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Figure 1. We propose a novel method for high-quality face capture, featuring a low-cost and easy-to-use capture setup and the capability
to model the complete face with skin, mouth interior, hair, and eyes. Our method takes a single co-located smartphone flashlight sequence
captured in a dim room (e.g. rooms with curtains or at night) as input. It reconstructs relightable 3D face assets from the recorded data.
These can be used by common graphics software like Blender to create photo-realistic renderings in new environments.

Abstract

Facial geometry and appearance capture have demon-
strated tremendous success in 3D scanning real humans in
studios. Recent works propose to democratize this tech-
nique while keeping the results high quality. However, they
are still inconvenient for daily usage. In addition, they focus
on an easier problem of only capturing facial skin. This pa-
per proposes a novel method for high-quality face capture,
featuring an easy-to-use system and the capability to model
the complete face with skin, mouth interior, hair, and eyes.
We reconstruct facial geometry and appearance from a sin-
gle co-located smartphone flashlight sequence captured in
a dim room where the flashlight is the dominant light source
(e.g. rooms with curtains or at night). To model the com-
plete face, we propose a novel hybrid representation to ef-
fectively model both eyes and other facial regions, along
with novel techniques to learn it from images. We apply a
combined lighting model to compactly represent real illu-
minations and exploit a morphable face albedo model as a
reflectance prior to disentangle diffuse and specular. Ex-
periments show that our method can capture high-quality
3D relightable scans. Our code will be released.

1. Introduction
High-quality facial geometry and appearance capture are
the core steps for cloning our human beings to get into the
digital world. To achieve this, existing works [14, 18, 31,
40, 49] develop specialized and expensive apparatus in stu-
dios to 3D scan real humans. Although impressive results
are demonstrated [1, 2], these techniques are currently only
viable for a small number of professional users as on-site
data capture is inconvenient and costly. Thus, low-cost but
high-quality face capture is strongly in demand to connect
broad daily users to the digital world.

A few recent works [3, 46] focus on democratizing the
face capture process while keeping the results as close as
possible to the studio-based techniques. The rationale of
these methods is to exploit the high-frequency light sources
in daily life, which is the key to recovering high-quality re-
flectance [39]. SunStage [46] exploits the sunlight where
they reconstruct facial geometry and reflectance from a sin-
gle selfie video of the subject rotating under the sun. Pol-
Face [3] exploits the smartphone flashlight, i.e. they capture
two co-located smartphone flashlight sequences with differ-
ent polarization orientations in a darkroom to estimate facial
geometry and reflectance. Although both methods ease the
face capture process to a large extent compared to the stu-
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dio, the requirements of sunlight [46], polarization filter [3],
or darkroom [3] are still inconvenient for daily users to cap-
ture faces at home. In addition, as the reflectance property
varies significantly across the face (e.g. the almost-rough
skin v.s. the highly-specular eyes), these methods focus on
an easier problem to only capture facial skin.

In this paper, we propose a novel method for low-cost
high-quality facial geometry and appearance capture, which
can model the complete face with skin, mouth interior, hair,
and eyes. Firstly, we propose a novel hybrid face repre-
sentation to adopt different models for different facial re-
gions, i.e. eyeballs and other facial regions, due to their
reflectance differences. For eyeballs, we adopt two sphere
meshes with predefined specular reflectance while leaving
the spatially varying diffuse albedo to be solved from the
recorded data. The use of eyeball priors improves the re-
construction quality significantly since recovering geometry
and reflectance for highly reflective objects (eyeballs in our
case) is very challenging [30, 44]. For other facial regions
including skin, mouth interior, and hair, we adopt neural
field [51] considering its superior representation power and
flexibility. Specifically, we adopt a neural SDF field [54] to
represent geometry and a neural field to model the parame-
ters of the Disney BRDF [11] as reflectance similar to previ-
ous works [12, 56]. To learn our hybrid representation from
images, we design a novel mesh-aware volume rendering
technique to integrate the eyeball meshes into the volume
rendering process of the neural SDF field seamlessly.

To make our method easily used at home, we propose to
train our model from a single co-located smartphone flash-
light sequence captured in a dim room where the flashlight
is the dominant light source (e.g. rooms with curtains or
at night). Compared to previous works [3, 46], our capture
setup neither needs special equipment like the polarization
filter and darkroom nor outdoor light sources like sunlight,
making it more user-friendly. However, it poses a new chal-
lenge to disentangle reflectance from the observed colors.
To this end, we involve both lighting and appearance pri-
ors to restrict the optimization. Firstly, we apply a com-
bined lighting model to compactly represent both the low-
frequency dim ambient light and the high-frequency smart-
phone flashlight. Then, to constrain the diffuse-specular
disentanglement, we resort to the reflectance prior provided
by AlbedoMM [42], a 3D morphable face albedo model
trained on Light Stage scans [18, 31, 43]. After training, we
export our hybrid face representation to 3D assets compati-
ble with common CG software (see Figure 1). By combin-
ing our method with Reflectance Transfer [37], we demon-
strate application on relightable facical performance capture
in a low-cost setup. Our main contributions include:
• We propose a novel method for high-quality facial ge-

ometry and appearance capture, featuring a low-cost and
easy-to-use capture setup and the capability to model the

complete face with skin, mouth interior, hair, and eyes.
• We propose a novel hybrid representation to effectively

model eyes and other facial regions and novel techniques
to train it from images.

• We apply a combined lighting model to compactly repre-
sent the real illuminations and propose a reflectance con-
straint derived from AlbedoMM [42] to improve diffuse-
specular disentanglement in our low-cost capture setup.

2. Related Work
Face Capture. Face capture has attracted much attention
in the past two decades. Traditional methods have demon-
strated very impressive results [1, 2] under the studio-
capture setup. The seminal work of Debevec et al. [14] pro-
poses to reconstruct the face reflectance fields by densely
capturing One-Light-At-a-Time (OLAT) images of the hu-
man face using the Light Stage [13]. To capture 3D as-
sets compatible with the graphics pipeline, Ma et al. [31]
propose to capture the normal and albedo maps of faces
leveraging polarized spherical gradient illumination. Sub-
sequently, Ghosh et al. [18] extend this technique to sup-
port multi-view capture to obtain ear-to-ear assets. An-
other class of works captures faces under the single-shot
setup. Beeler et al. [7] propose the first single-shot system
to capture high-quality facial geometry, and then the follow-
up works [19, 40] extend it to support appearance capture.
However, all these methods require the users to travel to the
studio for on-site capture, which is neither convenient nor
low-cost for the broad daily users.

More recently, some works have proposed to democra-
tize the process of face capture. Some methods propose
to reconstruct facial geometry and reflectance from a sin-
gle in-the-wild image [15, 21, 23, 24, 26, 36, 42, 52]. Al-
though these methods are easy to use for daily users, the
reconstruction quality is far behind the studio-capture meth-
ods. Another class of works attempts to capture faces in the
multi-view setup. NeuFace [59] proposes to learn the facial
geometry and a novel neural BRDF from the multi-view
images captured under unknown low-frequency light. To
keep the face capture results as close as possible to the stu-
dio, recent methods propose to exploit high-frequency light
sources in daily life like sunlight [46] or smartphone flash-
light [3]. They solve facial geometry and reflectance from a
single selfie video of the subject rotating under the sun [46]
or two co-located sequences with different polarization ori-
entations captured in a darkroom [3]. In this paper, we use
only a single co-located sequence for face capture, which is
more easy to use by daily users. We propose a novel hybrid
representation by combining neural SDF field and mesh to
reconstruct high-quality complete facial geometry and ap-
pearance including skin, mouth interior, hair, and eyes.

Neural Fields for Inverse Rendering. Recent ad-
vances represent 3D scene attributes (e.g. density and
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color) as a continuous function, a.k.a neural fields [51],
achieving state-of-the-art results on various tasks includ-
ing view synthesis [4–6, 32, 33] and geometry reconstruc-
tion [35, 45, 53, 54]. More recently, some works [9, 10,
12, 22, 29, 34, 55, 56, 58] extend neural fields to inverse
rendering, where geometry and reflectance are modeled as
neural fields and learned from the captured images. Among
these works, the most relevant to us is WildLight [12]. It
solves geometry and reflectance from two sequences, one
with the flashlight turned on and one turned off. Similar to
WildLight, we adopt a neural SDF field [45, 54] to represent
geometry and a neural reflectance field to model the param-
eters of the Disney BRDF [11]. However, we apply a more
compact lighting representation so that we require only a
single flashlight turned-on sequence for training. In addi-
tion, as we focus on the human face rather than common ob-
jects, we can exploit face priors. We propose a hybrid rep-
resentation to exploit eyeball priors to help reconstruction
and a reflectance constraint derived from AlbedoMM [42]
to regularize the neural reflectance fields.

Hybrid Representation for Digital Avatar. Recent
works [16, 25, 60] propose hybrid representation to model
digital avatar, considering that we humans are made of com-
ponents of different properties, e.g. skin, hair, eyes, and
clothes. Among these works, the most relevant to us is Eye-
NeRF [25]. In EyeNeRF, the predefined eyeball meshes are
used to guide the volume rendering process to better model
the ray reflection and refraction on the eyeball surface; the
facial geometry is totally represented by the neural density
fields [32]. However, in our method, we adopt the eye-
ball mesh as part of the facial geometry and propose novel
strategies to constrain the combination of the eyeball mesh
and the neural SDF field. Such a hybrid representation not
only helps us to bypass the challenge of reconstructing the
highly reflective eyeballs but also makes our method fully
compatible with the graphics pipeline.

3. Method
In this Section, we first introduce our capture setup (Sec-
tion 3.1). We then propose a novel hybrid representation
for high-quality and complete face modeling (Section 3.2).
To train it from the captured data, we propose a novel mesh-
aware volume rendering technique (Section 3.3) and a set of
carefully-designed training strategies (Section 3.4).

3.1. Data Capture

As illustrated in Figure 1, we capture a single video se-
quence around the subject in a dim room using the smart-
phone camera with its flashlight opened up. The capture
takes around 25 seconds for a subject. We use an iPhone X
to capture all the sequences in this paper. We resize the im-
ages to 960×720 resolution before processing. We calibrate
the camera parameters for each frame using an off-the-shelf

software1. We assume the only high-frequency light source
is the smartphone flashlight and further assume it shares the
same position as the camera; if not otherwise specified, the
data is captured in a room at night2. Such a setup has several
advantages: i) it is easy to fulfill for daily users at home, ii)
the high-frequency flashlight provides rich cues to recover
reflectance, and iii) there are no apparent shadows in the
captured frames, avoiding extra efforts during optimization.

3.2. Hybrid Representation

Our goal is to capture the complete face with skin, hair,
mouth interior, and eyes from the recorded frames. In ad-
dition, we require the resulting assets to be compatible with
common CG software. In this context, neural fields become
the first choice for their superior representation power and
flexibility. Similar to existing works [12, 56], we can rep-
resent geometry as the neural SDF field and adopt a neural
field to model the BRDF parameters as the reflectance; at
test time, we can export it to 3D assets including a mesh
and a set of UV maps. However, such a holistic represen-
tation fails to capture plausible geometry and reflectance
for the highly reflective eyeballs, leading to unpleasing re-
sults around the eyes (see Figure 3 and 4). To overcome the
challenging problem of eyeball reconstruction, we propose
a hybrid representation to explicitly exploit eyeball priors.
Specifically, we split the whole face F into the eyeballs re-
gion E and all the other regions S, i.e. F=E ∪ S.

For the S region, including skin, mouth interior, and hair,
we adopt a neural SDF field fsdf : x → sdfS to represent
geometry and a neural field fbrdf : x → {c, sS , ρS} to
model the BRDF parameters as the reflectance. Here, x ∈
R3 is the position of the sampled point; c ∈ R3, sS ∈ R,
and ρS ∈ R are the diffuse albedo, specular albedo, and
roughness of the Disney BRDF model [11] respectively.

For eyeballs, i.e. the E region, we make an assump-
tion that they are two sphere meshes with the same radius.
We further assign a specular lobe with predefined specular
albedo sE and roughness ρE to the eyeballs, while leav-
ing the spatially varying diffuse albedo of the eyeballs to
be solved from the recorded data. Thus, the only person-
specific characteristics of the eyeballs are the two positions
pl,pr ∈ R3, a shared scalar radius r ∈ R, and the diffuse
albedo. We reuse fbrdf to represent the spatially varying
diffuse albedo of the two eyeballs. Although simple, we
demonstrate decent rendering results with plausible specu-
larities appearing on the eyes.

3.3. Mesh-Aware Volume Rendering

To train our hybrid representation, we need to render it
into an image to compute the photometric loss against the

1https://www.agisoft.com/
2It is not a darkroom as the white wall and furniture would reflect light.
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Figure 2. Illustration of the proposed mesh-aware volume render-
ing technique tailored to our novel hybrid face representation.

recorded frame. To this end, we propose a mesh-aware vol-
ume rendering technique tailored to our hybrid representa-
tion as illustrated in Figure 2. Specifically, given a 3D posi-
tion x = o+ t ·d sampled on the camera ray where o ∈ R3

is the camera position, d ∈ R3 is the opposite view direc-
tion, and t ∈ R is the viewing distance, we introduce how
to compute its SDF value, normal, and observed color.

We first convert the eyeball meshes to the SDF field:

sdfE = min(||x− pl||2 − r, ||x− pr||2 − r) (1)

Considering that the complete facial region F is the union
of the eyeballs region E and the other region S, we compute
its SDF value sdf , specular albedo s, and roughness ρ as:

s = select(sE , sS ; sdfE , sdfS) (2)
ρ = select(ρE , ρS ; sdfE , sdfS) (3)

sdf = select(sdfE , sdfS ; sdfE , sdfS) (4)

The intuition is that we select its attributes modeled by ei-
ther the E region or the S region according to its geometry.
We define the differentiable select operator as:

select(∗E , ∗S ; sdfE , sdfS) =

{
∗E sdfE ≤ sdfS

∗S sdfE > sdfS
(5)

Note that Eq (4) is equivalent to setting the SDF value of
the union region F as the minimum SDF value of its two
components, i.e. E and S. The diffuse albedo of region F
is directly set to c considering that we use fbrdf to represent
both regions. We compute the normal n ∈ R3 as the gradi-
ent of the SDF value w.r.t the position, i.e. n = ∇xsdf .

Combined Lighting Model. We represent lighting in
our capture setup as a combination of the high-frequency
smartphone flashlight and the low-frequency dim ambient
light. We parametrize the flashlight as a point light with
predefined 3-channel intensity L. For the ambient light, we
only consider its contribution to the diffuse term; we param-
eterize the diffuse shading under the ambient light as the 2-
order Spherical Harmonics (SH) [38] in the SoftPlus output

space to ensure its non-negativity. Then, given the material
parameters and the normal, we can compute its shading as:

lo = lflash + lamb,where (6)

lflash =
L

||x− o||22
· fpbr(l,v; c, s, ρ) ·max(n · v, 0) (7)

lamb = c · SoftPlus(
2∑

l=0

l∑
m=−l

·Klm · Ylm(n)) (8)

Here, fpbr is the Disney BRDF, v = −d is the view di-
rection, l is the light direction and we have l = v in the
co-located setup, Klm are the SH coefficients for the dif-
fuse shading under the ambient light, and Ylm(·) are the SH
bases. Compared to WildLight [12] which uses NeRF [32]
to represent the ambient shading, our representation is more
compact. Thus, in our scenario, it is feasible to estimate it
from a single flashlight video. In addition, it makes our
capture process faster, enabling capturing more challenging
facial expressions.

Given the SDF value sdf , normal n, and the observed
color lo of a sample point x, we can volume render the cam-
era ray following VolSDF [45].

3.4. Training

We learn the two neural fields fsdf and fbrdf and the am-
bient shading parameters Klm from the captured frames.
Similar to EyeNeRF [25], the eyeball position pl,pr, and
radius r are set manually, which can be easily done in CG
software like Blender. We leave incorporating automatic
method [48] into our system as the future work. We empha-
size that our goal is to exploit priors to overcome the chal-
lenge problem of reconstructing the highly reflective eye-
balls, rather than reconstructing high-quality eyeballs with
accurate positions and characteristics [8].

To train the neural fields from images, we adopt photo-
metric loss, mask loss, and Eikonal loss [20] similar to pre-
vious works [12]. We also adopt a loss to enforce the normal
of the nearby sampled points to be the same [41, 58]. See
more details in our supplementary material. However, all
these routine loss functions provide no explicit constraints
to regularize the eyeball meshes and the neural SDF field to
only represent their own region. Thus, it leads to unnatural
results as shown in Figure 3. In addition, our method fo-
cuses on capturing the face rather than common objects so
that we can exploit face-specific priors for regularization.
To this end, we propose two novel and well-designed losses
tailored to our task and hybrid representation.

Composition Loss. To constrain the training of our hy-
brid representation, inspired by ObjectSDF++ [50], we ren-
der the occlusion-aware object opacity mask ÔE and ÔS for
the E and S region and compare them to the corresponding
ground truth OE and OS obtained from an off-the-shelf face
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holistic rep. Ours (hybrid rep. w/ Lcomp)  hybrid rep.

Figure 3. Qualitative evaluation of the hybrid representation and
Lcomp on geometry reconstruction around eyes. Texture and nor-
mal close-ups are shown in the second and third rows respectively.

parsing network [28] over the n sampled rays:

Lcomp =

n∑
i=1

||ÔE
i −OE

i ||1 +
n∑

i=1

||ÔS
i −OS

i ||1 (9)

Reflectance Regularization. We exploit the morphable
face albedo model – AlbedoMM [42] – as the reflectance
prior. Specifically, we devise a multi-view AlbedoMM fit-
ting algorithm to reconstruct the specular albedo for each
frame. Then, we enlarge the solved specular albedo to the
whole image to obtain Is as pseudo ground truth to super-
vise the volume-rendered one Îs on the sampled rays:

Lref =

n∑
i=1

||k · Îsi − Isi ||1 (10)

Here, k ∈ R is a learnable scalar to compensate for the scale
ambiguity stemming from our predefined light intensity L.
For pixels from the eyeballs region E, we do not compute
Lref since we already have predefined prior seye. For pixels
from the hair region indicated by the parsing mask [28], we
constrain its specular albedo to be 0 to obtain a diffuse ap-
pearance as we empirically find fitting a specular lobe pro-
duces artifacts when rendered in novel environments.

4. Experiments
We implement our method on top of the multi-resolution
hash grid [33] and VolSDF [54] using NerfAcc [27]. Our
method can be trained within 70 minutes using a single
Nvidia RTX 3090 graphics card. After training, we au-
tomatically export our hybrid representation to a triangle

holistic rep. Ours holistic rep. 
w/ naive ref. prior 

Figure 4. Qualitative evaluation of our hybrid representation and
the baseline variants on relighting under a frontal point light.

mesh with corresponding UV maps for normal, diffuse
albedo, specular albedo, and roughness as shown in Fig-
ure 1. We adopt Blender to re-render these assets in novel
environments. We urge the readers to check our supplemen-
tary video and supplementary material for more implemen-
tation details, experimental results, and illustrations.

4.1. Evaluations

Hybrid Face Representation and Lcomp. Recall that our
motivation for proposing the hybrid face representation is
to alleviate the challenging problem of reconstructing the
highly reflective eyeballs’ geometry and appearance from
images. To evaluate its effectiveness, we compare a base-
line variant holistic rep., where the whole facial geometry
and reflectance are represented by fsdf and fbrdf . In addi-
tion, we compare to a baseline variant hybrid rep. where we
remove Lcomp from our full method to evaluate its efficacy.

We show the geometry reconstruction results in Figure 3.
Without eyeballs prior, holistic rep. fails to reconstruct rea-
sonable eyeball geometry. Without the composition loss
Lcomp, we cannot ensure the eyeball meshes and the neu-
ral SDF represent their own region as we expected. Our
method, i.e. hybrid rep. w/ Lcomp obtains the best re-
sults. It seamlessly integrates the eyeballs’ geometry and
reflectance prior to the hybrid face representation and con-
strains its learning via the composition loss Lcomp.

We show the relighting results in Figure 4. The base-
line variant holistic rep. models eyeballs’ reflectance the
same way as the other facial regions. It fails to reconstruct
a plausible specular lobe for eyeballs, leading to unnatural
diffuse-looking relighting results around the eyes. We fur-
ther enhance it by manually setting the specular albedo and
roughness of the eyeballs region on the exported UV maps
to seye and ρeye respectively; we dub this one holistic rep.
w/ naive ref. prior. Although reflectance prior is utilized, it
still cannot generate plausible specularities due to the erro-
neous geometry reconstruction. Our method produces plau-
sible specularities in eye renderings since we exploit both
geometry and reflectance eyeball priors.
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Ours w/o Lref Ours naive smooth prior 

Ours w/o Lref Ours naive smooth prior 

Figure 5. Qualitative evaluation of our reflectance regularization
loss Lref and the baseline variants on diffuse (the first row) and
specular (the second row) albedo estimation. See our supplemen-
tary video for more illustrations.

Combined Light Representation. To evaluate the ef-
fectiveness of our combined light representation, we com-
pare a baseline variant that only uses a point light to rep-
resent the dominant flashlight while ignoring the ambient.
We report the performance gain (in terms of PSNR) on face
reconstruction of our method over this baseline on 3 capture
environments with increasing ambient intensity: 0.08dB for
night w/ curtain, 0.05dB for noon w/ curtain, and 0.61dB
for noon w/o curtain. See the photo of these environments
and more evaluations in supplementary material.

Reflectance Regularization. To regularize the esti-
mated reflectance, we exploit AlbedoMM [42] as priors.
We qualitatively evaluate this term as it is a regularizer. As
shown in Figure 5, without our reflectance prior loss Lref ,
the estimated diffuse and specular albedo have a degraded
quality compared to the full method. We also compare a
widely-used smooth prior that constrains the nearby points’
estimated specular albedo to be the same [22, 34, 58] in Fig-
ure 5. Again, our method obtains superior quality on diffuse
and specular albedo estimation over this naive prior.

4.2. Comparisons

We compare state-of-the-art inverse rendering methods in
various problem setups, from low-cost systems to studios.
The first class of works takes multi-view images captured
in an unconstrained environment as input, which is a bit
easier to use than our method; we compare the latest one,
i.e. NeRO [30], as the representative work. The sec-
ond class takes the same input as our method; we involve
a model-based method NextFace++ for comparison. We
also test WildLight [12] under this setup. The last class is

NextFace++ Ours GT Ours NextFace++ 

Figure 6. Qualitative comparison of our method and NextFace++
on face reconstruction and relighting.

PSNR ↑ SSIM [47] ↑ LPIPS [57] ↓
NextFace++ 17.62 0.7339 0.2727

Ours 26.12 0.8808 0.1642

Table 1. Quantitative comparison of our method and NextFace++
on face reconstruction. The metric is averaged on 5 subjects.

studio-based methods; we involve a Light Stage-based so-
lution [18]. Due to space limitation, we put the comparison
to NeRO and WildLight in our supplementary material. We
do not compare to PolFace [3] as it is closed-source.

Comparison to NextFace++. NextFace [15] takes sin-
gle or multiple in-the-wild face images as input. It first fits
3DMM to the images by estimating the lighting, camera pa-
rameters, head pose, BFM geometry parameter [17], and
AlbedoMM reflectance parameter [42]. Then, they refine
the statistical reflectance maps on a per-texel basis. For a
fair comparison, we enhance NextFace in the following as-
pects: (1) we provide our camera parameters to NextFace
and introduce a learnable 1D scalar to compensate for the
scale difference between the BFM canonical space and our
camera frame, and (2) we implement our combined lighting
model in NextFace. We dub it NextFace++.

We compare the face reconstruction and relighting re-
sults of our method to NextFace++. As shown in Figure 6,
NextFace++ can only represent facial skin as it relies on the
BFM geometry while our method can represent the com-
plete face thanks to the proposed hybrid representation. On
face reconstruction, NextFace++ is confined to the space
of the BFM model, which cannot represent person-specific
characteristics around the eyes, nose, and mouth, while our
method can better fit the captured images as our hybrid ge-
ometry representation is more powerful and flexible. On
face relighting, our method achieves more realistic results
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Ours Light Stage Ours Light Stage Reference 

Ours Light Stage Ours Light Stage 

Reference 

Figure 7. Qualitative comparison of our method and the Light
Stage-based solution [18] on diffuse albedo and normal recon-
struction. We show one frontal reference frame sampled from the
recorded data at the right bottom corner of each image.

around eyes as we exploit eyeballs’ reflectance prior while
NextFace++ models them the same way as skin. In Table 1,
we show quantitative metrics on the hold-out validation im-
ages sampled from the captured co-located sequence; we
obtain superior results over NextFace++.

Comparison to Light Stage. In high-budget produc-
tion, Light Stage [13] has demonstrated tremendous success
in 3D scanning real humans [1, 2]. To evaluate the per-
formance gap between our low-cost method and the state-
of-the-art in the studio, we compare it to the Light Stage-
based solution [18] implemented by SoulShell3. In their
Light Stage, polarization filters are equipped on lights and
cameras to capture the diffuse albedo while sphere gradi-
ent illuminations are activated to capture the normal; their
system cannot capture specular albedo currently. We invite
volunteers to their studio for on-site capture.

In Figure 7, we compare the diffuse albedo and normal
reconstructed from our method and the Light Stage. Al-
though impressive results are achieved, our method still legs
behind the Light Stage results in several aspects: (1) Light
Stage can better disentangle the diffuse and specular com-
ponents due to its usage of the polarization filters, leading to
a cleaner diffuse albedo map, and (2) Light Stage can recon-
struct higher resolution maps with pore level details since
it uses high-definition DSLR camera to capture data, while
our method is limited by the quality of the smartphone video
camera and the inevitable subtle movement of the subject
during our longer capture process (around 25 seconds).

4.3. Results and Application

We present the face capture results of our method on dif-
ferent identities and facial expressions in Figure 10. Our

3http://soulshell.cn/

Diffuse Albedo Specular Albedo Normal Relight

Diffuse Albedo Specular Albedo RelightReference Normal

Figure 8. Our method can reconstruct high-quality facial geometry
and reflectance even if apparent ambient exists. We show a frontal
view sampled from the recorded video and the photo of the scene
where we capture data (noon w/o curtain) in the leftmost column.

Figure 9. Qualitative face performance relighting results obtained
by combining our method with the Reflectance Transfer [37]. We
show the origin performance sequence and the relit one in the first
and second row respectively.

method can disentangle the diffuse and specular compo-
nents from the images in a plausible way, leading to an
authentic high-quality relightable scan. In addition, our
method can capture various challenging facial expressions
thanks to the strong representation power and flexibility of
our hybrid face representation. In Figure 8, we demonstrate
the robustness of our method by training it from the data
captured at noon in a room with the curtain opened, i.e.
noon w/o curtain. In this challenging scenario with appar-
ent ambient, our method still obtains high-quality results.

By replacing the Light Stage scan in the Reflectance
Transfer technique [37] as our method’s result, we build a
simple but strong baseline for the challenging task of re-
lightable face performance capture in the low-cost setup.
We record a performance sequence under an unknown but
low-frequency lighting and make it relightable as shown in
Figure 9. See the supplementary material for more details.

4.4. Limitations and Discussions

Although our method demonstrates high-quality results in
an easy-to-use manner, it still has several limitations. Sim-
ilar to EyeNeRF [25], the position and radius of the eye-
ball meshes are manually set in our method, which incurs
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Figure 10. Facial geometry and appearance capture results of our method on different identities and facial expressions.

some manual effort to the whole pipeline. Pre-capturing a
multi-gaze video to automatically estimate the eyeball po-
sition and size [48] is an interesting direction. Our method
takes around 25 seconds to capture a subject with a fixed
facial expression. During this period, subtle movement of
the subject is inevitable, which would blur the reconstructed
texture or bake the eyelids into the eyeball’s texture. Speed-
ing up the capture process is an interesting direction. See
our supplementary material for more detailed discussions.

5. Conclusion
We propose a low-cost and easy-to-use technique for high-
quality facial geometry and appearance capture, which
takes a single co-located smartphone flashlight sequence
captured in a dim room as input. Our method can model
the complete face with skin, hair, mouth interior, and eyes.
We propose a novel hybrid face representation by combin-

ing meshes and neural SDF field and techniques to train
it from images. We apply a combined lighting model to
compactly model the illumination and propose to exploit
AlbedoMM [42] as priors to constrain the estimated re-
flectance. Our method reconstructs high-quality 3D re-
lightable scans compatible with common CG software.
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