we look at IM2GPS [14], IM2GPS3k [37],
YFCC4k [37] and YFCC26k [25] (based on the MediaEval
2016 dataset [20]), and GWS15k [7]. As the last dataset
has not been publicly released by the time of this writing,
we reconstruct the dataset by exactly replicating the dataset
generation procedure outlined in Clark et al. [7].

4.2. Street View evaluation with PIGEON

We present the results of our evaluations of PIGEON and
ablations of our contributions in Table 1 and Table 2.
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Table 1. Cumulative ablation study of our image geolocalization
system on a holdout dataset of 5,000 Street View locations.

Country Mean Median GeoGuessr

Ablation Accuracy Error  Error Score

% km km points
PIGEON 91.96 251.6 4435 4,525
— Freezing Last CLIP Layer After Pretraining 91.82 255.1 45.47 4,531
— Hierarchical Guess Refinement 91.14 251.9 50.01 4,522
— Contrastive CLIP Pretraining 89.36 316.9 55.51 4,464
— Semantic Geocells 87.96 299.9 60.63 4,454
— Multi-task Prediction Heads 87.90 312.7 61.81 4,442
— Fine-tuning Last CLIP Layer 87.64 315.7 60.81 4,442
— Four-image Panorama 74.74 877.4 131.1 3,986
— Haversine Smoothing 72.12 990.0 148.0 3,890

Table 2. Cumulative ablation study using five common distance
radii on a holdout dataset of 5,000 Street View locations.

Distance (% @ km)

Ablation Street  City Region  Country  Continent
lkm 25km 200km 750km 2,500 km
PIGEON 536 4036  78.28 94.52 98.56
— Freezing Last CLIP Layer After Pretraining 4.84  39.86  78.98 94.76 98.48
— Hierarchical Guess Refinement 132 3496 7848 94.82 98.48
— Contrastive CLIP Pretraining 124 3454  76.36 93.36 97.94
— Semantic Geocells 1.18 3322 7542 93.42 98.16
— Multi-task Prediction Heads 1.10 32.74 75.14 93.00 97.98
— Fine-tuning Last CLIP Layer .10 3250 7532 92.92 98.00
— Four-image Panorama 092 2418 59.04 82.84 92.76
— Haversine Smoothing 128  24.08 55.38 80.20 92.00

As evidenced by our results, each subsequent ablation
deteriorates most metrics, pointing to the synergistic nature
of the ensemble of methods in our geolocalization system.

Starting from the very bottom of both tables, correspond-
ing to a simple CLIP vision encoder plus a geocell predic-
tion head, we can see that with the introduction of haver-
sine smoothing, the mean distance error decreases by 112.6
kilometers from 990.0 to 877.4 kilometers. The bulkiest
performance lift, however, comes from the introduction of a
four-image panorama instead of a single image, increasing
our country accuracy by 12.9 percentage points and more
than halving our median kilometer error from 131.1 to 60.8
kilometers. While fine-tuning the last CLIP layer and shar-
ing parameters in a multi-task setting slightly improves the
performance of our model, the uplift is much more palpa-
ble with the introduction of our semantic geocells, reduc-
ing the median error from 60.6 to 55.5 kilometers. When
we additionally pretrain CLIP via our synthetic captions,
we gain another 1.7 percentage points in long-range coun-
try accuracy. Complemented by our hierarchical location
cluster refinement, we improve short-range street-level ac-
curacy from 1.3% to 4.8%. Finally, we freeze the last CLIP
layer again and thus prevent parameter sharing between our
geocell and multi-task prediction heads, given that our pre-
training procedure already incorporates multi-task training.
This results in PIGEON’s final metrics of a 92.0% country
accuracy and a median distance error of 44.4 kilometers.

Beyond our ablations, we compare PIGEON’s perfor-
mance to humans in the game of GeoGuessr. To do so,
we develop a Chrome extension bot that has access to PI-

Human (Gold Division) 1714 km

Human (Master Division| ) 174 km

Human (Champion Division) 151km

PIGEON 73km

i i
Figure 4. Geolocalization error of PIGEON against human play-
ers of various in-game skill levels across 458 multi-round matches.
The Champion Division consists of the top 0.01% of players. PI-
GEON’s error is higher than in Table 1 because GeoGuessr round
difficulties are adjusted dynamically, increasing with every round.

GEON as an API and deploy our system in a blind ex-
periment across 458 matches, each consisting of multiple
rounds. PIGEON comfortably outperforms players in Ge-
oGuessr’s Champion Division, consisting of the top 0.01%
of human players. The results are shown in Figure 4, under-
scoring PIGEON’s ability to beat players of all skill levels.
Notably, top GeoGuessr players perform orders of magni-
tudes better than the players evaluated in Seo et al. [30].

For our final evaluation, we challenge one of the world’s
foremost professional GeoGuessr players to a match and
win six out of six planet-scale, multi-round games.3 PI-
GEON is the first model to reliably beat a GeoGuessr pro-
fessional.

4.3. Benchmark evaluation with PIGEOTTO

The results of our evaluations of PIGEOTTO on benchmark
datasets are displayed in Table 3. PIGEOTTO achieves
state-of-the-art (SOTA) performance on every single bench-
mark dataset and on the majority of distance-based gran-
ularities. On IM2GPS, it is able to improve the state of
the art on both country-level and continent-level accuracy
by 2 percentage points or more. Its relative underper-
formance on smaller granularities can be attributed to the
landmark-only nature of IM2GPS and its small size of 237
images. On a larger and more general dataset, IM2GPS3k,
PIGEOTTO performs much better, achieving SOTA perfor-
mance on all but the street-level metric, with an impressive
11.4 percentage-point improvement on the country level
and a much lower median error of 147.3 kilometers. Mean-
while, on YFCC4k and YFCC26k, PIGEOTTO is able to
outperform the current state of the art on 9 out of 10 metrics,
including by 12.2 percentage points on the country level
on YFCC4k and by 13.6 percentage points on YFCC26k,
more than halving the previous SOTA median error. Fi-
nally, we see very significant improvements on the most re-
cently released benchmark, GWS15k, consisting entirely of

3https://www.youtube.com/watch?v=ts51PDV--cU.
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Table 3. Comparison of PIGEOTTO’s results against other models
on benchmark datasets. PIGEOTTO reduces the median kilometer
error by 2-5x on benchmarks not solely focused on landmarks.

Median Distance (% @ km)
Benchmark Method Error | Street  City Region  Country  Continent
km 1km 25km 200km 750 km 2,500 km

PlaNet [38] > 200 8.4 245 37.6 53.6 71.3

CPlaNet [30] > 200 16.5 37.1 46.4 62.0 78.5

ISNs(M, f*,S3) [25] >25 16.9 43.0 519 66.7 80.2

IM2GPS [14] Translocator [27] > 25 19.9 48.1 64.6 75.6 86.7
GeoDecoder [7] ~25 22.1 50.2 69.0 80.0 89.1

PIGEOTTO (Ours) 70.5 14.8 409 63.3 823 91.1

A (% points) -7.3 9.3 -5.7 +2.3 +2.0

PlaNet [38] > 750 85 24.8 343 484 64.6

CPlaNet [30] > 750 10.2 26.5 34.6 48.6 64.6

ISNs(M, f*,S3) [25] | ~ 750 10.5 28.0 36.6 49.7 66.0

IM2GPS3k [37] Translocator [27] > 200 11.8 31.1 46.7 58.9 80.1
GeoDecoder [7] > 200 12.8 335 459 61.0 76.1

PIGEOTTO (Ours) | 147.3 11.3 36.7 53.8 24 85.3

A (% points) -1.5 +3.2 +7.9 +11.4 +9.2

PlaNet [38] > 750 5.6 14.3 222 36.4 55.8

CPlaNet [30] > 750 7.9 14.8 219 36.4 55.5

ISNs(M, f*,53) [25] > 750 6.7 16.5 242 37.5 54.9

YFCC4k [37] Translocator [27] > 750 8.4 18.6 27.0 41.1 60.4
GeoDecoder [7] ~ 750 10.3 24.4 339 50.0 68.7

PIGEOTTO (Ours) | 383.0 10.4 23.7 40.6 62.2 711

A (% points) +0.1 -0.7 +6.7 +12.2 +9.0

PlaNet [38] > 2,500 4.4 11.0 16.9 28.5 47.7

ISNs(M, f*,S3) [25] | ~2,500 | 5.3 123 19.0 31.9 50.7

. - Translocator [27] > 750 7.2 17.8 28.0 41.3 60.6
YRCC26k [253] GeoDecoder [7] ~ 750 10.1 23.9 34.1 49.6 69.0
PIGEOTTO (Ours) | 333.3 10.5 258 2.7 63.2 79.0
A (% points) +0.4 +1.9 +8.6 +13.6 +10.0

ISNs(M, f*,53) [25] | > 2,500 | 0.05 0.6 42 15.5 38.5

Translocator [27] > 2,500 0.5 1.1 8.0 25.5 48.3

GWS15k [7] GeoDecoder [7] ~ 2,500 0.7 1.5 8.7 26.9 50.5
PIGEOTTO (Ours) | 4154 0.7 9.2 31.2 65.7 85.1
A (@ points) +0.0 +7.7 +22.5 +38.8 +34.6

Street View images. Crucially, GWS15k is the most diffi-
cult dataset in the benchmark set. If we define images to
be taken in the same location if they are less than 100 me-
ters apart, 92% of locations in GWS 15k are not taken in the
same location as any MediaEval 2016 [20] training data on
which prior SOTA models and our system were trained. For
comparison, this number ranges from 23% to 42% for the
other four benchmark datasets, underscoring the unique dif-
ficulty of GWS15k. Noting that PIGEOTTO was not trained
on any Street View images, this suggests that PIGEOTTO is
truly planet-scale in nature, exhibits robust behavior to dis-
tribution shifts, and is the first geolocalization model that
effectively generalizes to unseen places.

5. Ethical considerations

Image geolocalization represents a sub-discipline of com-
puter vision that comes with both potential benefits to soci-
ety as well as with risks of misuse. While prior work in the
field addresses ethical implications scantily, we believe that
the potential misuse and negative downstream implications
of image geolocalization systems afford a separate discus-
sion section in this paper.

On the one hand, accurate geo-tagging of images opens
up possibilities for various beneficial applications, far be-
yond the game of GeoGuessr, including helping to under-
stand changes to particular locations over time. Image ge-

olocalization has found use cases in autonomous driving,
navigation, geography education, open-source intelligence,
and visual investigations in journalism.

On the other hand, however, applications of image ge-
olocalization may come with risks, especially if the preci-
sion of such systems significantly improves in the future. To
our knowledge, this is the first state-of-the-art image geolo-
calization paper in the last five years that is not funded by
military contracts. Recently published work has been sup-
ported by grants from the Department of Defense [27] and
the US Army [7]. Any attempts to develop image geolocal-
ization technology for military use cases should come under
particular scrutiny. There are also privacy risks involved;
for instance, some methods using Street View images have
been shown to be capable of inferring local income, race,
education, and voting patterns [11].

Image geolocalization technologies come with dual-use
risks [15], and efforts need to be made to minimize harmful
consequences. To that end, we decide not to release model
weights publicly and only release our code for academic
validation. While a major limitation of today’s image ge-
olocalization technologies (including ours) is that they are
unable to make street-level predictions reliably, researchers
ought to carefully consider the risk of potential misuse of
their work as such technologies get increasingly precise.

6. Conclusion

We propose a novel deep multi-task approach for planet-
scale image geolocalization that achieves state-of-the-art
benchmark results while being robust to distribution shifts.
To confirm the efficacy of our approach, we train and
evaluate two distinct image geolocalization models. First,
we gather a global Street View dataset to train PIGEON, a
multi-task model that places into the top 0.01% of human
players in the game of GeoGuessr. On a holdout dataset of
5,000 Street View locations, 40.4% of PIGEON’s predic-
tions of geographic coordinates land within a 25-kilometer
radius of the ground-truth location. Subsequently, we as-
semble a planet-scale dataset of over 4 million images de-
rived from Flickr and Wikipedia to train the more general
PIGEOTTO, improving the state of the art on a wide range
of geolocalization benchmark datasets by a large margin.
Going forward, it remains to be seen whether ap-
plied image geolocalization technologies will be truly
planet-scale or focused on a well-defined narrow distri-
bution. In any case, our findings about the importance
of semantic geocell creation, multimodal contrastive
pretraining, and precise intra-geocell refinement, among
others, point to important building blocks for such sys-
tems.  Nevertheless, deployment of any downstream
image geolocalization technology will need to balance
potential benefits with possible risks, ensuring the re-
sponsible development of future computer vision systems.
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