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Abstract

Advancements in 3D Gaussian Splatting have signifi-
cantly accelerated 3D reconstruction and generation. How-
ever, it may require a large number of Gaussians, which
creates a substantial memory footprint. This paper intro-
duces GES (Generalized Exponential Splatting), a novel
representation that employs Generalized Exponential Func-
tion (GEF) to model 3D scenes, requiring far fewer parti-
cles to represent a scene and thus significantly outperform-
ing Gaussian Splatting methods in efficiency with a plug-
and-play replacement ability for Gaussian-based utilities.
GES is validated theoretically and empirically in both prin-
cipled 1D setup and realistic 3D scenes. It is shown to rep-
resent signals with sharp edges more accurately, which are
typically challenging for Gaussians due to their inherent
low-pass characteristics. Our empirical analysis demon-
strates that GEF outperforms Gaussians in fitting natural-
occurring signals (e.g. squares, triangles, parabolic sig-
nals), thereby reducing the need for extensive splitting op-
erations that increase the memory footprint of Gaussian
Splatting. With the aid of a frequency-modulated loss,
GES achieves competitive performance in novel-view syn-
thesis benchmarks while requiring less than half the mem-
ory storage of Gaussian Splatting and increasing the ren-
dering speed by up to 39%. The code is available on the
project website https ://abdullahamdi .com/ges.

1. Introduction

The pursuit of more engaging and immersive virtual ex-
periences across gaming, cinema, and the metaverse de-
mands advancements in 3D technologies that balance vi-
sual richness with computational efficiency. In this regard,
3D Gaussian Splatting (GS) [18] is a recent alternative to
neural radiance fields [10, 12, 29-31, 34, 35, 51] for learn-
ing and rendering 3D objects and scenes. GS represents a
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Figure 1. GES: Generalized Exponential Splatting We propose
a faster and more memory-efficient alternative to Gaussian Splat-
ting [18] that relies on Generalized exponential Functions (with
additional learnable shape parameters) instead of Gaussians.

scene as a large mixture of small, coloured Gaussians. Its
key advantage is the existence of a very fast differentiable
renderer, which makes this representation ideally suited for
real-time applications and significantly reduces the learning
cost. Specifically, fast rendering of learnable 3D represen-
tations is of key importance for applications like gaming,
where high-quality, fluid, and responsive graphics are es-
sential.

However, GS is not without shortcomings. We notice in
particular that GS implicitly makes an assumption on the
nature of the modeled signals, which is suboptimal. Specif-
ically, Gaussians correspond to low-pass filters, but most
3D scenes are far from low-pass as they contain abrupt dis-
continuities in shape and appearance. Fig.2 demosntrates
this inherent low-pass limitation of Gaussian-based meth-
ods. As a result, GS needs to use a huge number of very
small Gaussians to represent such 3D scenes, far more than
if a more appropriate basis was selected, which negatively
impacts memory utilization.

To address this shortcoming, in this work, we intro-
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Figure 2. The Inherent Low-Pass Limitation of Gaussians. We illustrate the bandwidth constraint of Gaussian functions compared to
square and triangle signals. The Gaussian functions’ low-pass property restricts their ability to fit signals with sharp edges that have infinite

bandwidth. This limitation constitutes a challenge for 3D Gaussian Splatting [

duce GES (Generalized Exponential Splatting), a new ap-
proach that utilizes the Generalized Exponential Function
(GEF) for modeling 3D scenes (Fig.1). Our method is
designed to effectively represent signals, especially those
with sharp features, which previous Gaussian splatting tech-
niques often smooth out or require extensive splitting to
model [18]. Demonstrated in Fig.3, we show that while
N = 5 randomly initialized Gaussians are required to fit
a square, only 2 GEFs are needed for the same signal. This
stems from the fact that Gaussian mixtures have a low-pass
frequency domain, while many common signals, like the
square, are not band-limited. This high-band modeling con-
stitutes a fundamental challenge to Gaussian-based meth-
ods. To help GES to train gradually from low-frequency to
high-frequency details, we propose a specialized frequency-
modulated image loss. This allows GES to achieve more
than 50% reduction in the memory requirement of Gaussian
splatting and up to 39% increase in rendering speed while
maintaining a competitive performance on standard novel
view synthesis benchmarks.

We summarize our contributions as follows:
* We present principled numerical simulations motivating

the use of the Generalized Exponential Functions (GEF)

instead of Gaussians for scene modeling.

* We propose Generalized Exponential Splatting (GES),
a novel 3D representation that leverages GEF to de-
velop a splatting-based method for realistic, real-time,
and memory-efficient novel view synthesis.

* Equipped with a specialized frequency-modulated im-
age loss and through extensive experiments on standard
benchmarks on novel view synthesis, GES shows a 50%
reduction in memory requirement and up to 39% increase
in rendering speed for real-time radiance field rendering
based on Gaussian Splatting. GES can act as a plug-and-
play replacement for any Gaussian-based utilities.

2. Related work

Multi-view 3D reconstruction. Multi-view 3D recon-
struction aims to recover the 3D structure of a scene from

] in accurately fitting high-bandwidth 3D spatial data.

its 2D RGB images captured from different camera posi-
tions [1,9]. Classical approaches usually recover a scene’s
geometry as a point cloud using SIFT-based [28] point
matching [36, 38]. More recent methods enhance them
by relying on neural networks for feature extraction (e.g.
[14, 45,46, 53]). The development of Neural Radiance
Fields (NeRF) [26, 30] has prompted a shift towards recon-
structing 3D as volume radiance [39], enabling the synthesis
of photo-realistic novel views [3,4,40]. Subsequent works
have also explored the optimization of NeRF in few-shot
(e.g. [8,15,19]) and one-shot (e.g. [5,52]) settings. NeRF
does not store any 3D geometry explicitly (only the density
field), and several works propose to use a signed distance
function to recover a scene’s surface [0,23,24,41,42,47,48],
including in the few-shot setting as well (e.g. [54,55]).

Differentiable rendering. Gaussian Splatting is a point-
based rendering [2, 1 1] algorithm that parameterizes 3D
points as Gaussian functions (mean, variance, opacity) with
spherical harmonic coefficients for the angular radiance
component [50]. Prior works have extensively studied dif-
ferentiable rasterization, with a series of works [17,25,27]
proposing techniques to define a differentiable function be-
tween triangles in a triangle mesh and pixels, which allows
for adjusting parameters of triangle mesh from observation.
These works range from proposing a differentiable renderer
for mesh processing with image filters [22], and proposing
to blend schemes of nearby triangles [33], to extending dif-
ferentiable rasterization to large-scale indoor scenes [49].
On the point-based rendering [ |] side, neural point-based
rendering [ | 7] allows features to be learned and stored in 3D
points for geometrical and textural information. Wiles et al.
combine neural point-based rendering with an adversarial
loss for better photorealism [43], whereas later works use
points to represent a radiance field, combining NeRF and
point-based rendering [44,56]. Our GES is a point-based
rasterizer in which every point represents a generalized ex-
ponential with scale, opacity, and shape, affecting the ras-
terization accordingly.

19813



4 — True square 10 NP

N —— True square
[\ - Gaussian Mixture

-- GEF Mixture

(a) A family of GEFs f3(z)

-100 -75 =50 =25

(b) Five Gaussians fitting a square

0.0 2.5 5.0 7.5 10.0 -100 -75 =50 =25 0.0 2.5 5.0 7.5 10.0
X X

(c) Two GEFs fitting a square

Figure 3. Generalized Exponential Function (GEF). (a): We show a family of GEFs fg(z) = Ae™ (=54) ’ with different 8 values for
a =1, = 0. When 8 = 2, the function reduces to the Gaussian function followed in 3D gaussian splatting [18]. In our GES , we learn
[ as another parameter of each splatting component. (b,c): The proposed GEF mixture, with learnable 3, fits the same signal (square) with
fewer components compared to Gaussian functions using gradient-based optimizations. (b): We show an example of the fitted mixture
with N = 5 components when Gaussians are used vs. (c¢) when GEF is used with N = 2 components. GEF achieves less error loss (0.44)
and approximates sharp edges better than the Gaussian counterpart (0.48 error) with less number of components. The optimized individual
components (initialized with random parameters) are shown in green after convergence.

3. Properties of Generalized Exponentials
3.1. Generalized Exponential Function

Preliminaries. The Generalized Exponential Function
(GEF) is similar to the probability density function (PDF) of
the Generalized Normal Distribution (GND) [7]. This func-
tion allows for a more flexible adaptation to various data
shapes by adjusting the shape parameter 5 € (0,00). The
GEF is given by:

_ B
f(z|p, o, B, A) = Aexp <_ (W) ) 1)

where 1 € R is the location parameter, @ € R is the scale
parameter, A € R™ defines a positive amplitude. The be-
havior of this function is illustrated in Fig.3. For § = 2, the
GEF becomes a scaled Gaussian f(z|u,a,8 = 2,A) =

L 2

Ae_%(%) . The GEF, therefore, provides a versatile
framework for modeling a wide range of data by varying
B, unlike the Gaussian mixtures, which have a low-pass
frequency domain. Many common signals, like the square
or triangle, are band-unlimited, constituting a fundamental
challenge to Gaussian-based methods. In this paper, we try
to learn a positive 3 for every component of the Gaussian
splatting to allow for a generalized 3D representation.

3.2. Assessing 1D GEF Mixtures in Simulation

We evaluate the effectiveness of a mixture of GEFs
in representing various one-dimensional (1D) signal types.
This evaluation is conducted by fitting the model to syn-
thetic signals that replicate characteristics properties of
common real-world signals. More details and additional
simulation results are provided in Supplementary Material.

Simulation Setup. The experimental framework was based
on a series of parametric models implemented in PyTorch
[32], designed to approximate 1D signals using mixtures of
different functions such as Gaussian (low-pass), Difference
of Gaussians (DoG), Laplacian of Gaussian (LoG), and a
GEF mixture model. Each model comprised parameters for
means, variances (or scales), and weights, with the gener-
alized model incorporating an additional parameter, 3, to
control the exponentiation of the GEF function.

Model Configuration. The models were configured with
a varying number of components [N, with tests conducted
using N = {2,5,8,10,15,20}. The weights of the com-
ponents are chosen to be positive. All the parameters of all
the N components were learned. Each model was trained
using the Adam optimizer with a mean squared error loss
function. The input x was a linearly spaced tensor repre-
senting the domain of the synthetic signal, and the target y
was the value of the signal at each point in . Training pro-
ceeded for a predetermined number of epochs, and the loss
was recorded at the end of training.

Data Generation. Synthetic 1D signals were generated for
various signal types over a specified range, with a given
data size and signal width. The signals were used as the
ground truth for training the mixture models. The ground
truth signals used in the experiment are one-dimensional
(1D) functions that serve as benchmarks for evaluating sig-
nal processing algorithms. The signal types under study are:
square, triangle, parabolic, half sinusoidal, Gaussian, and
exponential functions. We show Fig.3 an example of fitting
a Gaussian when N = 5 and a Generalized mixture on the
square signal when N = 2. Note how sharp edges consti-
tute a challenge for Gaussians that have low pass bandwidth
while a square signal has an infinite bandwidth known by
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Figure 4. Numerical Simulation Results of Different Mixtures. We show a comparison of average loss for different mixture models
optimized with gradient-based optimizers across varying numbers of components on various signal types (a-f). In the case of ‘NaN‘ loss (
gradient explosion), the results are not shown on the plots. Full simulation results are provided in Supplementary Material

the sinc function [16].

Simulation Results. The models’ performance was evalu-
ated based on the loss value after training. Additionally, the
model’s ability to represent the input signal was visually in-
spected through generated plots. Multiple runs per configu-
ration were executed to account for variance in the results.
For a comprehensive evaluation, each configuration was run
multiple times (20 runs per configuration) to account for
variability in the training process. During these runs, the
number of instances where the training resulted in a "nan’
loss was removed from the loss plots, and hence some plots
in Fig.4 do not have loss values at some IN. As depicted in
Fig.4, the GEF Mixture consistently yielded the lowest loss
across the number of components, indicating its effective
approximation of many common signals, especially band-
unlimited signals like the square and triangle. The only ex-
ception is the Gaussian signal, which is (obviously) fitted
better with a Gaussian Mixture.

4. Generalized Exponential Splatting (GES)

Having established the benefits of GEF of Eq.(1) over
Gaussian functions, we will now demonstrate how to ex-
tend GEF into the Generalized Exponential Splatting (GES)
framework, offering a plug-and-play replacement for Gaus-
sian Splatting. We also start with a collection of static im-
ages of a scene and their corresponding camera calibrations
obtained through Structure from Motion (SfM) [37], which
additionally provides a sparse point cloud. Moving beyond
Gaussian models [18], GES adopts an exponent 3 to tailor
the focus of the splats, thus sharpening the delineation of
scene edges. This technique is not only more efficient in
memory usage but also can surpass Gaussian splatting in

established benchmarks for novel view synthesis.

4.1. Differentiable GES Formulation

Our objective is to enhance novel view synthesis with a
refined scene representation. We leverage a generalized ex-
ponential form, here termed Generalized Exponential Splat-
ting, which for location x in 3D space and a positive definite
matrix 3, is defined by:

NI

L(x; p, %, B) = exp {—;((X — W)= (x - p) } ,
(2

where p is the location parameter and X is the covariance
matrix equivalance in Gaussian Splatting [18]. 3 is a shape
parameter that controls the sharpness of the splat. When
B = 2, this formulation is equivalent to Gaussian splat-
ting [18]. Our approach maintains an opacity measure K
for blending and utilizes spherical harmonics for coloring,
similar to Gaussian splatting [18].

For 2D image projection, we adapt the technique by
Zwicker et al. [57], but keep track of our variable exponent
3. The camera-space covariance matrix X’ is transformed
as follows: X' = JWXWTJT, where J is the Jacobian of
the transformation from world to camera space, and W is
a diagonal matrix containing the inverse square root of the
eigenvalues of 3. We ensure 3 remains positively semi-
definite throughout the optimization by formulating it as a
product of a scaling matrix S (modified by some positive
modification function ¢(8) > 0 as we show later) and a
rotation matrix R, with optimization of these components
facilitated through separate 3D scale vectors s and quater-
nion rotations q.
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Figure 5. Visual Comparison on Novel View Synthesis. We display comparisons between our method and established baselines and the

ground truth images. The depicted scenes are ordered as follows: GARDEN and ROOM from the Mip-NeRF360 dataset; DRJOHNSON from
the Deep Blending dataset; and TRAIN from Tanks&Temples. Subtle differences in rendering quality are accentuated through zoomed-in
details. These specific scenes were picked similarly to Gaussin Splatting [18] for a fair comparison. It might be difficult in general to see
differences between GES and Gaussians because they have almost the same PSNR (despite GES requiring 50% less memory).

4.2. Fast Differentiable Rasterizer for GES

Intuition from Volume Rendering. The concept of vol-
ume rendering in the context of neural radiance fields [30]
involves the integration of emitted radiance along a ray
passing through a scene. The integral equation for the ex-
pected color C(r) of a camera ray r(t) = o + td, with near
and far bounds ?,, and ¢, respectively, is given by:

o = [ TOse@)tro.
" : 3)
where T'(t) = exp (— /tn K(r(s)) ds) .

Here, T'(t) represents the transmittance along the ray from
t, to t, k(r(t)) is the volume density, and c(r(t), d) is the
emitted radiance at point r(t) in the direction d. The total
distance [t,,, t ;] crossed by the ray across non-empty space
dictates the amount of lost energy and hence the reduction
of the intensity of the rendered colors. In the Gaussian
Splatting world [18], this distance [t,,,¢f] is composed of
the projected variances o of each component along the ray
direction o + td. In our GES of Eq.(2), if the shape param-
eter 3 of some individual component changes, the effective
impact on Eq.(3) will be determined by the effective vari-
ance projection & of the same component modified by the

modifcation function ¢(3) as follows:

a(p) =Bl . )

Note that the modification function ¢ we chose does not
depend on the ray direction since the shape parameter 3 is a
global property of the splatting component, and we assume
the scene to comprise many components. We tackle next the
choice of the modification function ¢ and how it fits into the
rasterization framework of Gaussian Splatting [18].
Approximate Rasterization. The main question is how to
represent the GES in the rasterization framework. In effect,
the rasterization in Gaussian Splatting [18] only relies on
the variance splats of each component. So, we only need to
simulate the effect of the shape parameter /5 on the covari-
ance of each component to get the rasterization of GES . To
do that, we modify the scales matrix of the covariance in
each component by the scaler function ¢(3) of that compo-
nent. From probability theory, the exact conversion between
the variance of the generalized exponential distribution and
the variance of the Gaussian distribution is given by [7] as

_T(3/8)
I(1/5)

, where I is the Gamma function. This conversion in Eq.(5)
ensures the PDF integrates to 1. In a similar manner, the

$(8)

®)
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Figure 6. Frequency-Modulated Image Masks. For the input example image on the left, We show examples of the frequency loss masks
M,, used in Sec.4.3 for different numbers of target normalized frequencies w (w = 0% for low frequencies to w = 100% for high
frequencies). This masked loss helps our GES learn specific bands of frequencies. We use a linear schedule to determine these target

current iteration
total iterations *

w values during the optimization of GES , w =

Note that due to DoG filter sensitivity for high-frequencies, the mask for

0 < w < 50% is defined as 1 — M, of 50 < w < 100%. This ensures that all parts of the image will be covered by one of the masks M,,,

while focusing on the details more as the optimization progresses.
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Figure 7. Effective Variance of GES components. We demon-
strate the concept of effective variance projection &(/3) for an in-
dividual splatting component intersecting a camera ray r under
shape modification (8 > 2). Note that &(/3) is a scaled version of
the original splat projected variance c.

integrals in Eq.(3) under Eq.(4) can be shown to be equiv-
alent for Gaussians and GES using the same modification
of Eq.(5). The modification will affect the rasterization as if
we did perform the exponent change. It is a trick that allows
using generalized exponential rasterization without taking
the S exponent. Similarly, the Gaussian splatting [18] is
not learning rigid Gaussians, it learns properties of point
clouds that act as if there are Gaussians placed there when
they splat on the image plane. Both our GES and Gaus-
sians are in the same spirit of splatting, and representing 3D
with splat properties. Fig.7 demonstrates this concept for
an individual splatting component intersecting a ray r from
the camera and the idea of effective variance projection a.
However, as can be in Fig.7, this scaler modification ¢(03)
introduces some view-dependent boundary effect error (e.g.
if the ray r passed on the diagonal). We provide an upper
bound estimate on this error in Supplementary Material.

4.3. Frequency-Modulated Image Loss

To effectively utilize the broad-spectrum capabilities of
GES, it has been enhanced with a frequency-modulated im-
age loss, denoted as £,,. This loss is grounded in the ratio-
nale that GES , initially configured with Gaussian low-pass
band splats, should primarily concentrate on low-frequency
details during the initial stages of training. As training
advances, with the splat formations adapting to encapsu-
late higher frequencies, the optimization’s emphasis should
gradually shift towards these higher frequency bands within
the image. This concept bears a technical resemblance to
the frequency modulation approach used in BARF [21],
albeit applied within the image domain rather than the
3D coordinate space. The loss is guided by a frequency-
conditioned mask implemented via a Difference of Gaus-
sians (DoG) filter to enhance edge-aware optimization in
image reconstruction tasks modulated by the normalized
frequency w. The DoG filter acts as a band-pass filter, em-
phasizing the edges by subtracting a blurred version of the
image from another less blurred version, thus approximat-
ing the second spatial derivative of the image. This opera-
tion is mathematically represented as:

DOG(I) = G(I,O’l) — G(I,O’Q), 0<og <01

where G(I, o) denotes the Gaussian blur operation on im-
age I with standard deviation o. The choice of ¢ values dic-
tates the scale of edges to be highlighted, effectively deter-
mining the frequency band of the filter. We chose 01 = 205
to ensure the validity of the band-pass filter, where the
choice of oo will determine the target frequency band of
the filter. In our formulation, we use predetermined target
normalized frequencies w (w = 0% for low frequencies to
w = 100% for high frequencies). We chose oo = 0.1+ 10w
to ensure the stability of the filter and reasonable result-
ing masks. The filtered image is then used to generate an
edge-aware mask M, through a pixel-wise comparison to a
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Dataset Mip-NeRF360 Dataset Tanks&Temples Deep Blending

Method—Metric |SSIM'T PSNR' LPIPS* Train* FPST Mem' |SSIM" PSNR' LPIPS* Train*t FPST Mem* |SSIM'T PSNR' LPIPS* Train* FPS"T Mem®*
Plenoxels 0.626 23.08 0463 26m 679 2.1GB| 0719 21.08 0379 25m 13.0 23GB | 0795 23.06 0510 28m 112 2.7GB
INGP 0.699 2559 0331 7.5m 9.43 48MB | 0.745 2192 0305 7m 144 48MB | 0.817 2496 0390 8m 2.79 48MB
Mip-NeRF360 0792 | 27.69 0237 48h 0.06 | 86MB| 0.759 2222 0257 48h 0.14 | 86MB| 0901 2940  0.245 48h 0.09 | 8.6MB
3D Gaussians-7K | 0.770  25.60 0279  6.5m 160 523MB| 0.767 2120 0280 7m 197 270MB| 0.875 2778 0317 4.5m | 172 386MB
3D Gaussians-30K | 0.815  27.21 | 0214  42m 134 734MB| 0.841 23.14 | 0.183 26m 154 411MB| 0903 29.41 0243 36m 137 676MB

GES (ours) ‘ 0.794 26091 0250 32m 186 377MB‘ 0.836  23.35 0.198  2Im | 210 222MB‘ 0.901  29.68 0.252 30m 160 399MB

Table 1. Comparative Analysis of Novel View Synthesis Techniques. This table presents a comprehensive comparison of our approach
with established methods across various datasets. The metrics, inclusive of SSIM, PSNR, and LPIPS, alongside training duration, frames
per second, and memory usage, provide a multidimensional perspective of performance efficacy. Note that our training time numbers of
the different methods may be computed on different GPUs; they are not necessarily perfectly comparable but are still valid. Note that
non-explicit representations (INGP, Mip-NeRF360) have low memory because they rely on additional slow neural networks for decoding.

Red-colored results are the best.

threshold value (after normalization) as follows.

M, = l(DOGw (Igt)normalized > ew) )

6
DoG,, (1) = G(I,0.2 + 20w) — G(I,0.1 + 10w) ©

, where 0 < ¢,, < 1is the threshold ( we pick 0.5) for a nor-
malized response of the filter DoG,,, I is the ground truth
image, and 1 is the indicator function. See Fig.6 for ex-
amples of the masks. The edge-aware frequency-modulated

loss L, is defined as:
Lo = (I = Iy)  Myll1, )

where I is the reconstructed image, and ||-||; denotes the L1
norm. This term is integrated into the overall loss, as shown
later. The mask is targeted for the specified frequencies w.
We use a linear schedule to determine these target w values
in Eq.(7) and Eq.(6) during the optimization of GES , w =
% The loss L, aims to help in tuning the shape
[ based on the nature of the scene. It does so by focusing
the GES components on low pass signals first during the
training before focusing on high frequency with tuning (8
from their initial values. This helps the efficiency of GES as
can be seen later in Table 2 (almost free 9% reduction in
memory).

Due to DoG filter sensitivity for high-frequencies, the
mask for 0% < w < 50% is defined as 1 — M,, of 50% <
w < 100%. This ensures that all parts of the image will
be covered by one of the masks M, while focusing on the
details more as the optimization progresses.

4.4. Optimization of GES

We detail a novel approach for controlling shape den-
sity, which selectively prunes GES according to their shape
attributes, thus eliminating the need for a variable density
mechanism. This optimization strategy encompasses the
parameter as well as the splat’s position x, opacity &, co-
variance matrix X, and color representation through spher-
ical harmonics coefficients [18]. Optimization of these ele-
ments is conducted using stochastic gradient descent, with
the process accelerated by GPU-powered computation and
specialized CUDA kernels.

Starting estimates for 3 and x are deduced from the STM
points, while all S values are initialized with 5 = 2 (pure
Gaussian spalts). The loss function integrates an £; metric
combined with a structural similarity loss (SSIM), and the
frequency-modulated lossL,,:

L= ALlﬁl + )\ssim‘cssim + /\w‘ccw (8)

where A\gim = 0.2 is applied uniformly in all evaluations,
and A} = 1 — Agim — Aw. Expanded details on the learning
algorithm and other specific procedural elements are avail-
able in Supplementary Material.

5. Experiments
5.1. Datasets and Metrics

In our experiments, we utilized a diverse range of
datasets to test the effectiveness of our algorithm in ren-
dering real-world scenes. This evaluation encompassed 13
real scenes from various sources. We particularly focused
on scenes from the Mip-Nerf360 dataset [4], renowned for
its superior NeRF rendering quality, alongside select scenes
from the Tanks & Temples dataset [20], and instances pro-
vided by Hedman et al. [13] for their work in Deep Blend-
ing. We follow the same metrics and procedures in Guas-
sian Splatting [18].

5.2. Implementation Details of GES

Our methodology maintained consistent hyperparame-
ter settings across all scenes, ensuring uniformity in our
evaluations. We deployed an A6000 GPU for most of our
tests. Our Generalized Exponential Splatting (GES ) was
implemented over 40,000 iterations, and the density gradi-
ent threshold is set to 0.0003. The learning rate for the shape
parameter was set at 0.0015, with a shape reset interval of
1000 iterations and a shape pruning interval of 100 itera-
tions. The other hyperparameters and design choices (like
opacity splitting and pruning) shared with Gaussian split-
ting [ 18] were kept the same. More details are provided in
Supplementary Material.
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Gound Truth

Figure 8. Frequency-Modulated Loss Effect. We show the effect of the frequency-modulated image loss L., on the performance on novel
views synthesis. Note how adding £., improves the optimization in areas with large contrast or a smooth background.

Ground Truth

GES(ours) Gaussians

Figure 9. A Fair Visual Comparison. We show an example of
Gaussians [ 18] and GES when constrained to the same number of
splatting components for a fair visual comparison. It clearly shows
that GES can better model tiny and sharp edges for that scene.

6. Results
6.1. Novel View Synthesis Results

We evaluated GES against several state-of-the-art tech-
niques in both novel view synthesis tasks. Table 1 encap-
sulate the comparative results in addition to Fig.5. Table 1
demonstrates that GES achieves a balance between high fi-
delity and efficiency in novel view synthesis. Although it
does not always surpass other methods in SSIM or PSNR,
it significantly excels in memory usage and speed. With
only 377MB of memory and a processing speed of 2 min-
utes, GES stands out as a highly efficient method, particu-
larly when compared to the 3D Gaussians-30K and Instant
NGP, which require substantially more memory or longer
processing times. Overall, the results underscore GES ’s
capability to deliver balanced performance with remarkable
efficiency, making it a viable option for real-time applica-
tions that demand both high-quality output and operational
speed and memory efficiency.

Note that it is difficult to see the differences in visual ef-
fects between GES and Gaussians in Fig.5 since they have
almost the same PSNR but a different file size (Table 1). For
a fair visual comparison, we restrict the number of compo-
nents to be roughly the same (by controlling the splitting of
Gaussians) and show the results in Fig.9. It clearly shows
that GES can model tiny and sharp edges for that scene bet-
ter than Gaussians.

6.2. Ablation and analysis

Shape parameters. In Table 2, we explore the effect of
important hyperparameters associated with the new shape
parameter on novel view synthesis performance. Additional

Ablation Setup PSNR' SSIM' LPIPS' Size (MB)*
Gaussians 27.21 0.815 0.214 734
GES w/o shape reset  26.57 0.788 0.257 374
GES w/o L, loss 27.07 0.800 0.250 411
Full GES 26.91 0.794 0.250 377

Table 2. Ablation Study on Novel View Synthesis. We study the
impact of several components in GES on the reconstruction quality
and file size in the Mip-NeRF360 dataset.

detailed analysis is provided in Supplementary Material.
Effect of frequency-modulated image loss. We study the
effect of the frequency loss £, introduced in Sec.4.3 on
the performance by varying A,,. In table 2 and in Fig.8 we
demonstrate how adding this £,, improves the optimization
in areas where large contrast exists or where the smooth
background is rendered and also improves the efficiency of
GES. We notice that increasing A, in GES indeed reduces
the size of the file, but can affect the performance. We chose
Aw = 0.5 as a middle ground between improved perfor-
mance and reduced file size.

7. Conclusion and discussion

This paper introduced GES (Generalized Exponential
Splatting), a new technique for 3D scene modeling that im-
proves upon Gaussian Splatting in memory efficiency and
signal representation, particularly for high-frequency sig-
nals. Our empirical results demonstrate its efficacy in novel
view synthesis with substantial efficiency improvement.
Limitation. One obvious limitation in our approach is that
performance typically drops trying to make the representa-
tion as memor-efficient and as compact as possible. This is
more noticeable for more complex scenes due to the prun-
ing operations that depend on /3-tuning. Removing many of
the components can eventually drop the PSNR performance
(Table 1 last 2 rows). Future research could focus on en-
hancing GES ’s performance in more complex and dynamic
environments and exploring its integration with other tech-
nologies in 3D modeling.
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