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Abstract

Generating Audio Description (AD) for movies is a challeng-
ing task that requires fine-grained visual understanding and
an awareness of the characters and their names. Currently,
visual language models for AD generation are limited by a
lack of suitable training data, and also their evaluation is ham-
pered by using performance measures not specialized to the
AD domain. In this paper, we make three contributions: (i)
We propose two approaches for constructing AD datasets with
aligned video data, and build training and evaluation datasets
using these. These datasets will be publicly released; (ii) We
develop a Q-former-based architecture which ingests raw video
and generates AD, using frozen pre-trained visual encoders and
large language models; and (iii) We provide new evaluation met-
rics to benchmark AD quality that are well matched to human
performance. Taken together, we improve the state of the art on
AD generation.

1. Introduction

Cinema is a matter of what’s in the frame and what’s out.
Martin Scorsese

Audio description (AD) is an accessibility tool for the blind
and visually impaired that describes visual content which
is essential for following video programs1. Automatically
generating AD text is a challenging task as the information must
be accurate, character-aware, story-aware, complementary to
the soundtrack, and distilled into the gaps between speech. For
TV broadcasters in the US and UK, providing AD for a certain
percentage of video content has become a legal requirement.

With the current power of visual-to-text generative models,
generating AD automatically is now becoming possible [66],
and there has been a recent flurry of interest in this goal [20, 21],
kick-started by the availability of films and AD provided in
the MAD dataset [54]. Key innovations have included partial
training of AD generative models using available large-scale
datasets [20], and the introduction of a character bank to
provide hints (as prompts) for the language model for the

1https://www.3playmedia.com/learn/popular-
topics/audio-description/
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Figure 1. We propose two new movie Audio Description (AD) datasets
with pixels – CMD-AD and HowTo-AD by temporally aligning or
textually transforming existing pixel video datasets. The marker size
is proportional to the total video durations and grey color indicates
datasets with features instead of raw pixels.

crucial objective of naming the characters in the generated text
descriptions [21]. However, MAD only provides frame-level
CLIP features (and only at 5 Hz) and this has limited the ability
of generative models to provide fine-grained spatial details. Re-
cent Visual Language Models (VLMs) [1, 31–33, 71, 74] have
accessed the spatial feature map of the image (or video) in order
to obtain fuller descriptions or answer more detailed questions.

We make the following contributions: First, we provide two
new datasets that can be used to train an AD generation model
end-to-end. The datasets go beyond MAD [54] in that they
provide video as input, rather than only a CLIP frame feature,
i.e., they go back to the pixels. The first dataset, CMD-AD,
is constructed from two publicly available sources – the AD
descriptions for films available from AudioVault2 and the movie
clips available from CMD [4]. The challenge in this case is
how to determine the temporal alignment of these two sources
given that one has only audio with AD, and the other (CMD)
is non-contiguous with timings unknown with respect to the
original movies. The second dataset, HowTo-AD, is constructed
from the large-scale HowTo100M video dataset [40] that
originally consists of YouTube videos with narrated instructions.
Inspired by the use of Language Models (LMs) to rephrase the
instructions as video captions in HowtoCaption [53], we use
LMs to repurpose HowTo100M as an AD dataset containing

2https://audiovault.net
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Dataset with pixels # movies # AD total duration

MovieNet [24] ✓ 1100 – –
LSMDC [46] ✓ 202 118k 147h

MAD [54] ✗ 650 384k 1027h
CMD [4] ✓ 3605 – 1270h

CMD [4] ∩ AudioVault-8K [20] ✓ 1803 – 647h

CMD-AD (ours) ✓ 1432 101k 477h
HowTo-AD (ours) ✓ 180,034* 3.4M 23652h

Table 1. Statistics of Movie AD datasets. Only a small number
of movie datasets with AD are available, and they have different
limitations: MovieNet only provides keyframes, LSMDC is short in
duration, MAD only provides frame-level visual features, and CMD
does not have corresponding ADs. We propose two new datasets for
AD generation task: CMD-AD and HowTo-AD. *: strictly they are
long videos rather than movies.

videos with an associated character bank, and text descriptions
of the visual content that also names the person performing the
actions. While this dataset is not a ground-truth AD dataset, we
show that the pseudo ground-truth annotations are a valuable
source of training data for AD. The statistics of these two new
datasets are given in Table 1, and visually illustrated in Figure 1.

Our second contribution is a new architecture for AD
generation that directly inputs a video clip and character bank
proposals, and outputs a character-aware description. The
model is based on the Q-former architecture of BLIP-2 [32] that
bridges the visual space with the language space, then generates
textual outputs with a large language model [72, 77, 84]. Our
architecture is different from BLIP-2 [32] in that (i) it takes
multi-frame movie clips as visual inputs, and (ii) it incorporates
character bank information both from the face exemplars and
the character names.

Our third contribution is on evaluation. Previous methods
use a small test set of only 10 movies for evaluation. We intro-
duce an evaluation dataset of 100 movies, based on our aligned
movie clips with AD from AudioVault. This has far more diver-
sity than the previous test sets used, covering, e.g. science fiction,
westerns, action, horror, cartoon, and romance. As well as intro-
ducing a new test set, we also adopt two new evaluation methods.
For AD, the gold standard evaluation is to compare the gener-
ated AD with that provided by humans. For model development,
however, an automatic scalable evaluation is required. Previous
works have used captioning metrics such as CIDEr [61] but these
have severe limitations since they essentially measure n-gram
accuracy, and the same semantic AD can be presented in multi-
ple equivalent ways. To deal with this problem, [21] introduced
a retrieval-based assessment, evaluating how often we can pick
out the correct AD out of multiple neighboring ADs by compar-
ing them to the generated AD using BertScore [79] semantic text
similarity. In this work we adopt two new measures. The first
called CRITIC, addresses one essential element of AD that dis-
tinguishes it from standard video captioning – that it must name
the characters involved. The second measure follows the recent
trend in using LLMs to assess the veracity of captioning [8, 11,
39, 55, 81] As an exemplar of the usefulness of these new mea-
sures we also use them to assess inter-rater consistency where

the same film has AD provided by several human annotators.
On these and traditional metrics, we show that our new architec-
ture trained on raw pixels directly achieves impressive results for
the task of Movie AD, outperforming previous works on both
the standard MAD [54] eval set, and our new proposed test set.

2. Related Work

Dense video captioning. With the availability of large-
scale data, the field has made significant progress in
captioning images [31, 32, 41, 71], and trimmed short
video segments [35, 38, 48, 49]. Movie AD generation is
more related to the task of dense video captioning, where
the goal is to concurrently address temporal localization
and to describe each identified interval in an untrimmed
video [30]. The approach to dense captioning has been
explored either in two stages [25, 26, 30, 62, 64] or a single
stage [7, 9, 14, 34, 42, 45, 50, 51, 62, 65, 68, 83], depending on
whether localization and captioning are jointly addressed. Stan-
dard evaluation benchmarks for dense captioning consist of web
videos such as YouCook2 [82], ActivityNet Captions [30], and
ViTT [23]. Recently, Vid2Seq [68] repurposed the narrated web
videos YT-Temporal-1B [75], using transcribed speech as the
supervision source. In a similar spirit, HowToCaption [53] was
collected by transforming the narrations of HowTo100M [40]
into caption-like descriptions using LLMs, and LaVila [80] cap-
tioned long videos to enable large-scale video-text pretraining,
also leveraging LLMs. The distinction between AD generation
and dense captioning lies in the former’s focus on character
names, story relevance, and avoidance of interference with
important audio content (e.g. character speech).
Movie understanding datasets. For movie understanding,
current datasets facilitate a range of computer vision tasks
including metadata classification [43], VQA [58], and visual
character grounding [47]. These tasks often rely on auxiliary
data such as movie plots [67], book adaptations [57], or
AD [54] for dense annotations. However, due to copyright
constraints, many datasets are limited to offering visual features
(MAD [54]) or sparse keyframes (MovieNet [24]). CMD [4]
circumvents this by providing urls to licensed YouTube clips.
AutoAD [20] improves on automatic AD collection, and
provides large-scale audio AD data.
Improvements in VLMs for images and videos. The recent
success of LLMs [12, 59, 60, 78] and vision encoders [15, 44]
has led to an explosion of multimodal (vision and language)
models that can jointly understand both vision and text data.
These methods largely work by mapping frozen image encoders
(e.g. CLIP [44], EVA-CLIP [16]) to the textual embedding
space of frozen LLMs [59, 60, 78], for example Flamingo [1],
which does so via a Perceiver resampler [27], or BLIP2 [32],
which uses a Q-former to achieve a similar mapping. Video-
LLama [77] extends this idea to the audiovisual domain, by us-
ing the multimodal ImageBind [18] encoder in conjunction with
video and audio Q-formers. While MV-GPT [48] finetunes a
native video backbone [3] for the task of video captioning, most
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works adapt image encoders to the costly video domain via tem-
porally sampling a few frames with large strides [10, 63], or by
representing each frame by a single token [65, 68, 83]. Given the
impressive generalisation capabilities of these works made of up
strong frozen components [73], we also adopt a similar approach,
leveraging Video-LLama [77] and BLIP-2 [32] models as our
backbone, with the key addition that we also integrate charac-
ter information. More recent works such as MiniGPT-4 [84],
MovieChat [55] and VideoBLIP [72] use stronger instruction-
tuned LLMs, enabling further zero-shot capabilities.
Captioning evaluation. Human evaluation is the gold standard
for judging caption quality, however it requires multiple annota-
tors for consistency, is expensive and exceptionally slow. Exist-
ing automatic metrics, such as BLEU, ROUGE and CIDEr [61],
all primarily measure n-gram overlap (however have different
weighting schemes between n-grams, and across precision/re-
call), and do not capture the inherent subjectivity of the task,
where different phrasing is often equally valid. Other metrics
include SPICE [2] (adds action and object relationships), while
model-based metrics using earlier language models or image-
language models include BERT-Score [79], BERT-Score++ [70]
(fine-tunes BERT for image captioning), LEIC [13] and NU-
BIA [29] (custom trained models for image caption evaluation),
TIGEr [28], CLIPScore [22], and EMScore [52]. Given the
explosion of LLMs, however, recent works explore the use
of state-of-the-art LLMs, such as GPT-4, as a surrogate for
humans. Because these models are often trained with RLHF,
they already exhibit strong human alignment [6], and can be
used to assess text quality well (LLM-as-a-judge). [11, 81] show
that using strong LLMs as judges (such as GPT-4) aligns highly
with human preferences on a range of standard language-based
tasks, such as conversational instruction following. CLAIR [8]
extends this idea to image captioning, showing similar strong
correlations to human preferences on visual-language datasets
such as MS-COCO and Flickr8K, while VideoChatGPT [39]
and MovieChat [55] use LLM-assisted evaluation for video
tasks such as videoQA as well.

3. New Datasets for Pixels to AD
In this section, we describe our two new datasets that contain
raw video pixels mapped to AD annotation: CMD-AD
(Sec. 3.1) which is based on CMD [4], and HowTo-AD
(Sec. 3.2) based on HowTo100M [40].

3.1. CMD-AD – Pixels from Aligned CMD

The AudioVault website provides human annotated Audio
Descriptions in the form of audio files with the spoken AD
added to the original movie soundtrack (no video). The
CMD dataset [4] consists of short (about 2 minutes long)
non-contiguous movie clips in the form of video files on
YouTube (around 10 clips per movie). Although there are
about 2000 movies overlapping between these two data sources,
temporally aligning the AD with the movie clips from CMD
is a non-trivial task due to several challenges: First, the movie

Split # movies # AD

CMD-AD-Train 1332 93,952
CMD-AD-Eval 100 7,316

total 1432 101,268

Table 2. Statistics of the CMD-AD dataset.

soundtracks from AudioVault audio files have been modified
and re-encoded to add the AD, therefore the audio signals from
AudioVault files and CMD movie clips are not identical; second,
AudioVault audio files cover the full movie duration (e.g. around
90 minutes), whilst a CMD clip covers only 2 minutes, and per-
forming precise alignment over the extent of the movie has the
potential for many erroneous matches across the search space;
third, the same movie published in different locations might
have been recorded at different speeds (e.g. NTSC 29.97 fps vs.
PAL 25 fps3), introducing another unknown into the alignment.

We propose a two-stage alignment pipeline to overcome
these challenges and get precise temporal alignment between
hour-long AudioVault audio files and non-contiguous short
CMD movie clips from the same movie. To achieve this,
we use two quasi-independent modalities: (i) the transcribed
spoken text from the characters (not the AD), and (ii) the raw
audio signal containing both non-speech sounds (music, sound
effects) and the speech.

Stage1: Text-text alignment. The aim in this stage is to first
roughly localize the CMD movie clip with the AudioVault
audio to reduce the search space. In detail, we use WhisperX [5]
with the diarization module to separate the AD narration
from the character speech, and obtain movie ‘subtitles’ with
timestamps for both AudioVault audio and CMD movie
clips. These are denoted as SAV = {(s1,t1),...,(sm,tm)} and
SCMD = {(s′1,t′1),...,(s′n,t′n)}, where each si denotes subtitle
strings and ti denotes the temporal extent of this subtitle.
Note that n≪m because CMD movie clips are much shorter
than the entire movie, also the subtitles from the two sources
are different because of arbitrary sentence partitioning by
WhisperX or possible diarization errors. To localize the CMD
clip on the AudioVault movie time axis, we compute a simple
word-error-rate (WER) using a sliding window approach as
follows: we combine the CMD subtitles into a paragraph
PCMD =[s′1;...;s

′
n], then compute WER with AudioVault sub-

titles within a chunk size of n. Formally, let P(i)
AV =[si;...;si+n]

denote the AudioVault subtitle paragraph consisting of n
continuous subtitle entries starting from i-th subtitles. For a
particular CMD clip, the objective of text-text alignment is

Ttt-align=argmin
ti

{
WER(PCMD,P(i)

AV)
}
. (1)

The text-text alignment is not accurate when the CMD movie
clip does not have many dialogues, e.g. in action movies. In
practice, we find it gives reliable rough time points for more than
90% of CMD clips by randomly checking 10+ movies manually.

Stage2: Audio-audio alignment. Given the rough alignment

3https://en.wikipedia.org/wiki/576i#PAL_speed-up
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Figure 2. Audio-audio alignment between two sources. (left): For
each small audio segment on AudioVault, we find the best-matching
audio segment on CMD clip, and plot two timestamps as scatters;
(right): Fitting a straight line with RANSAC we can get the precise
mapping function between two sources. The slope of the fitted line
0.959 < 1 indicates this CMD clip plays slightly faster than the
corresponding AudioVault chunk.

(which may be noisy) provided by Stage 1, this stage aims to
verify the match, and obtain a precise temporal alignment by
comparing audio signals from the two sources. The objective
is to get a precise linear mapping for each CMD movie clip:

f :{TAV→TCMD}=W ·tAV+B, (2)

where W is the speed rate between the AudioVault and CMD
movie sources which might not be 1.0 due to different movie
fps, and B is the time shift. The key idea here is that even
though the individual CMD clips are matched locally, the
parameters W and B can be assumed to be global (i.e. constant)
across the movie. Hence, matches can be verified as they will lie
on a line specified by W and B, and this line can be obtained by
a standard robust fitting method. Here we use RANSAC [17].

To obtain precise audio alignment, we perform alignment
on low-level audio representation mel-spectrogram. First, we
compute mel-spectrogram for both AudioVault audio and the
CMD movie clip, denoted as MAV and MCMD. We only take
a short AudioVault audio chunk based on the previous text-text
alignment result. Second, we mask out mel-spectrogram regions
of Audio Descriptions based on the timestamps obtained from
WhisperX, as the AD signal only exists in AudioVault and
not in the CMD movie clip. Next, we perform sliding window
matching with a window size w=1.6s. For each 1.6-second
audio chunk on AudioVault starting from t1 to t2, we find
the corresponding timestamps on CMD audio which has a
maximum correlation:

y1,y2=argmax
ti,ti+w

{
cor

(
MAV

[t1,t2]
,MCMD

[ti,ti+w]

)}
. (3)

These matches can be thought of as points on a scatter plot
from (t1,y1) to (t2,y2) for a series of small windows from
AudioVault, as shown in Figure 2. Finally, we use a RANSAC
algorithm to fit a line through these match points over all clips
to obtain the mapping in Equation (2). Based on the ratio
between common movie fps, we filter RANSAC output by

0.8 < W ′ < 1.25 and empirically choose mean-square-error
MSE<100. We find these two conditions give very decisive
boundaries for confident RANSAC output. For instance, the
successful RANSAC fitting at Figure 2 has an MSE of 0.68,
whereas failed fittings typically have an MSE >500.

Summary. With this two-stage method, we obtain accurate
temporal alignment between AudioVault audio and CMD movie
clips, therefore we can map the AudioVault AD annotations
onto the CMD time axis to get video-text annotations. This
gives us the dataset CMD-AD (statistics are provided in
Table 2), consisting of 101k AD segments spanning 1,432
movies. Note that the total number of overlapping movies
between the two datasets is 1,803, which means an 80% success
rate of precise alignment. A higher success rate can be achieved
by using a larger search window or an iterative alignment
pipeline, which we leave as future work.

We use 1332 movies for training and 100 movies for eval-
uation, naming the splits CMD-AD-Train and CMD-AD-Eval
sets, respectively.

3.2. HowTo-AD – Pixels from HowTo100M

Our second dataset is based on the large-scale instructional video
dataset HowTo100M [40], that contains over 1.2M videos with
ASR subtitles from YouTube. At first glance, the ASR tran-
scripts of these videos may look drastically different from that
of AD in movies, since the spoken words are primarily aimed
to instruct the viewer on how to carry out various daily tasks.

However, we can transform the instruction ASR into
pseudo-AD in two steps. The first step is to adopt the captions
generated from HowToCaption [53], where the ASR transcripts
have been transformed into concise and descriptive captions
with large language models (LLMs). To improve caption
temporal alignment with the corresponding video timestamps,
the authors employ an off-the-shelf Temporal Alignment
Network [19], while also discarding non-alignable subtitles
(such as “Hello, welcome to my channel!”). The second step
addresses the key difference between descriptive captions and
audio descriptions, that is, character names do not appear in
the captions. For this transformation, we detect the subjects
of description sentences and uniformly replace them with a
randomly chosen character name, e.g. transforming ‘a man is
pouring wine’ into ‘John is pouring wine’. This completes the
transformation from HowTo100M captions to the HowTo-AD.

Additionally, to mimic having a character bank as external
knowledge as in [21, 36, 69], we also provide each instructional
video with a pseudo-character bank that includes: the chosen
character name and the character portrait face extracted from
the instructional video, and a few face exemplars sampled from
other videos to mimic off-screen characters. An overview of
the pipeline with an example is shown in Figure 3.

Because of the noisy nature of YouTube videos and the
abundance of data in the HowTo100M dataset, we filter out
less preferable videos by the quality of subject detection in
HowToCaption, the frequency of names in ASR, and the

18167



[10, 18] A man is 
pouring wine into a glass
[20, 25] He takes a sniff 
of the wine

Descriptions from HowToCaption

Crop a frame with 
face:
>>>

[10, 18] John is pouring 
wine into a glass

[20, 25] John takes a 
sniff of the wine

Rewrite descriptionsConstruct character bank

John

HowTo-AD

Find subjects: 
>>> A man, He

Hi, today we’re gonna demonstrate ... 

[video intro]

Sample a random 
name:

>>>   John

Figure 3. HowTo-AD dataset. We convert the LLM rewritten video descriptions (from HowToCaption) to fit movie audio descriptions by (i)
uniformly replacing the subjects in descriptions with a randomly sampled name, i.e. John, and (2) constructing a character bank by providing
a frame with the instructor and the randomly sampled name. The video sample is from https://youtu.be/aRbQb19v2JI.

quality of character portrait faces; details are in the Arxiv
version Appendix. As shown in Table 1, the HowTo-AD
dataset ends up with a subset of 180k YouTube videos from
the original HowTo100M dataset – which is about 20% of the
full HowTo100M – and 3.4M transformed AD segments with
timestamps from HowToCaption dataset.

4. Model Architecture

With pixel data available, we propose two visual captioning
models based on BLIP2 [32] and Llama2 [60] for movie AD
generation. Specifically, we propose two new architectures
called Movie-BLIP2 and Movie-Llama2. Both of them take
8 video frames, resized at 224×224 pixels as inputs, then use
EVA-CLIP [56] to extract dense visual features. Next, we use
a Q-former to attend to spatial-temporal feature grids to extract
visual descriptors represented by 32 vectors. Both models also
processes image inputs from character face exemplars. In this
case, they take a single image resized at 224×224 pixels, and
then use the same EVA-CLIP to extract visual features in spatial
grid, and the same Q-former to attend to this spatial feature
grid and extract 32 vectors as image descriptors. The video and
image descriptors are passed to two shallow projection heads
respectively, to project them on the language embedding space.
Finally, the projected visual outputs together with language
prompts are passed to a large language model (OPT for Movie-
BLIP2 and Llama2 for Movie-Llama2) to generate movie AD
in text form. An overview of architecture is shown in Figure 4.

The Movie-BLIP2 architecture inherits from the original
Image-based BLIP2 architecture, and it uses OPT [78] as the
language model. The Movie-Llama2 architecture inherits from
the image-based MiniGPT-4 [84] which connects BLIP2’s
visual embedding with Llama2 language embedding [60]. Our
Movie-Llama2 follows the same setup and uses Llama2 as the
language model. We take pre-trained checkpoints from open-
sourced projects [72] and [77]. Details of these architectures are
in the Arxiv version Appendix. Following previous works [84],
by default, all the visual backbone, language model, and the
Q-former are frozen, and we only train the projection heads.

Training details. By default, we adopt a two-stage training

strategy. The model is firstly pretrained on HowTo-AD and
then finetuned on CMD-AD-Train. We pretrain on HowTo-AD
for 1 epoch and finetune on CMD-AD-Train for 2 epochs. We
find finetuning beyond 2 epochs leads to overfitting. We use
a batch size of 8 AD samples, an AdamW optimizer [37] with
3×10−5 learning rate and a cosine decay schedule. For both
the pretraining and finetuning stages, the training pipeline fits
in a single A40 GPU with 48GB GPU memory. More training
details are provided in the Arxiv version Appendix.

5. Evaluation Methods
We propose two new methods for evaluating movie AD gener-
ation: CRITIC for identifying correct characters, and an LLM-
based AD evaluation for assessing holistic semantics of AD.

CRITIC (Co-Referencing In Text for Identifying
Characters). The CRITIC metric assesses the accuracy of
character naming in predicted AD against human-generated
reference AD. The metric is designed to be robust to (i)
co-referencing complexities (ii) pronoun usage, and (iii)
orthographic variation in character names. The objective is
to measure the quality of character reference in the generated
AD compared to the ground-truth AD. For example, the model
might generate AD with the text ‘Jack’ or pronouns like ‘he’, the
CRITIC metric aims to evaluate the accuracy of these references.

To achieve this, a co-referencing model4 is applied to
both predicted and reference AD passages. Specifically, let
C = “c1,c2,...,cn.” denote the set of official character names
from the cast list of a movie, combined into a single sentence.
For a specific movie, we group the predicted and reference au-
dio descriptions into long paragraphs, denoted as ADpred and
ADref respectively. In order to guide the co-referencing model
to detect character names, both ADpred and ADref are prefixed
with the character list sentence C, as shown in Figure 5 (a and c).

Next, the co-referencing model is applied to both paragraphs
from prediction and reference, yielding sets of identities Epred
and Eref. Each identity E includes references and pronouns
linked to a single entity. We only keep identities containing ex-
actly one character name from C, ensuring distinct association

4https://github.com/shon-otmazgin/fastcoref
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ViT
Q-Former

   OPT / Llama2 Target: As Karen stares gloomily out of the window,  
Jack approaches toying with a lighter.

❄

img-proj img-projvideo-proj

Prompt: Possible characters: 
Jack Foley <Image>                   </Image>; 
Karen Sisco <Image>                   </Image>. 
<Video>                   </Video> 
Please provide a detailed description of this movie clip.

ViT
Q-Former
❄ ViT

Q-Former
❄

❄

Figure 4. Architecture overview. Our model takes as input movie frames and movie character bank from IMDb including face exemplars and
character names, and produces character-aware audio descriptions. The input images/videos are first fed to a frozen visual feature extractor to
obtain spatial or spatial-temporal visual features. Then it uses a shared Q-former to process the visual information and project them to the language
embedding space, to leverage frozen large language models(LLM) like OPT and Llama2 for text generation.

Jack Dawson, Rose Dewitt Bukater, Cal 
Hockley, ... and Thomas Andrews.\n

...

> Doors are open for her, as she meets Jack on 
the on the grand staircase, next to the clock.\n

> He extends his hand to her and she takes it.\n

- [Rose Dewitt Bukater, Rose]; [Jack 
Dawson, Jack, Mr. Dawson]

- [Rose Dewitt Bukater, Rose]; [Jack 
Dawson, Jack, Mr. Dawson]

Characters

AD
paragraph

Jack Dawson, Rose Dewitt Bukater, Cal 
Hockley, ... and Thomas Andrews.\n

...

> At the top of the stairs, Jack wearing his 
trousers held up by suspenders, stands and stares 
at the wall clock.\n

> He turns and smiles.\n

Characters

AD
paragraph

- [Jack Dawson, Jack, Mr. Dawson]

- [Jack Dawson, Jack, Mr. Dawson]

Co-referencing Identities for each AD:

0.5
0.5

CRITIC score

Reference

Prediction

(a) (b)

(c) (d)
Figure 5. Illustration of the CRITIC metric. The paragraphs
consisting character list and AD (a,c) are fed into a co-referencing
model to get co-referencing identities (b,d). The CRITIC metric
computes an IoU between the identities in the prediction vs. the
identities from the reference.

with individual characters. Importantly, we remove pronouns
like ‘he’, ‘she’, and ‘they’ in each co-referencing identity to
exclude ambiguous pronoun matching. Next, we map each
sentence to its corresponding set of co-referencing identities,
which may be empty (when no names are recognized), singular,
or multiple, as depicted in Figure 5 (b and d).

The CRITIC metric MCRITIC is then calculated as an IoU,
for i-th AD reference (with valid character identities):

MCRITIC=
|Epred∩Eref|
|Epred∪Eref|

(4)

where |Epred∩Eref| is the count of matching identities between
predicted and reference ADs, and |Epred∪Eref| is the total count
of unique identities in both the prediction and the reference.
The CRITIC score is averaged across all the AD references.
Intuitively, if the predicted AD includes a name, the CRITIC
score verifies whether the name refers to the correct identity;
if the prediction includes a pronoun like ‘he’, the CRITIC
score first resolves the identity by co-referencing, then verifies

whether the name is correct. The CRITIC score has a range
between 0 and 1, with 1 being perfect.

LLM-AD-eval. We also adopt the LLM as a judge [11, 81]
procedure for AD quality assessment. Following previous
works [39], we use a ‘gpt-3.5-turbo’ API from OpenAI and
an open-sourced ‘llama-2-7b-chat’ model [60]. prompting
the model to assess the matching quality between a pair of
predicted AD and ground-truth AD by a score from 1 to 5,
where 5 indicates the best matching and 1 indicates the worst
matching. To be complementary to the CRITIC metric, for
LLM-AD-eval we instruct the LLM to (1) consider pronouns
as valid matches and ignore character names, and (2) focus
on human actions, objects and interactions. The customized
prompts are provided in the Arxiv version Appendix.

6. Experiments
We outline the datasets (Sec. 6.1) and evaluation measures
(Sec. 6.2) employed in our experiments, and provide an
analysis on inter-rater agreement between AD annotation
versions (Sec. 6.3). We report quantitative results, ablating the
architectural design and the effect of HowToAD pretraining
(Sec. 6.4), followed by qualitative results thanks to our pixel
movie data (Sec. 6.5).

6.1. Datasets
AudioVault-8k is the dataset collected from https:
//audiovault.net/ by [21] that contains full-movie AD
and subtitles transcribed from user-uploaded audio description
files covering 7800 movies. CMD (Condensed Movie
Dataset) [4] contains movie clips collected from YouTube
for more than 3k movies. On average each movie has 10
non-contiguous clips and each clip spans for a few minutes.
HowTo100M [40] contains 1M YouTube long videos with
more than 100M ASR segments. It is typically used for video
pretraining. CMD-AD is the new movie AD dataset introduced

18169



[00:42:07.287, 00:42:09.369] 
Audience members look at a 
boy in the crowd.

[01:02:05.836, 01:02:09.097] 
Jamie grabs Lipton, hurls him to 
the floor, and runs outside.

[01:06:17.747, 01:06:21.069] 
Lipton holds the lantern up, his 
brow pinched in a frown.

[00:42:07.126, 00:42:09.428]   
All eyes turn to a red-haired boy 
in the audience.

[01:02:05.955, 01:02:09.958] 
Jamie shoves the detective to the 
ground and runs out of the house.

[01:06:17.670, 01:06:21.073]    
As the detective watches, he 
raises the lantern at arm's length.

AudioVault #10435 AudioVault #16387

Figure 6. An example of inter-rater evaluation. Some movies
on AudioVault have multiple available ADs. Two versions of
human-annotated ADs for the same visual scene are shown here.
These ADs are filtered with a tIoU threshold of 0.9, and from the
movie ‘Dead Silence’(tt0455760).

tIoU #movies #AD pairs CIDEr R@1/5 CRITIC LLM-AD-eval†
0.8 315 4447 61.5 71.2 42.0 2.56 / 3.04
0.9 267 999 69.8 80.4 47.6 3.06 / 3.53

Table 3. Inter-rater agreement on AudioVault AD annotations.
AD from different annotators do not usually synchronize. A higher
tIoU threshold filters out fewer AD pairs but they are more likely to
describe the exact same visual event. †: LLM-AD-Eval scores are
computed from ‘gpt-3.5-turbo’ / ‘llama-2-7b-chat’ respectively. For
all the metrics, a higher number indicates better quality. R@1/5 and
CRITIC are upperbounded at 100 and LLM-AD-eval is between 1 to 5.

in Section 3.1, by aligning AD data with CMD clips [4]. It
contains 101k ADs for more than 1432 movies. We split a 100-
movie evaluation set named CMD-AD-Eval and use the rest for
training. HowTo-AD is the new AD dataset introduced in Sec-
tion 3.2, transformed from HowTo100M [40]. It contains 180k
YouTube videos with augmented descriptions and character
exemplars. We mainly use it for AD generation pertaining.

6.2. Evaluation Measures

In addition to the two new evaluation measures introduced
in Section 5, CRITIC and LLM-AD-Eval, we also monitor
Recall@k/N, CIDEr, and perplexity. Recall@k/N [21] is a
retrieval metric that distinguishes the predicted text among a set
of temporal neighbours. The parameters k and N mean within
a temporal window of N neighbouring reference ADs, whether
the predicted AD can retrieve the corresponding reference
AD at top-k position. We use Recall@1/5 on CMD-AD-Eval
and Recall@5/16 on MAD-Eval to compare with previous
works. We use the official implementation provided by [21].
CIDEr [61] is a popular text similarity metric that is based on
word matching rate. We include Recall@k/N and CIDEr here
as they have been used in recent work on AD [20, 21] and we
also compare on the test datasets of those works.

6.3. Inter-rater Evaluations

Many of the films in Audiovault have multiple ADs available.
Typically these are UK and US versions. In this section,
we use the agreement between the human-provided AD
versions to assess the usefulness of the four evaluation metrics

Method V-model L-model CIDEr R@1/5 CRITIC LLM-AD-eval†
AutoAD-II CLIP-B-32 GPT2 13.5 26.1 8.2 1.53 / 2.08
Movie-BLIP2 Eva-CLIP OPT-2.7B 21.2 29.3 24.5 2.13 / 2.66
Movie-Llama2 Eva-CLIP LLama2-7B 21.7 30.0 25.2 2.05 / 2.85

Table 4. Architecture experiments on CMD-AD-Eval. We compare
the proposed two architectures with AutoAD-II. All of them take
character bank inputs. †: from ‘gpt-3.5-turbo’ / ‘llama-2-7b-chat’
respectively. Note, AutoAD-II is trained with averaged frame features
to mimic its original setting on the feature-only MAD dataset.

Method pretrain CIDEr R@1/5 CRITIC LLM-AD-eval†
Movie-BLIP2 ✗ 21.2 29.3 24.5 2.13 / 2.66
Movie-BLIP2 HowTo-AD 22.3 29.8 30.2 2.25 / 2.78

Movie-Llama2 ✗ 21.7 30.0 25.2 2.05 / 2.85
Movie-Llama2 HowToCaption‡ 20.8 29.4 25.6 2.07 / 2.85
Movie-Llama2 HowTo-AD 25.0 31.2 32.7 2.29 / 2.92

Table 5. Effect of HowTo-AD pretraining on CMD-AD-Eval.
†: from ‘gpt-3.5-turbo’ / ‘llama-2-7b-chat’, respectively. ‡ uses the
same 180k-video subset as HowTo-AD, but without constructing
character banks or rewriting captions.

– CIDEr, Recall@1/5, CRITIC, and LLM-AD-eval. Note, these
evaluations are carried out directly on the text version of the
AD, so no pixels are involved.

In the AudioVault-8K dataset, there are 402 movies with
more than one version of AD annotations. We conduct
inter-rater experiments on this subset of AD annotations. Three
challenges emerge when conducting inter-rater comparisons for
the same visual scene: (i) Different versions of AD annotations
might correspond to different versions of the same movie which
do not naturally synchronize as introduced in Section 3.1. We
apply the audio-audio alignment pipeline in 3.1 to synchronize
both AD annotations. (ii) The timing of providing AD is
subjective and arbitrary within a short time interval [21], to
obtain different ADs for the exact same visual moment, we have
to filter the time segments of two AD versions with a temporal
Intersection-over-Union (tIoU). (iii) For about 20% of movies,
the multiple AD versions from AudioVault are simply narrating
the same scripts again with minor modifications, which does
not reflect independent inter-rater comparisons. We filter out
those movies by checking the exact sentence-matching rate.

The inter-rater evaluation is shown in Table 3. With a higher
tIoU threshold, we get fewer AD annotation pairs covering
fewer movies, but the AD annotation pairs are more likely to
describe the same movie scene. The numbers can be regarded
as human-level upperbound. Note that with a lower tIoU (from
0.9 to 0.8), all the metrics drop significantly, highlighting the
temporal sensitivity of AD tasks and the importance of precise
data alignment. A few pairs of human-annotated AD from
AudioVault are shown in Figure 6, where the left and right
panels are from two annotators for the same visual scene.

6.4. Quantitative Results
Architecture Comparisons on Aligned-CMD. In Table 4,
we compare the proposed Movie-BLIP2 and Movie-Llama2
architectures with previous methods on the CMD-AD dataset.
All of these models are trained on the CMD-AD-Train set and
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Ground Truth: A tear falls down the princess's cheek. 
Prediction: She looks at him with tears in her eyes.

Ground Truth: In the hall, Vientha overhears and looks up. 
Prediction: Vayentha looks up at the ceiling.

Ground Truth: She starts to walk along the beam. 
Prediction: She steps onto a ladder.

Ground Truth: Other mounted officers watch Bourne steal the bike. 
Prediction: Bourne jumps off the motorcycle and runs.

Figure 7. Qualitative results. AutoAD-III predictions correctly identify the semantics of the scene, by referring to the characters (‘Vayentha’,
‘Bourne’), their relations (‘looks at him’), actions (‘steps onto’, ‘jumps off’), emotions (‘tears’), objects (‘ladder’, ‘motorcycle’). The comparison
with the ground truth further highlights the limitations of the n-gram based metrics since the same meaning can be conveyed with different wordings.

Method CMD-AD-Eval MAD-Eval
CIDEr R@1/5 CRITIC LLM-AD-Eval† CIDEr R@5/16

Video-BLIP2 [72] (no ft) 4.8 22.0 0.0 1.40 / 1.89 05.0* 35.2*
Video-Llama2 [77] (no ft) 5.2 23.6 0.0 1.43 / 1.91 04.80 33.8*

MM-Narrator-GPT4 [76] - - - - 13.9* -
AutoAD-I [20] - - - - 14.3* 42.1*
AutoAD-II [21] 13.5 26.1 8.2 1.53 / 2.08 19.2* 51.3*
Movie-BLIP2 (ours) 22.3 29.8 30.2 2.25 / 2.78 22.8* 52.0*
Movie-Llama2 (ours) 25.0 31.2 32.7 2.29 / 2.92 24.0* 52.8*

Table 6. Comparison with other methods on CMD-AD-Eval
and MAD-Eval. Additionally, we evaluate the out-of-the-box
Video-BLIP2 and Video-Llama2 video captioning models (without
any AD finetuning) directly on both datasets. †: from ‘gpt-3.5-turbo’
/ ‘llama-2-7b-chat’ respectively. *: these results are obtained on
MAD-Eval without any training on MAD-Train.

evaluated on the CMD-AD-Eval set. We implement and train
AutoAD-II on CMD-AD-Train based on the public codebase.
The results show that both Movie-BLIP2 and Movie-Llama2
perform much better than AutoAD-II architecture. The stronger
performance is attributed to multiple factors – stronger visual
backbone, stronger language model, and taking visual grid
feature as input instead of a single vector as in AutoAD-II.
Movie-Llama2 has a much stronger language model than
Movie-BLIP2 (Llama2-7B vs OPT-2.7B), but it achieves a
similar performance wrt Movie-BLIP2. Note that all these
models are not pretrained on HowTo-AD yet.

Effect of HowTo-AD Pretraining. Taking the Movie-BLIP2
and Movie-Llama2 settings from Table 4, we compare the
effect of HowTo-AD by pretraining the same architecture on the
HowTo-AD dataset then finetuning on CMD-AD-Train set. We
also pretrain with the same subset from HowToCaption without
using the character bank or rewriting captions. The results in
Table 5 show that large-scale pretraining on our HowTo-AD
dataset substantially boosts the performance on all four metrics
for both models. e.g. improving CRITIC from 25.2 to 32.7 and
CIDEr from 21.7 to 25.0 for Movie-Llama2. But pretraining on
HowToCaption does not help much on the finetuned movie AD
task, possibly because of the domain gap from the data and task.

Comparison with Other Methods. We compare with
other methods on two datasets: CMD-AD-Eval introduced

in this work, and MAD-Eval proposed in [20] (Table 6).
Note that MAD-Eval is a 10-movie subset from LSMDC,
where we can get short movie clips for evaluation. However,
we can not perform any training on MAD-Train since no
pixels are available. The proposed method Movie-BLIP2 and
Movie-Llama2 perform much better than the previous methods
including MM-Narrator with GPT4 as the language model.
We also evaluate video captioning models like Video-BLIP2
and Video-Llama2 but neither of them performs well on AD,
highlighting the challenges of Movie AD task.

6.5. Qualitative Analysis
Figure 7 illustrates several random examples from the
CMD-AD-Eval set. For each sample, we display the predictions
of our Movie-Llama2 model, as well as the ground truth AD.
We observe that, while different wording than the ground truth,
the semantics of the AD content remain largely similar for Our
method. Interestingly, in the first example, the ASR pipeline [5]
transcribed the name incorrectly as ‘Vientha’ but our model
fixed the name through the character bank. More examples can
be found in the Arxiv version Appendix.

7. Conclusion
This work advances automatic AD generation for movies by:
(i) collecting AD for pixel data through audio-audio alignment
between full movies (without pixels) and public movie snippets,
and pseudo-labelling instruction videos; (ii) showing that recent
video-language architectures provide a significant performance
boost, bringing AD generation systems closer to real-world ap-
plications; and (iii) proposing new evaluation methods tailored
for AD. One of the limitations that necessitates future work
is the coherence across AD narrations throughout the movie:
AD should not repeat the same information, or provide story-
irrelevant details. To this end, external knowledge such as plot
summaries may be utilized to incorporate story-centric elements.
Future directions could also explore the harmony between the
narration tone and the movie content for an engaging experience.
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