
Clockwork Diffusion: Efficient Generation With Model-Step Distillation

Amirhossein Habibian* Amir Ghodrati* Noor Fathima* Guillaume Sautiere
Risheek Garrepalli Fatih Porikli Jens Petersen

Qualcomm AI Research†

{ahabibia, ghodrati, noor, gsautie, rgarrepa, fporikli, jpeterse}@qti.qualcomm.com

Abstract

This work aims to improve the efficiency of text-to-image
diffusion models. While diffusion models use computa-
tionally expensive UNet-based denoising operations in ev-
ery generation step, we identify that not all operations
are equally relevant for the final output quality. In par-
ticular, we observe that UNet layers operating on high-
res feature maps are relatively sensitive to small pertur-
bations. In contrast, low-res feature maps influence the
semantic layout of the final image and can often be per-
turbed with no noticeable change in the output. Based
on this observation, we propose Clockwork Diffusion, a
method that periodically reuses computation from preced-
ing denoising steps to approximate low-res feature maps
at one or more subsequent steps. For multiple base-
lines, and for both text-to-image generation and image
editing, we demonstrate that Clockwork leads to compa-
rable or improved perceptual scores with drastically re-
duced computational complexity. As an example, for Sta-
ble Diffusion v1.5 with 8 DPM++ steps we save 32% of
FLOPs with negligible FID and CLIP change. We re-
lease code at https://github.com/Qualcomm-
AI-research/clockwork-diffusion

1. Introduction
Diffusion Probabilistic Models (DPM), or Diffusion Mod-
els for short, have become one of the most popular ap-
proaches for text-to-image generation[33, 35]. Compared
to Generative Adversarial Networks (GANs), they allow for
diverse synthesized outputs and high perceptual quality [5],
while offering a relatively stable training paradigm [11] and
high controllability.
One of the main drawbacks of diffusion models is that
they are comparatively slow, involving repeated operation
of computationally expensive UNet models [34]. As a re-

*Equal contribution
†Qualcomm AI Research is an initiative of Qualcomm Technologies,

Inc

454 ms 341 ms
Ba

se
lin

e

SD UNet

330 ms 213 ms

Efficient UNet

240 ms 154 ms

Distilled Efficient UNet

W
ith

 C
lo

ck
wo

rk

24.9% 35.5% 35.8%

Figure 1. Time savings with Clockwork, for different baselines.
All pairs have roughly constant FID (computed on MS-COCO
2017 5K validation set), using 8 sampling steps (DPM++). Clock-
work can be applied on top of standard models as well as heavily
optimized ones. Timings computed on NVIDIA® RTX® 3080 at
batch size 1 (for distilled model) or 2 (for classifier-free guidance).
Prompt: “the bust of a man’s head is next to a vase of flowers”.

sult, a lot of current research focuses on improving their ef-
ficiency, mainly through two different mechanisms. First,
some works seek to reduce the overall number of sam-
pling steps, either by introducing more advanced samplers
[25, 26, 42] or by performing so-called step distillation
[28, 36]. Second, some works reduce the required com-
putation per step e.g., through classifier-free guidance dis-
tillation [12, 28], architecture search [20], or with model
distillation [16].
Our work can be viewed as a combination of these two axes.
We begin with the observation that lower-resolution repre-
sentations within diffusion UNets (i.e. those further from
input and output) are not only influencing the semantic lay-
out more than smaller details [4, 40, 47], they are also more
resilient to perturbations and thus more amenable to dis-
tillation into a smaller model. Hence, we propose to per-
form model distillation on the lower-resolution parts of the

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8352

UNet by reusing their representations from previous sam-
pling steps. To achieve this we make several contribu-
tions: 1) By approximating internal UNet representations
with those from previous sampling steps, we are effectively
performing a combination of model- and step distillation,
which we term model-step distillation. 2) We show how to
design a lightweight adaptor architecture to maximize com-
pute savings, and even show performance improvements by
simply caching representations in some cases. 3) We show
that it is crucial to alternate approximation steps with full
UNet passes, which is why we call our method Clockwork
Diffusion. 4) We propose a way to train our approach with-
out access to an underlying image dataset, and in less than
24h on a single NVIDIA® Tesla® V100 GPU.
We apply Clockwork to both text-to-image generation (MS-
COCO [21]) and image editing (ImageNet-R-TI2I [47]),
consistently demonstrating savings in FLOPs as well as la-
tency on both GPU and edge device, while maintaining
comparable FID and CLIP score. Clockwork is comple-
mentary to other optimizations like step and guidance dis-
tillation [28, 36] or efficient samplers: we show savings
even on an optimized and DPM++ distilled Stable Diffu-
sion model [26, 33], as can be visualized in Fig. 1.

2. Related work
Faster solvers. Diffusion sampling is equivalent to inte-
gration of an ODE or SDE [45]. As a result, many works
attempt to perform integration with as few steps as possi-
ble, often borrowing from existing literature on numerical
integration. DDIM [43] introduced deterministic sampling,
drastically improving over the original DDPM [11]. Sub-
sequently, works have experimented with multistep [22],
higher-order solvers [7, 14, 15], predictor-corrector meth-
ods [49, 50], or combinations thereof. DPM++ [25, 26]
stands out as one of the fastest solvers, leveraging exponen-
tial integration, and we conduct most of our experiments
with it. However, in our ablation studies in Appendix A,
we show that benefit of Clockwork is largely independent
of the choice of solver.

Step Distillation starts with a trained teacher model, and
then trains a student to mirror the output of multiple teacher
model steps [27, 36]. It has been extended to guided dif-
fusion models [20, 28], where Meng et al. [28] first dis-
till unconditional and conditional model passes into one
and then do step distillation following[36]. Berthelot et
al. [1] introduce a multi-phase distillation technique simi-
lar to Salimans and Ho [36], but generalize the concept of
distilling to a student model with fewer iterations beyond
a factor of two. Other approaches aim to distill straighter
sampling trajectories, which then admit larger step sizes for
integration[23, 24, 44]. In particular, InstaFlow [24] shows
impressive results with single-step generation.

Our approach incorporates ideas from step distillation
wherein internal UNet representations from previous steps
are used to approximate the representations at the same
level for the current step. At the same time, it is largely or-
thogonal and can be combined with the above. We demon-
strate savings on an optimized Stable Diffusion model with
step and guidance distillation.

Efficient Architectures. To reduce the architecture com-
plexity of UNet, model or knowledge distillation tech-
niques have been adopted either at output level or feature
level [6, 16, 20]. Model pruning [3, 20] and model quanti-
zation [8, 29, 38] have also been explored to accelerate in-
ference at lower precision while retaining quality. Another
direction has been to optimize kernels for faster on-device
inference [2], but such solutions are hardware dependent.
Our work can be considered as model distillation, as we re-
place parts of the UNet with more lightweight components.
But unlike traditional model distillation, we only replace
the full UNet for some steps in the trajectory. Additionally,
we provide our lightweight adaptors outputs from previous
steps, making it closer to step distillation.

3. Analysis of perturbation robustness

Our method design takes root in the observation that lower-
resolution features in diffusion UNets are robust to pertur-
bations, as measured by the change in the final output. This
section provides a qualitative analysis of this behaviour.
During diffusion sampling, earlier steps contribute more to
the semantic layout of the image, while later steps are more
related to high-frequency details [4, 40]. Likewise, lower-
res UNet representations contribute more to the semantic
layout, while higher-res features and skip connections carry
high-frequency content [40, 47]. This can be leveraged to
perform image editing at a desired level of detail by per-
forming DDIM inversion [45] and storing feature and atten-
tion maps to reuse during generation [47]. We extend this by
finding that the lower-res representations, which contribute
more to the semantic layout, are also more robust to pertur-
bations. This makes them more amenable to distillation.
For our illustrative example, we choose random Gaussian
noise to perturb feature maps. In particular, we mix a given
representation with a random noise sample in a way that
keeps activation statistics roughly constant. We assume a
feature map to be normal f ∼ N (µf , σ

2
f), and draw a ran-

dom sample z ∼ N (0, σ2
f). We then update feature map

with:

f ← µf +
√
α · (f − µf) +

√
1− α · z (1)

On average, this will leave the distribution unchanged. We
set α = 0.3 to make the noise the dominant signal.

8353

Figure 2. Perturbing Stable Diffusion v1.5 UNet representations (outputs of the three upsampling layers), starting from different sampling
steps (20 DPM++ steps total, note the reference image as inset in lower-right). Perturbing low-resolution features after only a small number
of steps has a comparatively small impact on the final output, whereas perturbation of higher-res features results in high-frequency artifacts.
Prompt: ”image of an astronaut riding a horse on mars.”

In Fig. 2 we perform such perturbations on the outputs of
the three upsampling layers of the Stable Diffusion v1.5
UNet [33]. Perturbation starts after a varying number of un-
perturbed steps and the final output is shown for each case.
After only a small number of steps the lowest-resolution
features can be perturbed without a noticeable change in
the final output, whereas higher-res features are affected for
longer along the trajectory. Moreover, early perturbations
in lower-res layers mostly result in semantic changes, con-
firming findings from other works [4, 40]. Implementation
details and additional analyses for other layers are provided
in Appendix C.
Motivated by these findings, we propose to approximate
lower-res UNet representations using more computation-
ally lightweight functions, and in turn reuse information
from previous sampling steps, effectively combining model
and step distillation. However, we make another crucial
and non-trivial contribution. Fig. 2 might suggest that one
should approximate all representations after a certain sam-
pling step. We instead find that it is beneficial to alternate
approximation steps and full UNet passes to avoid accumu-
lating errors. This makes our approach similar to others that
run model parts with different temporal granularity [19, 39],
and we consequently name it Clockwork Diffusion.

4. Clockwork Diffusion
Diffusion sampling involves iteratively applying a learned
denoising function ϵθ(·), or an equivalent reparametriza-
tion, to denoise a noisy sample xt into a less noisy sam-
ple xt−1 at each iteration t, starting from a sample from
Gaussian noise at t = T towards a final generation at
t = 0 [11, 41].
As is illustrated in Fig. 3, the noise prediction function ϵ
(we omit the parameters θ for clarity) is most commonly im-

plemented as a UNet, which can be decomposed into low-
and high-resolution denoising functions ϵL and ϵH respec-
tively. ϵH further consists of an input module ϵinH and an
output module ϵoutH , where ϵinH receives the diffusion latent
xt and ϵoutH predicts the next latent xt−1 (usually not di-
rectly, but by estimating its corresponding noise vector or
denoised sample). The low-resolution path ϵL receives a
lower-resolution internal representation rint from ϵinH and
predicts another internal representation routt that is used by
ϵoutH . We provide a detailed view of the architecture and
how to separate it in the Appendix A.
The basis of Clockwork Diffusion is the realization that the
outputs of ϵL are relatively robust to perturbations — as
demonstrated in Sec. 3 — and that it should be possible to
approximate them with more computationally lightweight
functions if we reuse information from previous sampling
steps. The latter part differentiates it from regular model
distillation [6, 16]. Overall, there are 4 key contributions
that are necessary for optimal performance: a) joint model
and step distillation, b) efficient adaptor design, c) Clock-
work scheduling, and d) training with unrolled sampling
trajectories. We describe each below.

4.1. Model-step distillation

Model distillation is a well-established concept where a
smaller student model is trained to replicate the output of
a larger teacher model, operating on the same input. Step
distillation is a common way to speed up sampling for dif-
fusion models, where a student is trained to replace e.g. two
teacher model passes. Here the input/output change, but the
model architecture is usually kept the same. We propose to
combine the two, replacing part of the diffusion UNet with
a more lightweight adaptor, but in turn giving it access to
outputs from previous sampling steps (as shown in Fig. 3).

8354

𝑥!"# 𝑥! 𝑥!$#High-res in
𝜖%&'

High-res out
𝜖%()!

Low-res
𝜖*

𝑟!"#&' 𝑟!"#()!

High-res in
𝜖%&'

High-res out
𝜖%()!

Low-res
𝜖*

𝑟!&' 𝑟!()!

Adaptor 𝜙

𝑡𝑒𝑥𝑡 𝑡
𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(𝑥)

forward noisea) regular distillation
uses images

b) generation unroll
does not use images

𝑥$ 𝑥% 𝑥& C
onv2d

C
on

vT
2d

⨁⨁

R
esB

lock

R
esB

lock

Lin

𝑡𝑒𝑥𝑡!"# 𝑡!"#

//2 x2

TRAINING VARIANTS

𝝐

Figure 3. Schematic view of Clockwork. It can be thought of as a combination of model distillation and step distillation. We replace the
lower-resolution parts of the UNet ϵ with a more lightweight adaptor, and at the same time give it access to features from the previous sam-
pling step. Contrary to common step distillation, which constructs latents by forward noising images, we train with sampling trajectories
unrolled from pure noise. Other modules are conditioned on text and time embeddings (omitted for readability). The gray panel illustrates
the difference between regular distillation and our proposed training with unrolled trajectories.

We term this procedure model-step distillation.
In its simplest form, an adaptor ϕθ is an identity mapping
that naively copies a representation rout from step t + 1 to
t. This works relatively well when the number of sampling
steps is high, as for example in our image editing experi-
ments in Sec. 5.3. For a more effective approximation in the
low step regime, we rely on a parametric function ϕθ with
additional inputs: r̂outt = ϕθ

(
rint , routt+1, temb, textemb

)
,

which we describe as follows.

4.2. Efficient adaptor architecture

The design of our adaptor is chosen to minimize heavy com-
pute operations. It uses no attention, and is instead com-
prised of a strided convolutional layer resulting in two times
spatial downsampling, followed by addition of a linear pro-
jection of the prompt embedding, two ResNet blocks with
additive conditioning on t, and a final transposed convolu-
tion to go back to the original resolution. We further intro-
duce a residual connection from input to output. The adap-
tor architecture is shown in Fig. 3, and we provide more
details in the Appendix A. We ablate several architecture
choicesin Sec. 5.4. Inputs to the adaptor are listed below.

Input representation rint is the representation obtained
from the high-res input module ϵinH at the current step, as
shown in Fig. 3. It is concatenated with the next input.

Output representation routt+1 is the equivalent representa-
tion from the previous sampling step that the adaptor tries
to approximate for the current step. The high-res output
module predicts the next diffusion latent from it. By condi-
tioning on routt+1, our approach depends on the sampler and
step width (similar to step distillation).

Time embedding temb is an additional input to the adap-
tor to make it conditional on the diffusion step t, instead
of training separate adaptor models for each step. For this
purpose we rely on the standard ResBlocks with time step
embeddings, as in Rombach et al. [33].

Prompt embedding textemb is an additional input to
adaptor to make it conditional on the generation prompt. We
rely on pooled CLIP embedding [31] of prompt, extracted
using OpenCLIP’s ViT-g/14 [13], to reduce complexity.

4.3. Clockwork scheduling

Instead of just replacing ϵL with adaptor ϕθ entirely, we
avoid accumulating errors during sampling by alternating
lightweight adaptor steps with full UNet passes, which is
the inspiration for our method’s name, following [19, 39].
Specifically, we switch between ϵL and ϕθ based on a pre-
defined clock schedule C(t) ∈ {0, 1} as follows:

r̂outt =

{
ϵL

(
rint , temb, textemb

)
, C(t) = 0

ϕθ

(
rint , routt+1, temb, textemb

)
, C(t) = 1

where t and c are timestep and prompt embeddings, re-
spectively. C(t) can generally be an arbitrary schedule of
switches between ϵL and ϕθ, but we find that interleaving
them at a fixed rate offers a good tradeoff between perfor-
mance and simplicity. Because we conduct our experiments
mostly in low-step regime with ≤ 8 steps, we simply al-
ternate between adaptor and full UNet in consecutive steps
(i.e. a clock of 2) unless otherwise specified. For sampling
with more steps it is possible to increase consecutive adap-
tor passes, shown in Appendix D.2 for text-guided image

8355

editing case. For the rest of the paper, we simply use the
terminology a clock of N , which means every N steps, a
full UNet pass will be evaluated, all other steps use adaptor.

4.4. Distillation with unrolled trajectories

We seek to train an adaptor that predicts an internal UNet
representation, based on the same representation from the
previous sampling step as well as further inputs. Formally,
we minimize the following loss:

L = E
t

[∥∥routt − ϕθ

(
rint , routt+1, temb, textemb

)∥∥
2

]
(2)

A common choice is to stochastically approximate the ex-
pectation over update steps, i.e. just sample t randomly
at each training step. Most step distillation approaches
[28, 36] then construct xt from an image x0 via the dif-
fusion forward process, and perform two UNet passes of
a teacher model to obtain all components required for the
loss. Instead of this, we start from a random noise sam-
ple and unroll a full sampling trajectory {xT , . . . ,x0} with
the teacher model, then use each step as a separate training
signal for the adaptor. This is illustrated in Fig. 3. We con-
struct a dataset of unrolled sampling trajectories for each
epoch, which can be efficiently parallelized using larger
batch sizes. We compare our unrolled training with the con-
ventional approach in Sec. 5.4.
Overall training can be done in less than a day on a sin-
gle NVIDIA® Tesla® V100 GPU. As an added benefit, this
training scheme does not require access to an image dataset
and only relies on captions. We provide more details in
Sec. 5 and include training pseudo-code in the Appendix
Algorithm-1.

5. Experiments
We evaluate Clockwork on two tasks: text-guided image
generation in Sec. 5.2 and text-guided image editing in
Sec. 5.3. Additionally, we provide ablations in Sec. 5.4.

5.1. Experimental setup

Datasets and metrics We evaluate our text-guided im-
age generation experiments by following common prac-
tices [20, 28, 33] on two public benchmarks: MS-COCO
2017 (5K captions), and MS-COCO 2014 [21] (30K cap-
tions) validation sets. We use each caption to generate an
image and rely on the CLIP score from a OpenCLIP ViT-
g/14 model [13] to evaluate the alignment between captions
and generated images. We also rely on Fréchet Inception
Distance (FID) [10] to estimate perceptual quality. For MS-
COCO 2014, the images are resized to 256 × 256 before
computing the FID as in Kim et al. [16]. We evaluate our
text-guided image editing experiments on the ImageNet-R-
TI2I [47] dataset. Following [47], we use 3 high-quality

images from 10 different classes and 5 prompt templates to
generate 150 image-text pairs for evaluation. In addition to
the CLIP score, we measure the DINO self-similarity dis-
tance from Splice [46] to measure the structural similarity
between source and target images.
To measure the computational cost of the different methods,
we report the time spent on latent generation, which we call
latency for short, as it represents the majority of the total
processing time. This measures the cost spent on UNet for-
ward passes during the generation — and inversion in case
of image editing — but ignores the fixed cost of text en-
coding and VAE decoding. Along with latencies we report
the number of floating point operations (FLOPs). We mea-
sure latency using PyTorch’s benchmark utilities on a single
NVIDIA® RTX® 3080 GPU, and use the DeepSpeed [32]
library to estimate the FLOP count. Finally, to verify the ef-
ficiency of Clockwork on low-power devices, we measure
its inference time on a Samsung Galaxy S23 device. It uses
Snapdragon® 8 Gen. 2 Mobile Platform with a Qualcomm®

HexagonTM processor 1

Diffusion models We evaluate the effectiveness of Clock-
work on three latent diffusion models with varying compu-
tational costs: i) SD UNet, the standard UNet from Stable
Diffusion v1.5 [33]. ii) Efficient UNet, which, inspired by
Li et al. [20], removes the costly transformer blocks, includ-
ing self-attention and cross-attention operations, from the
highest resolution layer of SD UNet. iii) Distilled Efficient
UNet, which further accelerates Efficient UNet by imple-
menting progressive step distillation [36] and classifier-free
guidance distillation [28]. Since there is no open source
implementation [20, 28, 36] available, we rely on our repli-
cation as specified in the supplementary materials. In all
experiments we use the DPM++ [26] multi-step scheduler
due to its superiority in the low number of sampling steps
regime, which is a key focus of our paper. An exception is
the text-guided image editing experiment where we use the
DDIM scheduler as in Plug-and-Play [47].

Implementation details We train Clockwork using
ResNet-based adaptor (Fig. 3) for a specific number of
generation steps T and with a clock of 2, as described
in Sec. 4.1, on 50K random captions from LAION-5B
dataset [37]. The training involves 120 epochs using Adam
optimizer [18] with batch size of 16 and learning rate of
0.0001. Due to its parameter efficiency each training takes
less than one day on a single NVIDIA® Tesla® V100 GPU.

5.2. Text-guided image generation

We evaluate the effectiveness of Clockwork in accelerat-
ing text-guided image generation for three different diffu-

1Snapdragon and Qualcomm branded products are products of Qual-
comm Technologies, Inc. and/or its subsidiaries.

8356

30

40

FI
D

[
]

SD UNet Efficient UNet Distilled Efficient UNet
Baseline
with Clockwork

4 6 8 10
TFLOPs

0.26

0.28

0.30

CL
IP

 [
]

4 6 8
TFLOPs

2 3 4
TFLOPs

Figure 4. Clockwork improves text-to-image generation efficiency
consistently over various diffusion models. Models are evaluated
on 512× 512 MS-COCO 2017-5K validation set.

sion models as specified in Sec. 5.1. For each model, we
measure the generation quality and computational cost us-
ing 8, 6 and 4 steps with and without clockwork, as shown
in Fig. 4. For the baselines (dashed lines) we also include
a point with 3 sampling steps as a reference. Our results
demonstrate that applying Clockwork for each model re-
sults in a high reduction in FLOPs with little changes in
generation qualities (solid lines). For example, at 8 sam-
pling steps, Clockwork reduces the FLOPs of the distilled
Efficient UNet by 38% from 4.7 TFLOPS to 2.9 TFLOPS
with only a minor degradation in CLIP (0.6%) and improve-
ment in FID (5%). Fig. 5 shows generation examples for
Stable Diffusion with and without Clockwork, while Fig. 1
shows an example for Efficient UNet and its distilled vari-
ant. See Appendix E for more examples.
Our improvement on the distilled Efficient UNet model
demonstrates that Clockwork is complementary to other ac-
celeration methods and adds savings on top of step distilla-
tion [36], classifier-free guidance distillation [28], efficient
backbones [20] and efficient noise schedulers [26]. More-
over, Clockwork consistently improves the diffusion effi-
ciency at very low sampling steps, which is the critical op-
erating point for most time-constrained real-world applica-
tions, e.g. image generation on phones.
In Tab. 1 and Tab. 2 we compare Clockwork to state-of-
the-art methods for efficient diffusion on MS-COCO 2017
and 2014 respectively. The methods include classifier-free
guidance distillation by Meng et al. [28], SnapFusion [20],
model distillation from BK-SDM [16] and InstaFlow[24].
For BK-SDM [16] we use models available in the diffusers
library [48]. For Meng et al. [28], SnapFusion [20] and
InstaFlow (1 step) [24] we report scores from original pa-
pers and implement their architecture to measure latency
and FLOPS. In terms of quantitative performance scores,
Clockwork improves FID and slightly reduces CLIP on both
datasets. Efficient UNet + Clockwork achieves the best FID
out of all methods. InstaFlow has lowest FLOPs and latency
as they specifically optimize the model for single-step gen-

Figure 5. Text guided generations by SD UNet without (top) and
with (bottom) Clockwork at 8 sampling steps (DPM++). Clock-
work reduces FLOPs by 32% at a similar generation quality.
Prompts given in Appendix E.

eration, however, in terms of FID and CLIP, Clockwork is
significantly better. Compared to SnapFusion, which is op-
timized and distilled from the same Stable Diffusion model,
our Distilled Efficient UNet + Clockwork is significantly
more compute efficient and faster.

5.3. Text-guided image editing

We apply our method to a recent text-guided image-to-
image (TI2I) translation method called Plug-and-Play (PnP)
[47]. The method caches convolutional features and at-
tention maps during source image inversion [45] at certain
steps early in the trajectory. These are then injected dur-
ing generation using the target prompt at those same steps.
This enables semantic meaning of the original image to be
preserved, while the self-attention keys and queries allow
preserving guidance structure. PnP, like many image editing
works [9, 17, 30], requires DDIM inversion [45]. Inversion
can quickly become the complexity bottleneck, as it is of-
ten run for many more steps than generation. For instance,
PnP uses 1000 inversion steps and 50 generation steps. We
focus on evaluating PnP and its Clockwork variants on the
ImageNet-R-TI2I real dataset with SD UNet. We use the
DDIM sampler to match PnP’s setup. To demonstrate the
benefit of Clockwork in a training-free setting, we use an
identity adaptor with a clock of 2 both in inversion and gen-
eration. We use the official open-source diffusers [48] im-

8357

Model FID [↓] CLIP [↑] TFLOPs Latency (GPU) Latency (Phone)

Meng et al. [28] 26.9 0.300 6.4 320 -
SnapFusion [20] 24.20 0.300 4.0 185 -
BK-SDM-Base [16] 29.26 0.291 8.4 348 -
BK-SDM-Small [16] 29.48 0.272 8.2 336 -
BK-SDM-Tiny [16] 31.48 0.268 7.8 313 -
InstaFlow (1 step) [24] 29.30 0.283 0.8 40 -

SD UNet 24.64 0.300 10.8 454 3968
+ Clockwork 24.11 0.295 7.3 (−32%) 341 (−25%) 3176 (−20%)

Efficient UNet 24.22 0.302 9.5 330 1960
+ Clockwork 23.21 0.296 5.9 (−38%) 213 (−36%) 1196 (−39%)

Distilled Efficient UNet 25.75 0.297 4.7 240 980
+ Clockwork 24.45 0.295 2.9 (−38%) 154 (−36%) 598 (−39%)

Table 1. Text guided image generation results on 512× 512 MS-
COCO 2017-5K validation set. We compare to state-of-the-art
efficient diffusion models, all at 8 sampling steps (DPM++) except
when specified otherwise. Latency measured in ms.

plementation2 of PnP, details in Appendix D.1. In Fig. 6
we show qualitative examples of the same text-image pair
with and without Clockwork for different DDIM inversion
steps and generation fixed to 50 steps. For high numbers
of inversion steps, Clockwork leads to little to no degrada-
tion in quality while consistently reducing latency by about
25%. At lower numbers of inversions steps, Clockwork out-
puts start diverging from the baseline’s, yet in semantically
meaningful and perceptually pleasing ways.
On the right hand side of Fig. 6, we quantitatively show that
at various number of inversion steps, applying Clockwork
enables saving compute while improving text-image simi-
larity and only slightly degrading structural distance. For
PnP’s default setting of 1000 inversion steps and 50 genera-
tion steps (rightmost point on each curve) Clockwork allows
saving 33% of compute while significantly improving CLIP
score, and only slightly degrading DINO metric.

5.4. Ablation analysis

For ablations, we follow the training procedure in Sec. 5.1
and evaluate on MS-COCO 2017 dataset, a clock of 2 and
Efficient Unet backbone. Further ablations, e.g. different
solvers, adaptor input variations are in Appendix B.

Adaptor Architecture. We study the effect of different
parametric functions for ϕθ in terms of performance and
complexity. As discussed in Sec. 4.1, ϕθ can be as sim-
ple as an identity function, where we directly reuse low-
res features from the previous time step at the current step.
As shown in Tab. 3, Identity function performs reasonably
well, indicating high correlation in low-level features of the
UNet across diffusion steps. In addition, we tried 1) a UNet-
like convolutional architecture with two downsampling and
upsampling modules, 2) a lighter variant of it with 3M pa-
rameters and less channels, 3) our proposed ResNet-like ar-
chitecture (see Fig. 3). Details for all variants are given in

2https://github.com/MichalGeyer/pnp-diffusers

Model FID [↓] CLIP [↑] TFLOPs

SnapFusion [20] 14.00 0.300 4.0
BK-SDM-Base [16] 17.23 0.287 8.4
BK-SDM-Small [16] 17.72 0.268 8.2
BK-SDM-Tiny [16] 18.64 0.265 7.8
InstaFlow (1 step) [24] 20.00 - 0.8

SD UNet 12.77 0.296 10.8
+ Clockwork 12.27 0.291 7.3 (−32%)

Efficient UNet 12.33 0.296 9.5
+ Clockwork 11.14 0.290 5.9 (−38%)

Distilled Efficient UNet 13.92 0.292 4.7
+ Clockwork 12.37 0.291 2.9 (−38%)

Table 2. Text guided image generation results on 256× 256 MS-
COCO 2014-30K validation set. We compare to state-of-the-art
efficient diffusion models. Except for InstaFlow[24] all models
are evaluated at 8 sampling steps using the DPM++ scheduler.

Appendix A. From Tab. 3, all adaptors provide compara-
ble performance, however, the ResNet-like adaptor obtains
better quality-complexity trade-off.

Adaptor Clock. Instead of applying ϕθ in an alternating
fashion (i.e. a clock of 2), here we study the effect of non-
alternating arbitrary clock C(t). For an 8-step generation,
we use 1) C(t) = 1 for t ∈ {5, 6, 7, 8} and 2) C(t) = 1
for t ∈ {3, 4, 5, 6}, C(t) = 0 otherwise. As shown in
Tab. 3, both configurations underperform compared to al-
ternating clock, likely due to error propagation in approxi-
mation. It is worth noting that approximating earlier steps
(config. 2) harms the generation significantly more than
later steps (config. 1).

UNet cut-off. We ablate the splitting point where high-res
and low-res representations are defined. In particular, we
set the cut-off at the end of stage 1 or stage 2 of the UNet
(after first and second downsampling layers, respectively).
A detailed view of the architecture with splitting points can
be found in the Appendix A. The lower the resolution in the
UNet we set the cutoff to, the less compute we save. As
shown in Tab. 3, splitting at stage 2 is both computationally
expensive and worse in terms of FID. Therefore, we set the
cut-off point at stage 1.

Training scheme and robustness. As outlined in
Sec. 4.4, ϕθ can be trained using 1) regular distillation
setup which employs forward noising of an image or 2)
by unrolling complete sampling trajectories conditioned on
a prompt. We compare the two at specific inference steps
that use same clock. Figure 7 shows that generation unroll
performs on par with regular distillation at higher inference
steps (6, 8, 16), but performs significantly better at 4 steps,
which is the low compute regime our work targets.

8358

14.4s 10.9s

Ba
se

lin
e

inv. steps 25

17.0s 12.7s

inv. steps 50

22.0s 16.2s

inv. steps 100

113.4s (PnP's default)

inv. steps 1000

0.270

0.272

0.274

0.276

0.278

0.280

CL
IP

 [
]

ImageNet-R-TI2I real

W
ith

 C
lo

ck
wo

rk

-24.3% -25.3% -26.4% "a toy of a jeep" (ref)

200 400 600 800
TFLOPs

0.044

0.046

0.048

0.050

DI
NO

 [
]

PnP Baseline
PnP with Clockwork

Figure 6. Left: text-guided image editing qualitative results comparing the baseline Plug-and-Play to Clockwork with identity adaptor
when using the reference image (bottom right) with the target prompt “an embroidery of a minivan”. Across configurations, applying
Clockwork enables matching or outperforming the perceptual quality of Plug-and-Play while reducing latency by a significant margin.
Right: Clockwork improves the efficiency of text-guided image translation on the ImageNet-R-TI2I real dataset. We evaluate both the
baseline and its Clockwork variant at DDIM inversion steps: 25, 50, 100, 500 and 1000. DDIM generation steps is fixed to 50 throughout,
except for 25 where we use the same number of generation steps as inversion steps.

Steps FID [↓] CLIP [↑] GFLOPs

Efficient UNet 8 24.22 0.302 1187

Adaptor Architecture
Identity (0) 8 24.36 0.290 287
ResNet (14M) 8 23.21 0.296 301
UNet (152M) 8 23.18 0.296 324
UNet-light (3M) 8 23.87 0.294 289

Adaptor Clock
Steps {2, 4, 6, 8} 8 23.21 0.296 301
Steps {5, 6, 7, 8} 8 28.07 0.286 301
Steps {3, 4, 5, 6} 8 33.10 0.271 301

UNet cut-off
Stage 1 (res 32x32) 8 23.21 0.296 301
Stage 2 (res 16x16) 8 24.49 0.296 734

Table 3. Ablations of Clockwork components. We use 512× 512
MS-COCO 2017-5K, a clock of 2 and Efficient UNet as backbone.
FLOPs are reported for 1 forward step of UNet with adaptor.

4 6 8 10 12
TFLOPs

30

40

50

FI
D

[
]

Generation Unroll
Regular Distillation

4 6 8 10 12
TFLOPs

0.225

0.250

0.275

0.300

CL
IP

 [
]

Figure 7. Training scheme ablation. Training with unrolled trajec-
tories is on par with regular distillation, but performs significantly
better in the low compute regime (4 steps). We use 512 × 512
MS-COCO 2017-5K, clock of 2 and Efficient UNet backbone.

6. Conclusion

We introduce a method for faster sampling with diffusion
models, called Clockwork Diffusion. It combines model
and step distillation, replacing lower-resolution UNet rep-
resentations with more lightweight adaptors that reuse in-
formation from previous sampling steps. In this context,
we show how to design an efficient adaptor architecture,
and present a sampling scheme that alternates between ap-
proximated and full UNet passes. We also introduce a new
training scheme that is more robust than regular step distil-
lation at very small numbers of steps. It does not require
access to an image dataset and training can be done in a day
on a single GPU. We validate our method on text-to-image
generation and text-conditioned image-to-image translation
[47]. It can be applied on top of commonly used models like
Stable Diffusion [33], as well as heavily optimized and dis-
tilled models, and shows consistent savings in FLOPs and
runtime at comparable FID and CLIP score.

Limitations. As in step distillation, when learned, Clock-
work is trained for a fixed operating point and is sensitive
to drastic changes in scheduler or sampling steps at a later
time. While we find that our unrolled training works better
than regular distillation at low steps, we have not yet fully
understood why that is the case. Finally, we have demon-
strated improvements on UNet-based diffusion models, it is
unclear how this translates to e.g. ViT-based implementa-
tions.

8359

References
[1] David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap,

Shuangfei Zhai, Siyuan Hu, Daniel Zheng, Walter Tal-
bot, and Eric Gu. Tract: Denoising diffusion models
with transitive closure time-distillation. arXiv preprint
arXiv:2303.04248, 2023. 2

[2] Yu-Hui Chen, Raman Sarokin, Juhyun Lee, Jiuqiang Tang,
Chuo-Ling Chang, Andrei Kulik, and Matthias Grundmann.
Speed is all you need: On-device acceleration of large diffu-
sion models via gpu-aware optimizations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4650–4654, 2023. 2

[3] Jiwoong Choi, Minkyu Kim, Daehyun Ahn, Taesu Kim, Yul-
hwa Kim, Dongwon Jo, Hyesung Jeon, Jae-Joon Kim, and
Hyungjun Kim. Squeezing large-scale diffusion models for
mobile. arXiv preprint arXiv:2307.01193, 2023. 2

[4] Kamil Deja, Anna Kuzina, Tomasz Trzciński, and Jakub M.
Tomczak. On analyzing generative and denoising capabili-
ties of diffusion-based deep generative models, 2022. 1, 2,
3

[5] Prafulla Dhariwal and Alex Nichol. Diffusion models beat
gans on image synthesis, 2021. 1

[6] Tim Dockhorn, Robin Rombach, Andreas Blatmann, and
Yaoliang Yu. Distilling the knowledge in diffusion models.
In CVPR Workshop Generative Models for Computer Vision,
2023. 2, 3

[7] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. GENIE:
Higher-Order Denoising Diffusion Solvers. In Advances in
Neural Information Processing Systems, 2022. 2

[8] Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou,
and Bohan Zhuang. Ptqd: Accurate post-training quantiza-
tion for diffusion models. arXiv preprint arXiv:2305.10657,
2023. 2

[9] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt image
editing with cross attention control, 2022. 6

[10] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs Trained by
a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium. In Advances in Neural Information Processing
Systems, 2017. 5

[11] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models, 2020. 1, 2, 3

[12] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance, 2022. 1

[13] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade
Gordon, Nicholas Carlini, Rohan Taori, Achal Dave,
Vaishaal Shankar, Hongseok Namkoong, John Miller, Han-
naneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. Open-
clip, 2021. 4, 5

[14] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer,
Tal Kachman, and Ioannis Mitliagkas. Gotta go fast when
generating data with score-based models. arXiv preprint
arXiv:2105.14080, 2021. 2

[15] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. Advances in Neural Information Processing Sys-
tems, 35:26565–26577, 2022. 2

[16] Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and

Shinkook Choi. On architectural compression of text-to-
image diffusion models. arXiv preprint arXiv:2305.15798,
2023. 1, 2, 3, 5, 6, 7

[17] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Dif-
fusionclip: Text-guided diffusion models for robust image
manipulation. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, June 2022. 6

[18] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017. 5

[19] Jan Koutnı́k, Klaus Greff, Faustino Gomez, and Jürgen
Schmidhuber. A Clockwork RNN, 2014. 3, 4

[20] Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys,
Yun Fu, Yanzhi Wang, Sergey Tulyakov, and Jian Ren. Snap-
fusion: Text-to-image diffusion model on mobile devices
within two seconds. arXiv preprint arXiv:2306.00980, 2023.
1, 2, 5, 6, 7

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 2, 5

[22] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
numerical methods for diffusion models on manifolds. In
International Conference on Learning Representations, Feb
2022. 2

[23] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow
straight and fast: Learning to generate and transfer data with
rectified flow. arXiv preprint arXiv:2209.03003, 2022. 2

[24] Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and
Qiang Liu. Instaflow: One step is enough for high-quality
diffusion-based text-to-image generation. arXiv preprint
arXiv:2309.06380, 2023. 2, 6, 7

[25] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffusion
probabilistic model sampling in around 10 steps. NeurIPS,
2022. 1, 2

[26] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-
uan Li, and Jun Zhu. Dpm-solver++: Fast solver for guided
sampling of diffusion probabilistic models. arXiv preprint
arXiv:2211.01095, 2022. 1, 2, 5, 6

[27] Eric Luhman and Troy Luhman. Knowledge distillation in
iterative generative models for improved sampling speed,
2021. 2

[28] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik
Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models. In CVPR, 2023.
1, 2, 5, 6, 7

[29] Nilesh Prasad Pandey, Marios Fournarakis, Chirag Patel, and
Markus Nagel. Softmax bias correction for quantized gener-
ative models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1453–1458, 2023. 2

[30] Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun
Li, Jingwan Lu, and Jun-Yan Zhu. Zero-shot image-to-image
translation. In Special Interest Group on Computer Graphics
and Interactive Techniques Conference Conference Proceed-
ings, SIGGRAPH ’23. ACM, July 2023. 6

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual

8360

models from natural language supervision, 2021. 4
[32] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and

Yuxiong He. Deepspeed: System optimizations enable train-
ing deep learning models with over 100 billion parameters.
Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 2020. 5

[33] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 1, 2, 3,
4, 5, 8

[34] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In MIC-
CAI, 2015. 1

[35] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J
Fleet, and Mohammad Norouzi. Photorealistic text-to-image
diffusion models with deep language understanding, 2022. 1

[36] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In ICLR, 2021. 1, 2, 5, 6

[37] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. Laion-5b: An open large-scale dataset for training
next generation image-text models. NeurIPS, 2022. 5

[38] Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and
Yan Yan. Post-training quantization on diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1972–1981, 2023. 2

[39] Evan Shelhamer, Kate Rakelly, Judy Hoffman, and Trevor
Darrell. Clockwork convnets for video semantic segmenta-
tion. In Gang Hua and Hervé Jégou, editors, ECCV Work-
shops, 2016. 3, 4

[40] Chenyang Si, Ziqi Huang, Yuming Jiang, and Ziwei Liu.
Freeu: Free lunch in diffusion u-net. arXiv preprint
arXiv:2309.11497, 2023. 1, 2, 3

[41] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In Proceedings of the 32nd
International Conference on Machine Learning, 2015. 3

[42] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models, 2020. 1

[43] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Conference
on Learning Representations, 2021. 2

[44] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. 2023. 2

[45] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. In International Conference on Learning Represen-
tations, Nov 2020. 2, 6

[46] Narek Tumanyan, Omer Bar-Tal, Shai Bagon, and Tali
Dekel. Splicing vit features for semantic appearance trans-
fer. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, June 2022. 5

[47] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali
Dekel. Plug-and-play diffusion features for text-driven

image-to-image translation. In CVPR, 2023. 1, 2, 5, 6, 8
[48] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro

Cuenca, Nathan Lambert, Kashif Rasul, Mishig Davaadorj,
and Thomas Wolf. Diffusers: State-of-the-art diffusion
models. https://github.com/huggingface/
diffusers, 2022. 6

[49] Qinsheng Zhang, Molei Tao, and Yongxin Chen. gddim:
Generalized denoising diffusion implicit models, 2022. 2

[50] Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and
Jiwen Lu. Unipc: A unified predictor-corrector frame-
work for fast sampling of diffusion models. arXiv preprint
arXiv:2302.04867, 2023. 2

8361

