
Anchor-based Robust Finetuning of Vision-Language Models

Jinwei Han1, Zhiwen Lin2, Zhongyisun Sun2, Yingguo Gao2, Ke Yan2

Shouhong Ding2, Yuan Gao3†, Gui-Song Xia1†
1School of Computer Science, Wuhan University 2YouTu Lab, Tencent

3Electronic Information School, Wuhan University
{hanjinwei, guisong.xia}@whu.edu.cn, {sunzy12315, ethan.y.gao}@gmail.com
xavier.lin@foxmail.com, {yingguogao, kerwinyan, ericshding}@tencent.com

Abstract

We aim at finetuning a vision-language model without
hurting its out-of-distribution (OOD) generalization. We
address two types of OOD generalization, i.e., i) domain
shift such as natural to sketch images, and ii) zero-shot ca-
pability to recognize the category that was not contained in
the finetune data. Arguably, the diminished OOD general-
ization after finetuning stems from the excessively simpli-
fied finetuning target, which only provides the class infor-
mation, such as “a photo of a [CLASS]”. This is distinct
from the process in that CLIP was pretrained, where there
is abundant text supervision with rich semantic information.
Therefore, we propose to compensate for the finetune pro-
cess using auxiliary supervision with rich semantic infor-
mation, which acts as anchors to preserve the OOD gener-
alization. Specifically, two types of anchors are elaborated
in our method, including i) text-compensated anchor which
uses the images from the finetune set but enriches the text
supervision from a pretrained captioner, ii) image-text-pair
anchor which is retrieved from the dataset similar to pre-
training data of CLIP according to the downstream task,
associating with the original CLIP text with rich semantics.
Those anchors are utilized as auxiliary semantic informa-
tion to maintain the original feature space of CLIP, thereby
preserving the OOD generalization capabilities. Compre-
hensive experiments demonstrate that our method achieves
in-distribution performance akin to conventional finetuning
while attaining new state-of-the-art results on domain shift
and zero-shot learning benchmarks.

1. Introduction

Maintaining out-of-distribution (OOD) generalization is es-
sential for a pretrained model to ensure applicability across

† Corresponding authors.

(a) Generalization Degradation (b) Two Types of Anchors

Image
Generated Text
Class Label
Retrieved Image
Retrieved Text

Pretrain Finetune

Evaluation

CLIP
Model

Downstream 
Model

Cat

Cat

Horse

IDOOD

Domain Shift

Zero-shot Learning

Dog
Fox

Figure 1. Motivation illustration. (a) The out-of-distribution gen-
eralization (i.e., domain shift and zero-shot learning) capabili-
ties of CLIP degrade significantly after finetuning on downstream
tasks. (b) Images with generated texts and retrieved image-text
pairs serve as two types of anchors to regularize the finetuning
process of CLIP with auxiliary semantic information.

diverse circumstances (e.g., domain shift and zero-shot
learning), even after adaptation to downstream tasks. In
recent years, contrastive vision-language pretrained mod-
els, such as CLIP [30] and ALIGN [17], have exhibited ex-
ceptional OOD generalization capabilities in the aforemen-
tioned situations. Although it is desirable to finetune these
models using task-specific labeled data to improve perfor-
mance on downstream tasks [8, 31], they often experience a
significant degradation of OOD generalization [22, 39].

As illustrated in Fig. 1(a), OOD generalization encom-
passes domain shift, such as from natural to sketch images,
and zero-shot capability to recognize categories not present
in the finetuning data. Numerous methods have been pro-
posed to preserve the OOD generalization of CLIP during
the finetuning process. Prompt learning [1, 42, 43] opti-
mizes a set of learnable vectors using a limited number of
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labeled images while keeping the entire pretrained param-
eters of CLIP frozen. Although these approaches demon-
strate potential in addressing zero-shot prediction, their per-
formance on downstream tasks is insufficient for practi-
cal needs. Robust finetuning [12, 22, 36, 39] leverages all
available data and employs a fully-tuned process to achieve
high accuracy on in-distribution tasks without compromis-
ing performance under domain shift in OOD, while zero-
shot capability remains neglected. In this study, we extend
robust finetuning to a more challenging scenario, aiming to
preserve OOD generalization capabilities in both domain
shift and zero-shot learning. For instance, as shown in Fig.
1(a), our goal is to improve CLIP’s capacity to recognize
various types of animals while maintaining its original abil-
ity to classify animals from different domains (e.g., sketch)
and other categories of animals (e.g., horse).

Our work is based on the observation that the feature
space in CLIP, trained on large-scale image-text pairs, en-
compasses open-vocabulary semantic knowledge and thus
demonstrates exceptional OOD generalization capabilities.
The conventional supervised finetuning paradigm primarily
minimizes a cross-entropy loss on an image classifier with
class labels. FLYP [12] casts downstream class labels as
text prompts (e.g., “a photo of a [CLASS]”) and optimizes
the contrastive loss to align the image embeddings with the
prompt embeddings, using only the class information.

We argue that the decline in OOD generalization stems
from the semantic-scarce supervision containing only class
labels during the finetuning process. Such an over-
simplified finetuning target is distinct from the abundant
text supervision employed in the pretraining of CLIP, lead-
ing to degraded OOD generalization. Specifically, image
features originally possessing rich semantics tend to col-
lapse into a single class center after finetuning. As a re-
sult, the feature space of the finetuned model shifts towards
fitting the downstream dataset without the necessity of pre-
serving rich semantics. Finally, as a consequence, the origi-
nal feature space of CLIP deteriorates significantly, impair-
ing its OOD generalization capabilities.

Based on the above analysis, we propose an Anchor-
based Robust Finetuning (ARF) approach that regularizes
the finetuning process of CLIP with auxiliary contrastive
supervision. As illustrated in Fig. 1(b), our approach incor-
porates two types of anchors for maintaining the original
feature space of CLIP. Specifically, one of them is the text-
compensated anchor, which is derived from using the image
from the finetune set while enriching the semantic text from
a pretrained captioner, such as BLIP2 [24]. This is achieved
by a carefully designed Text-Compensated Anchor Genera-
tion (TCAG) module. The other one is the image-text-pair
anchor retrieved from a dataset similar to the pretraining
data of CLIP according to the downstream task, whose text
originally exhibits rich semantics. We implement this using

the Image-Text Anchor Retrieval (ITAR) module. These
two types of image-text anchors are complementary to each
other and are utilized as auxiliary supervision to regularize
the finetuning process of CLIP, ensuring that the image fea-
tures do not converge too close to the class prompt while re-
taining the original feature space of CLIP. Extensive exper-
iments demonstrate that our ARF achieves in-distribution
performance comparable to finetuning while attaining new
state-of-the-art OOD generalization results on domain shift
and zero-shot learning benchmarks.

Our main contributions are summarized as follows:

• We extend robust finetuning to a more challenging set-
ting, aiming to preserve OOD generalization capabilities
in both domain shift and zero-shot learning.

• We propose Anchor-based Robust Finetuning (ARF), us-
ing both text-compensated anchor and retrieved image-
text-pair anchor to regularize the finetuning process.

• Extensive experiments reveal that our ARF attains new
state-of-the-art performance on domain shift and zero-
shot learning benchmarks while achieving in-distribution
performance akin to finetuning.

2. Related Work

2.1. Vision-Language Contrastive Learning

Vision-language models [17, 30, 34] primarily focus on es-
tablishing a joint embedding space for cross-modal learn-
ing by aligning web-scale images and texts. Recent ad-
vancements in the contrastive vision-language pretraining
paradigm, particularly CLIP [30], have demonstrated ex-
ceptional out-of-distribution (OOD) generalization capabil-
ities across various downstream tasks (e.g., domain shift
and zero-shot learning). Numerous subsequent studies
have been proposed to further enhance contrastive image-
text pretraining, such as masked language/image model-
ing [9, 25], hard sample mining [38], and retrieval aug-
mentation [16, 41]. BLIP [23] aims to improve image-
text pretraining for unified vision-language understand-
ing and generation, while BLIP2 [24] incorporates Large
Language Models (LLMs) to further improve generaliza-
tion. Although these methods have indeed enhanced vision-
language pretraining, finetuning remains necessary to im-
prove performance on downstream tasks. A recent study [8]
demonstrates that CLIP attains superior or at least com-
petitive performance on downstream tasks after finetun-
ing, compared to conventional supervised pretraining mod-
els. ViFi-CLIP [31] implicitly models temporal cues and
effectively finetunes image-level CLIP representations for
videos. However, the OOD generalization capabilities sig-
nificantly degrade after finetuning, impairing the applicabil-
ity of CLIP across diverse circumstances.
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2.2. Finetuning for Generalization

Maintaining the OOD generalization capabilities of CLIP
during the finetuning process has been extensively inves-
tigated through various approaches. Prompt learning [19,
42, 43] incorporates a small number of learnable prompt
vectors to finetune CLIP, using a limited set of labeled
images while keeping the pretrained model weights fixed.
Although these methods demonstrate potential in address-
ing zero-shot prediction, their performance on downstream
tasks remains unsatisfactory. Robust finetuning [12, 22,
36, 39] leverages all available data and implements a fully-
tuned process to achieve high accuracy on in-distribution
tasks without sacrificing performance under domain shift
in OOD. Wise-FT [39] ensembles the weights of finetuned
and original models, yielding remarkable gains in domain
shift. LP-FT [22] initially trains the classification layer and
then finetunes the entire network. This two-stage process
substantially mitigates distortion of pretrained features and
improves generalization. FLYP [12] demonstrates that a
straightforward method of mimicking contrastive pretrain-
ing consistently outperforms finetuning approaches, while
TPGM [36] automatically learns the constraint imposed on
each layer for finetuning regularization. Nonetheless, the
zero-shot learning capability is neglected by robust finetun-
ing, leading to a substantial degradation of OOD general-
ization. In light of these observations, we propose a more
practical and challenging setting to finetune CLIP on down-
stream tasks without compromising both domain shift and
zero-shot learning generalization capabilities.

3. Preliminaries
3.1. Summary of Notations

We summarize the notations used in the following sections.
Specifically, we use the uppercase calligraphy font to de-
note a specific set, e.g., a dataset S, which consists of in-
put images and their corresponding class information. The
input images are denoted by X , while the class informa-
tion is either represented by the class labels Y , or the text
descriptions T encompassing the class information, e.g.,
S = {X ,Y} or S = {X , T }. We denote the set of all the
classes by C. We use the lowercase font to denote a sample,
e.g., x is an image sample.

As for the scripts, we use superscript to indicate a spe-
cific data split, which can be a split of training (train), test-
ing (test), in-distribution (id), domain shift (ds), zero-shot
learning (zsl), etc. And the subscripts serve as indices. For
example, xtrain

i is the i-th image sample from the training
dataset where xtrain

i ∈ X train.

3.2. Contrastive Vision-Language Models

In this paper, we adapt the contrastive vision-language pre-
training model CLIP [30] to downstream tasks, which com-

prises an image encoder f(·) and a text encoder g(·). Dur-
ing the pretraining phase, image-text pairs are sampled from
a web-scale training dataset S train = {(xtrain

i , ttrain
i )}, where

each text description ttrain
i encompasses rich semantics with

abundant class information. The categories C train cover
open-vocabulary semantic knowledge. Each image xtrain

i

and text ttrain
i is mapped to an image embedding f(xtrain

i )
and a text embedding g(ttrain

i ), respectively. Subsequently, a
contrastive loss function LCL is utilized to align the image
embedding f(xtrain

i ) with the corresponding text embedding
g(ttrain

i ), which is formulated as,

LCL = − 1

B

B∑
i=1

log
exp(f(xtrain

i ) · g(ttrain
i )/τ)∑B

j=1 exp(f(x
train
j ) · g(ttrain

j )/τ)

− 1

B

B∑
i=1

log
exp(g(ttrain

i ) · f(xtrain
i )/τ)∑B

j=1 exp(g(t
train
j ) · f(xtrain

j )/τ)
,

(1)

where B represents the number of image-text pairs in the
minibatch, and τ denotes the temperature parameter used to
scale the pairwise similarities in the loss function.

We consider image recognition as evaluation, that is, we
evaluate the performance on a test set S test = {(xtest

i , ytest
i )}

with categories C test. CLIP utilizes predefined text prompts
ttest
c as inputs for the text encoder, which describe each class
c ∈ Ctest, such as,

text prompt: a photo of a [CLASS], (2)

where “[CLASS]” represents the class name. The out-
put text embeddings g(ttest) are employed as classification
weights during evaluation. Given an image xtest

i in S test, it
is fed into the image encoder of CLIP to obtain the cor-
responding image embedding f(xtest

i ). The predicted label
ptest
i is calculated as,

ptest
i = arg max

c∈C test
(f(xtest

i ) · g(ttest
c )), (3)

which implies that the class exhibiting the highest similarity
between the image embedding f(xtest

i ) and text embeddings
g(ttest

c ) of C test classes is selected as the classification result.
We finetune the CLIP model by mimicking contrastive

pretraining, as described in FLYP [12]. Specifically, class
labels are formulated as text prompts in Eq. (2) and the
contrastive loss function in Eq. (1) is utilized to align image
embeddings with text prompt embeddings. We follow the
same evaluation process as used in CLIP [30].

4. Method
4.1. Problem Setup

Given a pretrained CLIP model, we aim to finetune it on the
in-distribution dataset S id = {(xid

i , y
id
i )} sampled from the

distribution P id with classes C id, where each image xid
i has a
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Figure 2. The pipeline of our proposed Anchor-based Robust Finetuning (ARF) comprises a Text-Compensated Anchor Generation
(TCAG) module and an Image-Text Anchor Retrieval (ITAR) module. TCAG generates a caption for each image in the finetuning dataset
utilizing a pretrained captioner as a text-compensated anchor with rich semantics. ITAR searches for image-text pairs from a candidate set
similar to the data on which CLIP was pretrained, ensuring the presence of rich semantics in the image-text-pair anchor. We retrieve those
samples related to our downstream tasks. A contrastive loss function, as used in CLIP, is employed for image-text alignment.

label yid
i ∈ Y id. The adapted model should perform at least

as well as conventional finetuning methods on the test set
from the same distribution P id and with the same categories
C id as the training data. Simultaneously, we also work to-
wards preserving the out-of-distribution (OOD) generaliza-
tion capabilities in both domain shift and zero-shot learn-
ing scenarios. In the domain shift situation, we evaluate the
performance on the domain shift dataset Sds = {(xds

i , y
ds
i )}.

The test data are sampled from a different domain P ds but
share the same categories as the in-distribution data where
we have P (X id) ̸= P (X ds) while P (Y|X id) = P (Y|X ds).
As for zero-shot learning, we have the downstream dataset
as Szsl = {(xzsl

i , yzsl
i )}, which composes of test image xzsl

i

from a different category yzsl
i ∈ Yzsl where Czsl ∩ C id = ∅.

In other words, as illustrated in Fig. 1(a), consider fine-
tuning on real cat images, if we use sketch cat images for
testing, then it is a domain shift problem; while if we test
on horse images whose category is not included in the fine-
tune set, then it is a zero-shot learning situation. We aim
to achieve high performance on the in-distribution testing
set, while also preserving the OOD generalization for both
domain shift and zero-shot learning scenarios.

4.2. Anchor-based Robust Finetuning

Overview. As shown in Fig. 2, our Anchor-based Robust
Finetuning (ARF) approach finetunes both the image en-
coder and text encoder of CLIP using contrastive loss and
incorporates two distinct modules to regularize the finetun-
ing process. Specifically, in the Text-Compensated Anchor
Generation (TCAG) module, we leverage a pretrained im-

age captioner to generate a caption as text-compensated in-
formation for each image and align them using contrastive
loss. In the Image-Text Anchor Retrieval (ITAR) module,
we search for image-text pairs from a dataset similar to
CLIP’s pretraining data, which are related to the down-
stream task. These samples, originally containing rich se-
mantic information, serve as additional anchors during fine-
tuning. These two types of anchors complement each other
and preserve the original feature space of CLIP to ensure
the OOD generalization after adaptation.

4.2.1 Text-Compensated Anchor Generation
It is essential to note that merely employing the contrastive
training loss between images x and class prompts tc in
Eq. (1) can lead to overfitting the excessively simplified
finetuning target, as class prompts tc contain only class in-
formation shown in Eq. (2). This semantic-scarce supervi-
sion is distinct from the abundant text supervision exploited
in the pretraining of CLIP and can result in the degradation
of the original feature space.
Caption Generation. To mitigate the aforementioned is-
sue, we propose to employ a pretrained image captioner,
such as BLIP2 [24], to generate a text description tcap

i

(i.e., caption) as compensated rich-semantic information for
each image xi, thereby preventing the overfitting on class
prompts tc. The generated captions tcap encompass various
descriptive words with more abundant semantics compared
to class prompts tc, similar to the texts utilized in CLIP’s
pretraining. The images x and corresponding captions tcap

form the text-compensated anchors for regularization.
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Figure 3. The pipeline of our Image-Text Anchor Retrieval (ITAR)
module. We search for the most similar image-text pairs in the can-
didate set to obtain the rich semantic image-text anchors related to
the downstream task for regularizing the finetuning process.

Image-Caption Contrastive Learning. We cast (x, tcap)
as text-compensated anchors and utilize a contrastive loss
function LCap similar to Eq. (1) to align them within the
feature space, thereby maintaining the semantic consistency
between images and texts. The text-compensated anchors
prevent overfitting by ensuring that the conventional fine-
tuning process in Eqs. (1) and (2) does not pull the embed-
ding of the image xi too close to the text embedding of its
corresponding class prompt tc, regularizing the finetuning
process of CLIP with auxiliary semantic supervision.

4.2.2 Image-Text Anchor Retrieval

Furthermore, we propose to search for image-text pairs ac-
cording to the downstream task as auxiliary anchors. We
construct a candidate set that is similar to the pretraining
data of CLIP, originally containing rich semantic informa-
tion. The pretrained CLIP model possesses an exceptional
cross-modal retrieval capacity, which we employ to find
image-text pairs with abundant semantics for regularization.
These retrieved image-text-pair anchors are aligned using
a contrastive loss function to preserve the original feature
space during the finetuning process.
Candidate Set Construction. We construct the web-
scale image-text dataset CC3M [33] as a candidate set
Scan = {(xcan

i , tcan
i )}, which is employed to search for rich-

semantic image-text pairs. The candidate set closely resem-
bles the pretraining data of CLIP and encompasses abun-
dant semantic information for maintaining the original fea-
ture space. We leverage the cross-modal retrieval capacity
of CLIP to obtain image-text-pair anchors relevant to the
downstream task. Specifically, we extract the embeddings
of the images x in the downstream dataset as f(x), as well
as the embeddings of the texts tcan in the candidate set as
g(tcan) for preparation. These embeddings are utilized for
retrieval and can be precomputed offline.

Image-Text Pair Retrieval. In practice, only a small subset
of the candidate set Scan is relevant to the downstream task
and can be employed to preserve the original feature space
of CLIP. We propose to search for image-text pairs from the
candidate set Scan using KNN search.

Specifically, as illustrated in Fig. 3, we designate each
image xi as the query and find the most similar image-text
pairs from the candidate set Scan by calculating the similar-
ity between the image embedding f(xi) and the text em-
beddings g(tcan), which can be formulated as follows,

k = argmax(f(xi) · g(tcan)), (4)

where k represents the index of retrieved image-text pair in
the candidate set Scan.

The retrieval process can be efficiently executed using
existing libraries, such as Faiss [18]. Subsequently, we uti-
lize the retrieved image-text pairs Sret = {(xret

k , tretk )}
with rich semantics as auxiliary anchors to regularize the
finetuning process.
Image-Text Contrastive Learning. We denote (xret, tret)
as retrieved image-text-pair anchors and employ a con-
trastive loss function LRet, similar to Eq. (1), to preserve
the original feature space of CLIP. The retrieved image-text
pairs exhibit rich semantics related to the downstream task
and serve as auxiliary supervision during finetuning.

These two types of image-text anchors with abundant se-
mantic information are complementary to each other and
are utilized as additional contrastive supervision to regular-
ize the finetuning process of CLIP. The image encoder and
text encoder of CLIP are finetuned together with the follow-
ing loss function,

L = LCL + LCap + LRet. (5)

5. Experiments
Overview. We assess the effectiveness of our proposed
Anchor-based Robust Finetuning (ARF) approach by com-
paring it with several baselines and providing implementa-
tion details for reproducibility. The evaluation of maintain-
ing out-of-distribution (OOD) generalization capabilities is
divided into two sections. In Section 5.1, we present results
for domain shift, which was the focus of the original robust
finetuning methods. Subsequently, in Section 5.2, we show
results for our extended scenario (i.e., zero-shot learning).
Furthermore, we conduct an ablation study in Section 5.3 to
evaluate the efficacy of our approach and showcase qualita-
tive examples of two types of anchors in Section 5.4.
Baselines. We compare our ARF with two conventional
ways of finetuning pretrained models to downstream tasks
using cross-entropy: linear probing (LP) and end-to-end
fully finetuning (FT). Additionally, we investigate recent
advancements of robust finetuning, such as LP-FT [22],
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ImageNet DomainNet

Methods ID Im-V2 Im-R Im-A Im-Sketch ObjectNet Avg. OOD ID Sketch Painting Infograph Clipart Avg. OOD

CLIP 68.3 61.9 77.7 50.0 48.3 54.2 58.4 84.8 65.7 68.5 50.2 72.1 64.1

LP 79.9 69.8 70.8 46.4 46.9 50.4 56.9 86.3 57.4 61.5 45.6 64.1 57.2
FT 81.3 71.2 66.1 37.8 46.1 51.6 54.6 89.5 61.8 65.6 49.0 71.7 62.1

LP-FT 81.7 72.1 73.5 47.6 50.3 54.4 59.6 89.5 63.6 67.4 50.7 73.4 63.8
FLYP 82.6 73.0 71.4 48.1 49.6 54.7 59.4 89.8 64.1 68.5 50.8 74.0 64.3

ARF 82.7 72.8 75.6 50.3 51.8 55.8 61.3 89.8 65.3 69.5 51.1 74.9 65.2

Table 1. Domain shift results (%) of state-of-the-art conventional finetuning and robust finetuning approaches on ImageNet and DomainNet
benchmarks. The numbers represent the top-1 accuracy. We employ ImageNet and DomianNet-Real as the finetuning datasets, while the
others serve as domain shift evaluation datasets. The best results are marked in Black.
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Figure 4. The ID and domain shift performance of our ARF com-
pared with several baselines through linear interpolation of the
finetuned model weights with the original model weights follow-
ing Wise-FT [39]. The performance curves of ARF surpass (po-
sitioned in the upper right) those of the baselines on ImageNet,
resulting in improved ID and domain shift accuracy.

which involves an initial linear probing followed by fully
finetuning, and FLYP [12], wherein finetuning is conducted
in a pretraining-like manner.
Implementation Details. We employ a batch size of 512
for finetuning on ImageNet [7] and DomainNet [29] with 10
epochs. We utilize a learning rate of 10−5 and a weight de-
cay parameter of 0.1. ViT-B/16 [10] is utilized as the image
encoder of CLIP for finetuning. Domain shift and zero-shot
learning benchmarks are exclusively used for evaluation.
We apply the same prompt templates as those employed in
CLIP [30] and WiseFT [39] for training and inference.

5.1. Evaluation Under Domain Shift

Benchmarks. We evaluate domain shift performance on
two widely employed benchmarks, namely, ImageNet [7]
and DomainNet [29]. FMoW [20] and iWILDCam [3] are
excluded from our evaluation due to the poor domain shift
performance of the original CLIP. In the first benchmark,
we finetune CLIP using ImageNet [7] for in-distribution

evaluation and assess its performance on five distinct vari-
ants of ImageNet with domain shift: ImageNet-V2 [32],
ImageNet-Sketch [37], ImageNet-A [15], ImageNet-R [14]
and ObjectNet [2]. We follow the training protocol out-
lined in FLYP [12] and employ the same ImageNet prompt
templates used by CLIP during inference. For the second
benchmark, we utilize the standard domain shift dataset
DomainNet [29] for evaluation. We finetune CLIP using
DomainNet-Real for in-distribution performance and assess
its generalization ability to four domain shift splits: Clipart,
Infograph, Painting, and Sketch.
Quantitative Results. We compare the performance of our
ARF with several baselines on domain shift benchmarks,
as detailed in Table 1. On the ImageNet dataset, our ARF
exhibits a slight performance advantage over conventional
finetuning methods and other robust finetuning methods in
the in-distribution (ID) test dataset. The true strength of our
ARF lies in its capacity to generalize to domain shift sce-
narios, achieving state-of-the-art performance with an aver-
age accuracy of 61.3% across five domain shift test datasets.
Notably, our ARF performs significantly better than other
finetuning methods, approaching or even surpassing the per-
formance of CLIP on ImageNet-R, ImageNet-A, ImageNet-
Sketch, and ObjectNet, which have large domain differ-
ences. In the case of DomainNet, we also observe that our
ARF demonstrates state-of-the-art performance of 65.2%
on the domain shift test dataset without sacrificing accuracy
on in-distribution (ID) data. Our ARF outperforms CLIP on
domain shift scenarios by 1.1%, whereas other finetuning
methods either fail to surpass it or achieve only marginal
improvements. These results indicate the effectiveness of
the two types of anchors in our ARF. They effectively pre-
vent the overfitting of the original feature space of CLIP
to the downstream class prompts after finetuning, preserv-
ing the OOD generalization capability of CLIP for handling
domain shift scenarios.
Weight Ensembling Curves. Wise-FT [39] demonstrates
that a simple linear interpolation between the weights of the
pretrained and finetuned models yields the optimal perfor-
mance for both ID and domain shift. Therefore, we com-
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Zero-Shot Learning

Methods ImageNet Caltech Flowers Food SUN DTD Aircraft Cars Pets EuroSAT UCF Avg. OOD

CLIP 68.3 89.3 70.4 89.2 65.2 46.0 27.1 65.6 88.9 54.1 69.8 66.6

FT 81.3 78.8 16.0 37.3 39.3 29.7 4.7 10.8 80.2 15.4 44.3 35.7
LP-FT 81.7 84.0 44.3 68.8 49.9 37.9 15.8 37.7 81.9 30.4 59.5 51.0
FLYP 82.6 87.6 36.8 62.8 52.0 36.9 8.7 31.1 77.6 34.3 58.6 48.6

ARF 82.7 88.6 46.4 74.5 63.8 40.4 13.9 44.7 83.1 35.8 64.6 55.6

Table 2. Zero-shot learning results (%) of state-of-the-art conventional finetuning and robust finetuning methods on numerous recognition
tasks. The numbers represent the top-1 accuracy. We employ ImageNet as the finetuning dataset while the others serve as zero-shot learning
evaluation datasets. The best results are marked in Black.

Method ImageNet Zero-Shot
TCAG ITAR ID Domain Shift Avg. Acc

baseline 82.6 59.4 48.6

✓ 82.6 60.7(+1.3) 54.3(+5.7)
✓ 82.6 60.2(+0.8) 53.6(+5.0)

✓ ✓ 82.7 61.3(+1.9) 55.6(+7.0)

Table 3. Ablation study for Text-Compensated Anchor Generation
(TCAG) module and Image-Text Anchor Retrieval (ITAR) mod-
ule of our ARF. The baseline only conducts visual-language con-
trastive learning for finetuning like FLYP [12].

pare the performance of our ARF with the baselines by
interpolating their model weights using 10 mixing coeffi-
cients ranging from 0 to 1. As depicted in Fig. 4, we can
see that our ARF outperforms the baselines after finetun-
ing on ImageNet, leading to enhanced ID and domain shift
accuracy. Concretely, when comparing the coefficient that
achieves the highest ID performance, our ARF with weight
ensembling improves domain shift accuracy by 1.2% over
the state-of-the-art method (i.e., FLYP [12]). Comprehen-
sive results are provided in the supplementary material.

5.2. Evaluation Under Zero-shot Learning

Benchmarks. We evaluate zero-shot learning performance
using a diverse benchmark that encompasses a range of
recognition tasks. To ensure a fair comparison, we employ
the standard test split for inference, and the CLIP model is
finetuned on ImageNet [7]. As for the evaluation of zero-
shot learning, we utilize fine-grained object classification
tasks such as OxfordPets [28], StanfordCars [21], Flow-
ers102 [27] and Food101 [4]; as well as specific recogni-
tion tasks such as UCF101 [35] for action recognition, FGV-
CAircraft [26] for aircraft classification, DTD [6] for texture
classification, SUN397 [40] for scene recognition and Eu-
roSAT [13] for satellite image classification. Additionally,
we also evaluate our ARF on the general object classifica-
tion dataset Caltech101 [11].

Quantitative Results. We present the results of our ARF
and several baseline approaches on various zero-shot learn-
ing recognition tasks, as displayed in Table 2. It can be
observed that previous finetuning methods exhibit substan-
tial improvements in accuracy on the ImageNet test data
after finetuning with ImageNet training data, compared to
the original CLIP. However, their performance significantly
deteriorates in zero-shot learning recognition on the cate-
gories that were not contained in the finetuning data. In
contrast, our ARF optimally maintains the zero-shot recog-
nition capability without compromising the performance on
ImageNet. The experimental results demonstrate that our
ARF effectively regularizes the finetuning process with aux-
iliary semantic supervision, preserving the OOD general-
ization capability of CLIP for handling zero-shot learning
scenarios.

5.3. Ablation Study

Two Types of Anchors. To evaluate the effectiveness of
our ARF, we conduct an ablation study to analyze the influ-
ence of the two types of anchors, as shown in Table 3. It
can be observed that the Text-Compensated Anchor Gener-
ation (TCAG) module significantly improves domain shift
and zero-shot learning accuracy by 1.3% and 5.7% over
the baseline, respectively. These gains demonstrate that the
rich semantic text descriptions generated by the pretrained
captioner provide effective auxiliary supervision for the im-
ages to alleviate overfitting on class prompts. For retrieved
image-text-pair anchors, we evaluate the influence of the
Image-Text Anchor Retrieval (ITAR) module, which can
improve domain shift and zero-shot learning accuracy over
the baseline by 0.8% and 5.0% after finetuning on Ima-
geNet, respectively. These results reveal that the rich se-
mantic image-text pairs, retrieved from the candidate set
similar to the pretraining data of CLIP according to the
downstream task, are beneficial for regularizing the fine-
tuning process. The two modules, working together, boost
performance over the baseline by 1.9% on domain shift and
7.0% on zero-shot learning. The experimental results sug-
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Meerkat

Task Image with Label

A meerkat standing on a 
dirty road.

A pregnant meerkat 
resting in the sands.

Generated Caption Retrieved Image-Text Pair

Violin A man playing a violin in a 
black shirt.

Studio shot of a classical 
violinist playing a violin on 

black background.

Church A blue dome on a church. Blue-domed church of 
person in town.

Figure 5. Visualization examples of captions generated by a pretrained captioner (e.g., BLIP2 [24]) and retrieved image-text pairs relative
to the downstream task from the CC3M dataset [33]. The downstream task images and generated captions serve as text-compensated
anchors for regularization. The retrieved image-text pairs function as auxiliary anchors for maintaining the feature space.

Captioner ImageNet Zero-Shot
ID Domain Shift Avg. Acc

BLIP [23] 82.1 60.1 54.0
BLIP2 [24] 82.7 61.3 55.6

BLIP2 + Vicuna [5] 82.5 61.2 56.5

Table 4. Ablation study for the quality of generated captions.
We evaluate the effectiveness of pretrained image captioners (i.e.,
BLIP [23] and BLIP2 [24]) and further rewrite the text descrip-
tions using Large Language Models (e.g., Vicuna [5]) in our ARF.

gest that these two types of anchors complement each other
and are beneficial to preserving the OOD generalization ca-
pabilities of CLIP.
The Quality of Captions. To assess the impact of caption
quality in our ARF, we examine two pretrained image cap-
tioners (i.e., BLIP [23] and BLIP2 [24]) and further rewrite
the text descriptions using Large Language Models (e.g.,
Vicuna [5]). As illustrated in Table 4, employing captions
generated by BLIP2 results in a 1.2% improvement in do-
main shift performance and a 1.6% enhancement in zero-
shot learning performance compared to using captions gen-
erated by BLIP. These gains demonstrate that more accu-
rate text descriptions with rich semantics are beneficial for
regularizing the finetuning process. Additionally, we uti-
lize Vicuna [5] to rewrite the captions for increased diver-
sity and richer semantic information. Since the text descrip-
tions generated by BLIP2 are already sufficiently accurate,
there is no improvement in ID and domain shift scenarios.
However, the rich semantic knowledge accessed from Vi-
cuna boosts zero-shot learning by 0.9%. These results indi-
cate the effectiveness of auxiliary information from LLMs,
which warrants further exploration.

5.4. Qualitative Examples of Anchors

In Fig. 5, we provide visualization examples to facilitate an
understanding of how our Anchor-based Robust Finetuning
(ARF) works. The text descriptions (i.e., captions) gener-
ated by a pretrained captioner (e.g., BLIP2 [24]) accurately
describe the images, thus serving as effective anchors that
supply rich information for maintaining the semantic con-
sistency between images and texts. The image-text pairs,
retrieved from the candidate set, bear a close resemblance
to the pretraining data of CLIP and are related to the down-
stream task. This contributes auxiliary semantic knowledge
to preserve the OOD generalization capabilities of CLIP.

6. Conclusion
In this study, we extend previous robust finetuning to a more
challenging setting: preserving out-of-distribution (OOD)
generalization capabilities in both domain shift and zero-
shot learning during finetuning. We argue that the dimin-
ished OOD generalization results from the overly simpli-
fied finetuning target, which provides only class informa-
tion. Consequently, we propose an Anchor-based Robust
Finetuning (ARF) approach to regularize the finetuning pro-
cess with auxiliary contrastive supervision. This approach
incorporates a Text-Compensated Anchor Generation mod-
ule and an Image-Text Anchor Retrieval module to generate
image-text-pair anchors with rich semantic information and
align these anchors with contrastive loss. Extensive experi-
ments demonstrate the effectiveness of our approach.
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