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Abstract

Few-shot object detection (FSOD) aims to detect objects
with only a few training examples. Visual feature extraction
and query-support similarity learning are the two critical
components. Existing works are usually developed based on
ImageNet pre-trained vision backbones and design sophis-
ticated metric-learning networks for few-shot learning, but
still have inferior accuracy. In this work, we study few-shot
object detection using modern foundation models. First,
vision-only contrastive pre-trained DINOv2 model is used
for the vision backbone, which shows strong transferable
performance without tuning the parameters. Second, Large
Language Model (LLM) is employed for contextualized few-
shot learning with the input of all classes and query image
proposals. Language instructions are carefully designed to
prompt the LLM to classify each proposal in context. The
contextual information include proposal-proposal relations,
proposal-class relations, and class-class relations, which
can largely promote few-shot learning. We comprehensively
evaluate the proposed model (FM-FSOD) in multiple FSOD
benchmarks, achieving state-of-the-arts performance.

1. Introduction
Learning to recognize and localize unseen classes with-
out large-scale of training is crucial to achieve human-
level vision intelligence. Few-shot object detection (FSOD)
[3, 17, 22, 66, 69], aiming to detect novel objects with only
a few visual training examples, serves as a valuable bench-
mark for these endeavors. However, the development of
FSOD models has been slow recently and the performance
are far worse than data-abundant models. In contrast, some
other open-set object detection settings, especially open-
vocabulary object detection [13, 27, 33, 57, 65] has made
significant progress, evolving from traditional strictly de-
fined zero-shot models to modern open-vocabulary models
capable of detecting any object defined by natural language
description. Recently, these models have achieved perfor-
mance comparable to data-abundant models.

We argue that the key to the success of open-vocabulary
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Figure 1. Overview of the proposed model. The diagram shows
the high-level framework of our model for FSOD. The visual fea-
ture backbone and query-support few-shot classification network
are the two critical components for FSOD. In this work, we study
FSOD with Foundation Models, and propose to use the frozen self-
supervised DINOv2 as the visual backbone and leverage the strong
in-context learning capability of Large Language Model for con-
textualized few-shot proposal classification. Our model achieves
strong FSOD performance and reduces human effort to design so-
phisticated few-shot learning models.

object detection is the intensive use of pre-trained large-
scale vision-language models, like CLIP [40], which can
learn aligned feature representations for both the vision
and language modalities. While the majority of previous
FSOD works utilize ImageNet pre-trained models, most
of the efforts are dedicated to the development of better
few-shot fine-tuning techniques (e.g., contrastive learning
[35, 43], feature/data augmentation [60, 68]), and sophisti-
cated human-designed metric-learning networks (e.g., com-
plicated query-support feature fusion networks [3, 5, 12, 14,
16, 17, 20, 69] with alignment/GCN/Transformers). Al-
though some recent works, like MM-FSOD [15] and DE-
ViT [69] propose to use modern foundation models, like
CLIP [40] or DINOv2 [37] in their models, they do not
provide comprehensive evaluations or analyses across dif-
ferent foundation models, and more importantly, both of
them have heavily designed few-shot classification net-
works. The insufficient utilization of modern foundation
models hinders further improvement for FSOD models.

In this work, we study FSOD using modern foundation

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

28608



models for both visual feature extraction and few-shot pro-
posal classification. As shown in Figure 1, the visual feature
backbone and query-support few-shot classification net-
work are the two critical components for FSOD. First, the
pre-trained vision backbone should possess not only strong
discriminative ability across various semantic concepts but
also robust patch-level spatial localization ability, making
it ideal for downstream localization-sensitive tasks. Based
on this motivation, we comprehensively evaluate multiple
pre-trained vision foundation models, including MAE [19],
CLIP [40], SAM [24] and DINOv2 [37], and with different
detection architectures, RCNN-based framework ViTDet
[28] and Transformer-based framework Deformable DETR
[71]. Our conclusion is that DINOv2, pre-trained with
both image-level and patch-level self-supervised objectives,
and equipped with Transformer-based detection framework
achieves the best performance. Moreover, unlike some pre-
vious works [12, 17] that require updating the visual feature
backbone during training and thus can only support very
few classes in a single feed-forward pass, our model does
not need to fine-tune the visual backbone. This enables con-
textualized few-shot learning with a larger set of classes.

Second, few-shot classification for object proposals1 is
another key component for FSOD. We propose to generate
support-class-aware proposals by applying cross-attention
between the query image features and class prototypes. But
the proposals are still noisy. The key challenge of FSOD
is the few-shot learning with noisy proposals. Previous
works [12, 17, 51, 69] propose several methods for this
problem, ranging from simple dot product to more sophis-
ticated deep neural networks with the aim to improve the
few-shot classification with noisy proposals. In this work,
we propose to leverage the strong in-context learning ca-
pabilities of pre-trained Large Language Models (LLMs)
[2, 9, 25, 46] for contextualized few-shot proposal classi-
fication in FSOD. Motivated by recent multimodal LLMs
[1, 6, 32, 38, 48, 49, 62, 67], we carefully design language
instructions to prompt the LLM to classify each proposal,
and provide the mapping between the categories and their
visual prototypes as part of the input instructions. Our
model can automatically exploit various contextual infor-
mation between proposals and classes through the LLM,
including proposal-proposal relations, proposal-class rela-
tions, and class-class relations. The extracted context in-
formation can largely promote few-shot proposal classifi-
cation from the same query image. As for model training,
we fine-tune the LLM with meta-learning. In each training
episode, we randomly sample some visual samples for each
category to calculate the prototypes, which serves as strong
data augmentations during model training. We evaluate our
method, termed as FD-FSOD, on two widely used FSOD

1We use proposals here for simplicity, which can also be object queries
in DETR-style framework.

benchmarks and also conduct extensive ablation studies to
demonstrate the effectiveness of our model.

Our contributions can be summarized as:
• We study few-shot object detection based on modern

foundation models for both visual feature extraction and
contextualized few-shot proposal classification.

• Fully-Transformer based detection framework together
with DINOv2 backbone achieves strong generalization
for both data-abundant classes and few-shot classes.

• The LLM with in-context language instructions can sim-
plify the modeling of query-support few-shot classifica-
tion network, and automatically learn rich contextual in-
formation to facilitate the few-shot learning.

• Our proposed model FD-FSOD achieves state-of-the-arts
or strong performance on both the PASCAL VOC and
MSCOCO FSOD benchmarks.

2. Related Works

2.1. Few-Shot Object Detection

Few-shot object detection (FSOD) aims to detect unseen
novel objects using a few training examples (a.k.a., sup-
port images). Besides the few-shot training data, we usu-
ally have another data-abundant base classes to assist the
training which do not have any overlap with the novel
objects. Existing works can be roughly categorised into
the following two groups: (1) Fine-tuning-based meth-
ods [43, 51, 56, 68, 70]. They usually have two stages for
training. Firstly, the object detectors is trained over base
classes only. Then, the pre-trained detection models are
fine-tuned over few-shot novel classes. During few-shot
fine-tuning, some training strategies like re-sampling [51]
and re-weighting [31] are utilized to train models with the
unbalanced combination of many-shot base-classes dataset
and few-shot novel-classes dataset. (2) Meta-learning-
based methods [12, 14, 16, 17, 20, 22, 61]. Class-agnostic
few-shot detection models [12, 14, 16, 17, 20, 22, 61]
are learned over base classes, which can be generalized
to novel classes without fine-tuning. The metric-learning-
based methods have been demonstrated to be effective by
learning a generalizable class-agnostic metric-space over
base classes. These methods are usually based on a siamese
network architecture and calculate the similarity between
the query image regions and few-shot support images us-
ing metric-learning [23]. The most simplest method is
using dot-product [51]. Subsequent works design more
sophisticated deep neural networks to improve the accu-
racy of similarity learning, including multiple feature fusion
networks [12, 59, 61], feature alignment [16], GCN [14],
and non-local attention/Transformer [5, 8, 10, 17, 20, 50]).
More recently, DE-VIT [69] does not use the original vi-
sual features, and uses the maps of similarities between the
proposal features and a set of prototypes for classification.
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2.2. Foundation Models

Foundation Models (FMs) are large-scale machine learning
models trained over a vast amounts of data. After training,
they can be adapted to a variety of downstream tasks. Re-
cently, Foundation Models have made significant progress
in Natural Language Processing (NLP), Computer Vision
(CV) and Vision-Language Pre-training (VLP).

Large language models (LLMs) have gained significant
attention in the field of NLP and Artificial General Intel-
ligence (AGI) due to their impressive capabilities for lan-
guage generation. LLMs have demonstrated strong emer-
gent capabilities [54], including in-context learning [2], in-
struction following [53], and chain-of-thought reasoning
[45, 55], which have revolutionized the field of NLP and
AGI. Subsequent works [1, 32, 48] introduce other modal-
ities, mostly vision information, into LLMs and thus build
multimodal LLMs. In multimodal LLMs, a vision encoder
(e.g., Frozen CLIP encoder in LLaVA [32]) is used to en-
code visual information into hidden representations. Then a
trainable projection layer (e.g., Perceiver in [1], Q-Former
in [26], or a linear/MLP layer in [32]) is followed to con-
vert image features into the language embedding space. Fi-
nally, LLMs take all of the visual tokens and textual tokens
in a sequence and make predictions according to the in-
struction. LLMs can be frozen in [1, 48], full fine-tuned
in [32] or updated with LoRA [21]. Some recent work
[6, 7, 38, 49, 62, 67] further introduce bounding box lo-
cations into the input instruction or the output of LLMs, en-
abling region-level fine-grained image comprehension for
multimodal LLMs. But most of them only evaluate on sim-
ple grounding tasks like RefCOCO [64], and do not have
satisfying performance on dense object detection tasks on
MSCOCO and LVIS [6, 49, 58]. Different from these pre-
vious work, we do not use the LLM to predict bounding
box location, but only prompt the LLM to classify each of
the proposal in a fixed order with the visual lookup table in-
context, which can largely ease the learning for the LLM.

On the other hand, large Vision Foundation Models have
also made big progress to build stronger and generaliz-
able vision generalist models. One approach is to employ
self-supervised learning and scale the training process with
a large dataset to learn a strong visual feature backbone
[19, 29, 37, 63]. Another line of work [40, 44] utilizes
vision-language paired training data to learn transferable
visual and text representations through cross-modal con-
trastive learning. Some recent work (e.g., Painter [52]) re-
formulates various pixel-level vision tasks (including depth
estimation, human keypoint detection, semantic segmenta-
tion and etc) into inpainting task, given a few examples of
input and output image for a certain task. SAM [24] is a
zero-shot segmentation model which can predict segmenta-
tion masks, given a query image and a prompt (e.g., box,
points, text, or mask) specifying what to segment in an

image. We focus on detection task, and a stronger vision
backbone has a significant impact on downstream few-shot
learning tasks.

3. The Proposed Approach
3.1. Task Definition

In few-shot object detection (FSOD), we have two sets of
classes C = Cbase ∪ Cnovel and Cbase ∩ Cnovel = ∅,
where base classes Cbase have plenty of visual training
examples per class, and novel classes Cnovel (a.k.a., sup-
port classes) only have very few visual training examples
per class (a.k.a., support images). For K-shot (e.g., K =
1, 5, 10) object detection, we have exactly K bounding box
annotations for each novel class c ∈ Cnovel as the training
data. The goal of FSOD is to use the few-shot visual ex-
amples to detect novel classes, with the assistance of data-
abundant base-classes training data, and also keep strong
performance on the base classes.

3.2. The Model Architecture

We propose to study FSOD with foundation models in this
work. The idea is to make full use of the knowledge in the
pre-trained large-scale vision/language foundation models
for downstream few-shot learning tasks, and simplify the
human efforts for model design.

As shown in Figure 2, our model mainly consists of the
following three submodules: (1) Visual Feature Extraction
to extract feature representations for both query images and
few-shot support images, (2) Proposal Generation to gen-
erate support-class-aware object regions from the query im-
age, and (3) Few-Shot Proposal Classification to classify
each of the proposal given the mapping of the categories
and their visual prototypes. The following details the archi-
tecture and model design for each component.

Visual Feature Extraction. In FSOD, we have a query
image Iq ∈ RHIq∗WIq∗3 and N -way K-shot support set
S = {{Ij,is }Ki=1}Nj=1 as inputs, and Ij,is ∈ RHIs∗WIs∗3. For
the query image, we use the Vision Transformers (ViTs)
to extract the feature representation fq = F(Iq) and keep
all the local patch representations for the following object
localization. Then for the support set, we similarly use
the same ViTs to extract the feature representation f j,i

s =
F(Ij,is ) for each support image Ij,is . In practice, the support
image is cropped around the target object with some image
context pixels [12]. We use RoIAlign [18] to calculate the
representation of the object given the bounding box annota-
tion of the object f

j,i

s = RoIAlign(f j,i
s , boxj,i

s ). Then the
prototype for each class is the average of the K-shot support

features {f̂ j
s =

∑K
i=1 f

j,i
s

K }Nj=1.
In this work, we use the pre-trained frozen DINOv2 [37]

as our feature backbone for the following two reasons. (1)
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Figure 2. The overall architecture of our proposed model. Our model consists of three submodules: (1) Visual Feature Extraction to extract
query image features and few-shot class prototypes, (2) Proposal Generation to generate support-class-aware object regions from the query
image, and (3) Few-Shot Proposal Classification to classify each proposal. Our method make full use of modern Foundation Models for
FSOD, which achieves strong performance without the need to design sophisticated few-shot learning modules.

DINOv2 is a vision-only self-supervised learning models,
trained on a large scale of curated image dataset. Both
global image-level and local patch-level self-supervised ob-
jectives are jointly used to train the feature backbone. The
local patch loss can enforce the model to be localization-
sensitive, which is friendly to downstream detection tasks.
(2) The DINOv2 model is pre-trained over a large scale of
image dataset. In order to the keep the original knowledge
in DINOv2, we freeze the feature backbone during train-
ing. Our experiments show that fine-tuning some layers
of DINOv2 does not improve the performance. Moreover,
freezing the backbone allows us to pre-calculate the support
features for each class, which enables in-context few-shot
classification with a broader set of classes. (3) A potential
concern of using DINOv2 is that the few-shot novel classes
used for testing might have been seen during DINOv2 pre-
training. We argue that the pre-training only learns im-
age representation. How to efficiently transfer the founda-
tion models to downstream tasks is still challenging, espe-
cially when the pre-training self-supervised learning tasks
and downstream detection task have a large discrepancy.

Proposal Generation. After extracting visual features us-
ing DINOv2, we use the Transformer encoder-decoder ar-
chitecture [4, 71] for proposal generation. Specifically, we
first use multi-layer Transformer encoder over query im-
age patch tokens extracted by DINOv2 in the above step.
With the Transformer encoder module, each patch token
features are enriched with global contextual information.
Multi-scale deformable attention are used for fast conver-
gence following [71].

In order to generate the support-class-aware proposals,

we calculate cross-attention between the class prototypes
{f̂ j

s }Nj=1 extracted from the DINOv2 backbone and the re-
fined query image features from the Transformer encoder,
generating support-class-aware query image features.

Then in the Transformer decoder, a sequence of ran-
domly initialized object queries Q = {qi}Mi=1 together with
the support-class-aware query image features are taken as
inputs. Several self-attention and cross-attention layers are
employed to refine the representations of object queries
Q̂ = {q̂i}Mi=1, gradually converging them to the correspond-
ing objects. Bounding box locations of each object query
B = {bi}Mi=1, bi = [x, y, w, h] are calculated using simple
linear layers on the top of Transformer decoder. In this way,
we can generate a small number (M = 300 in our model)
of support-class-aware object queries (or proposals) for the
following few-shot classification module.

Few-Shot Proposal Classification. After obtaining the
proposals from the query images along with the prototype
representation for each class, few-shot classification is an-
other critical module to classify the proposals to be one of
the support classes or the ‘empty’ class [4]. Previous meth-
ods [12, 14, 16, 17, 69] design sophisticated deep neural
networks for similarity learning between the noisy propos-
als and support classes. In this work, we propose to leverage
the strong in-context learning capability of LLMs for con-
textualized few-shot proposal classification, which can im-
prove the accuracy of few-shot classification by introducing
context information and simplify human efforts for design-
ing complicated metric-learning networks.

Specifically, we first add several class tokens (e.g.,
from <class 1> to <class 80> in MSCOCO dataset), and
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the background class token <class bg> to the LLM tok-
enizer. Then we design the following language instruc-
tions for the LLM to perform classification for each of
the proposals. “Please classify each of the proposals in
<proposal 1>...<proposal 300>. Categories Containing,
<class 1>: <visual prototype>... <class 80>: <visual
prototype>. If the proposal does not belong to any of these
classes, it will be classified as <class bg>.” Then, we re-
place the placeholder <proposal 1> with the correspond-
ing proposal feature followed by a trainable projection layer
to convert the dimension to that of the word embeddings in
LLM, and replace <visual prototype> with the correspond-
ing class prototype followed by another projection layer.
The rest of the language instructions are tokenized by the
LLM tokenizer with the newly-introduced class tokens. We
use Vicuna [9] as our default language model, which is a
decoder-only LLM, instruction-tuned from Llama [46]. The
LLM takes the encoded features of the above instruction as
inputs, and generate the <class id> tokens for each of the
proposal by implicitly looking up the category mapping ta-
ble defined in the input instruction. Moreover, the output
tokens of proposal classification maintain the same order as
the proposals in the input instruction. After decoding the
generated tokens by the LLM, we get the final detections by
fusing the classification results of the LLM and the predic-
tions in the proposal generation module.

By providing the aforementioned language instructions
and prompting the LLM to classify each of the proposals,
our method is simple by design. More importantly, our
model takes the input of all proposals together with the cat-
egory mapping table of all classes, which can automatically
exploit the multiple relations among proposals and classes,
including proposal-proposal relations, proposal-class rela-
tions, and class-class relations. The extracted context infor-
mation can largely promote few-shot proposal classification
from the same query image.

Recently, there are a large number of concurrent works
[6, 7, 49, 62, 67] propose to incorporate the spatial localiza-
tion ability into LLMs for region-level fine-grained image
comprehension. Their methods performs well on simple
grounding tasks like RefCOCO, but are struggling on more
complicated dense detection tasks on MSCOCO and LVIS
[6, 49, 58]. Different from these methods, we use the LLM
in a different way for detection tasks, and only prompt the
LLM to classify the proposals. This simplifies the problem
of generating unordered bounding boxes (classification to-
kens + spatial location tokens) to only generating ordered
classification tokens for proposal queries. Therefore our
method largely eases the learning for the LLM.

3.3. The Training Framework

We have the following three steps for model training.
In the first step, we pre-train the proposal generation

module, Deformable DETR [71] with the frozen DINOv2
backbone on base classes. We follow the original loss func-
tions defined in DETR [4] by first finding the optimal bipar-
tite matching between the predicted objects set and ground-
truth objects set, and then optimizing the model towards this
optimal assignment.

In the second step, we learn the whole model on base
classes. The proposal generation module is initialized from
the trained model in the first step. The LLM is initialized
from Vicuna model. In order to obtain the ground-truth la-
bels of the proposals for LLM training, we use the bipartite
matching in DETR to assign labels to the proposals. Then,
we can train our LLM end-to-end using the next-token pre-
diction loss, calculated over the ground-truth proposal la-
bels. In this step, the proposal generation module is also
fine-tuned with the DETR loss.

In the third step, we fine-tune our model on novel classes.
Similarly as the first and second step, we first fine-tune
the proposal generation module with down-sampled base
classes and novel classes. Then, we fine-tune the LLM
using base classes and up-sampled novel classes following
[36] because fine-tuning LLM needs more training data.

4. Experimental Results
4.1. Datasets

We evaluated our model on two widely used FSOD bench-
marks, the MSCOCO [30] and PASCAL VOC dataset [11]
following the evaluation protocol defined in [51].

PASCAL VOC. Following previous works in [22, 51],
we have three random partitions of base and novel cate-
gories. In each partition, the twenty PASCAL VOC cat-
egories are split into fifteen base classes and five novel
classes. We have the exact same few-shot images for model
training/testing as [43, 51], and report AP50 results under
shots 1, 2, 3, 5, and 10.

MSCOCO. We use the twenty PASCAL VOC cate-
gories as novel classes and the remaining sixty categories
are base classes. We have the exact same few-shot images
for model training/testing as [43, 51], and report the detec-
tion accuracy AP/AP50/AP75 under shots 1, 2, 3, 5, 10 and
30 following [14, 39, 51].

We report the full results on the two FSOD benchmarks
in Section 4.3, and use the MSCOCO dataset under 10-shot
for the ablation study in Section 4.4.

4.2. Implementation Details

We provide the implementation details for both the model
architecture and model training.

Model Architecture. (1) For the Visual Feature Extrac-
tion, We use the frozen DINOv2 [37] ViT as our feature ex-
tractor, and conduct experiments with all of the ViT-S/B/L
(small, base, large) model sizes. We use the official released
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checkpoint and codebase from Facebook Research. (2) For
the Proposal Generation, we use the two-stage Deformable
DETR with iterative bounding box refinement in our model.
A cross-attention layer between the class prototypes and
query image features is added in-between the Transformer
encoder and decoder. We develop our model based on open-
sourced codebase detrex [41] and follow their implementa-
tions and use the same hyper-parameters, for example, us-
ing 300 object queries in all of our experiments. (3) For the
Few-Shot Proposal Classification, we use the most recent
version of Vicuna [9] (version 1.5) which is instruction fine-
tuned from Llama 2 [47] and use Vicuna-7B by default in
our experiments following most of the previous multimodal
LLMs works [6, 6, 32, 38, 62]. We have two projection lay-
ers in our model: one connecting proposals to the LLM and
the other connecting class prototype to the LLM. The two
projection layers are simply linear layers with different in-
put dimensions, and both of them are randomly initialized
from scratch. Note that following previous DETR based
models [4, 71], during evaluation, we assign each object
query to the class with the highest score or the second high-
est score if the class with the highest score is <class bg>,
and always assign the bipartite-matched class to each of the
object query during training.

Model Training. (1) We implement the first step train-
ing as traditional supervised training, and we exactly fol-
low the training details (e.g., learning rate scheduler and
training epochs) as the detrex codebase. (2) We implement
the second step training as meta-training. Specifically, in
each training episode, we randomly sample a N -way K-
shot support set together with a query set from the base
classes dataset. N is set to be 60 with all the base classes,
and K is set to be 30 by default. In practice, we have a
pool of support images for each class, cropped around the
ground-truth bounding box with some context. The support
features are pre-calculate for all classes before training be-
cause our feature backbone DINOv2 is frozen all the time.
We train the model with 3 epochs, using cosine scheduler
with a peak learning rate of 2e-5 and Adam optimizer. Most
of our models are trained with 8 A100 80G GPUs with a
batch size of 8 per gpu. (3) We conduct fine-tuning similar
to (1) and (2), but with smaller training epochs. The N and
K are also changed accordingly for each few-shot setting.

4.3. Main Results

We evaluate our proposed method on the two widely used
FSOD benchmarks. The main results are shown in the Ta-
ble 1 and Table 3 for the MSCOCO and PASCAL VOC
dataset respectively. We compare our model with a large
number of existing works. The existing methods can be
roughly divided into two groups according to the detection
framework: RCNN based methods (e.g., FCT [17], DiGeo
[36]), and DETR based methods (e.g., Meta-DETR [66],

FS-DETR [3]). Our method belongs to the second group
with the Deformable DETR detection framework.

From Table 1 we can find that our method outperforms
the traditional Faster R-CNN based FSOD models [17, 36]
significantly, especially for the settings with a relatively
large number of shots. For example, our method outper-
forms FCT [17] by 15.6 AP points on 30-shot, and 10.6
AP points on 10-shot. Using smaller number of shots, the
performance gain is smaller, but nontrivial. For example,
we outperform FCT [17] by 3.1 AP points on 2-shot, and
4.6 AP points on 3-shot. This verified the effectiveness of
utilizing large Foundation Models for FSOD. The DETR
based methods [3, 66] usually have better results compared
to Faster R-CNN based methods. We similarly observe
large performance gain on large number of shots. But both
of the two methods [3, 66] outperform our models at 1-shot
and 2-shot AP50 metric. We argue that this is because LLM
is hard to tune with such small number of training data, and
we do not utilize external dataset for FSOD training like [3].
Interesting future works are to introduce external dataset for
detection training, and explore efficient training with LLM
under small data. Similar performance comparisons can be
concluded in the Table 3 of PASCAL VOC 3 splits.

Recently, another strong baseline DE-VIT [69] is pro-
posed, which is Faster R-CNN based, and also utilize DI-
NOv2 as the feature backbone. We directly compare DE-
VIT with our method under different DINOv2 model sizes.
DE-VIT only provides evaluation results under 10-shot and
30-shot. Our method outperforms DE-VIT on 30-shot, but
is inferior to DE-VIT on 10-shot. However, novel classes
evaluation is only part of our goal. We need to keep strong
performance on base classes as well, which is also called
generalized few-shot object detection (G-FSOD). The eval-
uation results of G-FSOD on MSCOCO 10-shot and 30-
shot are shown in the Table 2. Our method has strong
performance on both many-shot base classes and few-shot
novel classes. The AP scores of our method outperform
DE-VIT by more than 10 point on both of the 10-shot and
30-shot settings, and over all model sizes. DiGeo [36], us-
ing the same Faster R-CNN framework, also outperforms
DE-VIT. DE-VIT transforms multi-class classification into
multiple binary classifications with a shared binary classi-
fier. The shared classifier improves generalization to nAP,
but potentially harms bAP without learning discriminative
knowledge for base classes. Our method shows strong per-
formance on both base and novel classes.

We also perform detection visualization and failure case
analysis in the Figure 3. Our model can detect most of the
objects of various sizes, under different illuminations, and
can detect some of the partially occluded objects. But our
method is still struggling in detecting objects in the dark,
and with extremely small size or occluded by others. Fu-
ture work can exploit efficient data augmentation methods
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Table 1. Few-shot object detection performance on the MSCOCO dataset with novel classes only. Please find the Table 2 for the full
evaluations of both base classes and novel classes on 10-shot and 30-shot.

1-shot 2-shot 3-shot 5-shot 10-shot 30-shot
Method AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

TFA w/ fc [51] 2.9 5.7 2.8 4.3 8.5 4.1 6.7 12.6 6.6 8.4 16.0 8.4 10.0 19.2 9.2 13.4 24.7 13.2
TFA w/ cos [51] 3.4 5.8 3.8 4.6 8.3 4.8 6.6 12.1 6.5 8.3 15.3 8.0 10.0 19.1 9.3 13.7 24.9 13.4
Xiao et al. [59] 3.2 8.9 1.4 4.9 13.3 2.3 6.7 18.6 2.9 8.1 20.1 4.4 10.7 25.6 6.5 15.9 31.7 15.1

MPSR [56] 2.3 4.1 2.3 3.5 6.3 3.4 5.2 9.5 5.1 6.7 12.6 6.4 9.8 17.9 9.7 14.1 25.4 14.2
Fan et al. [12] 4.2 9.1 3.0 5.6 14.0 3.9 6.6 15.9 4.9 8.0 18.5 6.3 9.6 20.7 7.7 13.5 28.5 11.7

FSCE [43] – – – – – – – – – – – – 11.9 - 10.5 16.4 - 16.2
QA-FewDet [14] 4.9 10.3 4.4 7.6 16.1 6.2 8.4 18.0 7.3 9.7 20.3 8.6 11.6 23.9 9.8 16.5 31.9 15.5

Meta Faster R-CNN [16] 5.1 10.7 4.3 7.6 16.3 6.2 9.8 20.2 8.2 10.8 22.1 9.2 12.7 25.7 10.8 16.6 31.8 15.8
FCT [17] 5.6 - - 7.9 - - 11.1 - - 14.0 - - 17.1 - - 21.4 - -

DiGeo [36] – – – – – – – – – – – – 10.3 18.7 9.9 14.2 26.2 14.8

Meta-DETR [66] 7.5 12.5 7.7 - - - 13.5 21.7 14.0 15.4 25.0 15.8 19.0 30.5 19.7 22.2 35.0 22.8
FS-DETR [3] 7.0 13.6 7.5 8.9 17.5 9.0 10.0 18.8 10.0 10.9 20.7 10.8 11.3 21.7 11.1 - - -

DE-VIT [69]
ViT-S – – – – – – – – – – – – 27.1 43.1 28.5 26.9 43.1 28.4
ViT-B – – – – – – – – – – – – 33.2 51.4 35.5 33.4 51.4 35.7
ViT-L – – – – – – – – – – – – 34.0 53.0 37.0 34.0 52.9 37.2

FM-FSOD (Ours)
ViT-S 4.5 6.1 5.0 9.4 12.8 10.1 14.6 20.2 15.7 18.7 26.4 20.0 24.3 34.7 26.0 31.6 45.0 33.6
ViT-B 5.0 6.6 5.4 10.1 13.5 10.9 14.8 20.4 16.0 21.0 28.4 22.7 26.8 38.4 28.4 36.8 51.3 39.4
ViT-L 5.7 7.8 6.2 11.0 15.1 11.5 15.7 21.8 16.8 21.9 30.4 23.2 27.7 38.6 30.1 37.0 51.3 39.7

Table 2. Evaluations of both base classes and novel classes on the
MSCOCO dataset.

10-shot 30-shot
AP bAP nAP AP bAP nAP

DiGeo [36] 32.0 39.2 10.3 33.1 39.4 14.2

DE-VIT [69]
ViT-S 24.8 24 27.1 24.9 24.2 26.9
ViT-B 29.5 28.3 33.2 29.7 28.5 33.4
ViT-L 30.6 29.4 34.0 30.6 29.5 34.0

FM-FSOD (Ours)
ViT-S 34.6 38.1 24.2 38.1 40.3 31.6
ViT-B 37.9 41.6 26.8 42.7 44.7 36.8
ViT-L 40.0 44.2 27.7 43.1 45.2 37.0

to solve this problem, for example, using the most recent
text-to-image generation models [42].

4.4. Ablation Studies

We perform extensive ablation studies on the model archi-
tecture and training method in Table 4. We can have the
following conclusions: (1) Using the ViT based RCNN de-
tection framework ViTDet, it is important to fine-tune the
feature backbone. By comparing the models with frozen
backbones and tuned backbones, we can find large perfor-
mance drop of the former. The reason is that the detec-
tion head is too shallow, and do not have enough capabili-
ties for downstream tasks. (2) Using the Transformer-based
detection framework, Deformable DETR, can significantly
improve the performance for both base and novel classes,
even with frozen feature backbone. This is due to the addi-

Figure 3. Detection Visualization and Failure Case Analysis. Blue
means our detection results and red means false negatives. We use
our 30-shot fine-tuned G-FSOD model for visualization.

tional learning capacities brought by the Transformer-based
detection head. If we also tune the backbone, we can only
get small improvement especially for the strong DINOv2
based model, but tuning the backbone brings significant
computational burden. This is because the support features
cannot be pre-calculated if the parameters of the backbone
are tuned. (3) DINOv2 based models show better perfor-
mance compared with the models using other pre-trained
vision encoders, e.g., MAE [19], CLIP [40], SWIN [34]
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Table 3. Few-shot object detection performance (AP50) on the PASCAL VOC dataset with novel classes only.

Novel Set 1 Novel Set 2 Novel Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

TFA w/ fc [51] 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2
TFA w/ cos [51] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
Xiao et al. [59] 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6

MPSR [56] 41.7 42.5 51.4 55.2 61.8 24.4 29.3 39.2 39.9 47.8 35.6 41.8 42.3 48.0 49.7
Fan et al. [12] 37.8 43.6 51.6 56.5 58.6 22.5 30.6 40.7 43.1 47.6 31.0 37.9 43.7 51.3 49.8

FSCE [43] 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5
QA-FewDet [14] 42.4 51.9 55.7 62.6 63.4 25.9 37.8 46.6 48.9 51.1 35.2 42.9 47.8 54.8 53.5

Meta Faster R-CNN [16] 43.0 54.5 60.6 66.1 65.4 27.7 35.5 46.1 47.8 51.4 40.6 46.4 53.4 59.9 58.6
FCT [17] 49.9 57.1 57.9 63.2 67.1 27.6 34.5 43.7 49.2 51.2 39.5 54.7 52.3 57.0 58.7

FS-DETR [3] 45.0 48.5 51.5 52.7 56.1 37.3 41.3 43.4 46.6 49.0 43.8 47.1 50.6 52.1 56.9
Meta-DETR [66] 40.6 51.4 58.0 59.2 63.6 37.0 36.6 43.7 49.1 54.6 41.6 45.9 52.7 58.9 60.6

FM-FSOD (Ours)
ViT-S 41.6 49.0 55.8 61.2 67.7 34.7 37.6 47.6 52.5 58.7 39.5 47.8 54.4 57.8 62.6
ViT-B 40.9 52.8 59.5 68.3 71.4 33.5 36.1 48.1 53.6 59.3 41.9 52.6 54.9 62.8 68.2
ViT-L 40.1 53.5 57.0 68.6 72.0 33.1 36.3 48.8 54.8 64.7 39.2 50.2 55.7 63.4 68.1

Table 4. Ablation study of major components on COCO 10-shot
setting. † Deformable DETR. ‡ We only fine-tune the Transformer
blocks in the final stage as defined in ViTDet.

Framework Freeze LLM 10-shot
backbone AP bAP nAP

MAE ViT-B ViTDet ✓ 12.1 14.0 6.4
MAE ViT-B ViTDet 35.5 41.9 16.1
CLIP ViT-B ViTDet ✓ 10.6 11.7 7.4
CLIP ViT-B ViTDet 29.1 35.6 9.5
SAM ViT-B ViTDet ✓ 18.5 20.8 11.4
SAM ViT-B ViTDet partial‡ 32.5 39.0 12.7
SAM ViT-B ViTDet 34.4 42.5 10.2

DINOv2 ViT-B ViTDet ✓ 29.7 31.9 23.1
DINOv2 ViT-B ViTDet partial 35.0 41.3 16.1
DINOv2 ViT-B ViTDet 35.9 43.7 12.5

MAE ViT-B D-DETR† ✓ 20.4 23.4 11.5
MAE ViT-B D-DETR 35.3 40.7 18.8
CLIP ViT-B D-DETR ✓ 23.2 26.6 13.1
CLIP ViT-B D-DETR 32.3 37.8 15.5

SWIN-B D-DETR ✓ 36.0 40.3 23.0
SWIN-B D-DETR 39.5 45.3 22.0

SAM ViT-B D-DETR ✓ 25.5 29.0 15.3
SAM ViT-B D-DETR partial 31.3 36.9 14.5
SAM ViT-B D-DETR 34.3 41.5 12.6

DINOv2 ViT-B D-DETR ✓ 36.5 40.2 25.4
DINOv2 ViT-B D-DETR partial 38.0 44.5 18.5
DINOv2 ViT-B D-DETR 38.0 44.8 17.3

FM-FSOD
ViT-S D-DETR ✓ ✓ 34.6 38.1 24.2
ViT-B D-DETR ✓ ✓ 37.9 41.6 26.8
ViT-L D-DETR ✓ ✓ 40.0 44.2 27.7

and SAM [24], especially for novel classes. This verifies
the effectiveness of large scale self-supervised pre-training
at both global and local levels. (4) Using LLM as few-
shot learner can further improve the performance, compared
with the Deformable DETR only model. This verifies the
effectiveness of our model by introducing additional con-
text information and prior knowledge for few-shot learning.

Table 5. Ablation study of contextual modeling with LLM. † We
calculate the total evaluation time on ∼5k images with 8 A100.

Default Use LLM for each Use LLM for each
model proposal separately class separately

Running Speed† 25 mins 3 days 20 hours
COCO 10-shot AP 37.9 36.8 37.4

(5) We further ablate the importance of our contextualized
few-shot learning in Table 5. We show the experiments of
using LLM to classify for each proposal separately, and us-
ing LLM to classify for each class separately. The perfor-
mance decreases slightly in the two models. More impor-
tantly, the running speed of the two models is much slower.
This shows the effectiveness of our contextual modeling.

5. Conclusion
In this work, we study few-shot object detection using
modern foundation models. First, the pre-trained DINOv2
model is used for the vision backbone and is frozen during
training, which achieves strong performance for both base
classes and novel classes. Second, Large Language Model
(LLM) is employed for contextualized few-shot learning,
taking input of all proposals and the visual lookup table for
all classes. Language instructions are carefully designed
to prompt the LLM to classify each proposal in context.
The in-context language instructions with LLMs can sim-
plify the modeling of query-support few-shot learning net-
work, and automatically exploit rich contextual information
among all the proposals and classes to facilitate the few-
shot learning. We comprehensively evaluate the proposed
model (FM-FSOD) on both MSCOCO and PASCAL VOC
benchmarks, achieving state-of-the-arts performance.
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