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Abstract

Collecting well-matched multimedia datasets is crucial
for training cross-modal retrieval models. However, in real-
world scenarios, massive multimodal data are harvested
from the Internet, which inevitably contains Partially Mis-
matched Pairs (PMPs). Undoubtedly, such semantical irrel-
evant data will remarkably harm the cross-modal retrieval
performance. Previous efforts tend to mitigate this prob-
lem by estimating a soft correspondence to down-weight
the contribution of PMPs. In this paper, we aim to ad-
dress this challenge from a new perspective: the potential
semantic similarity among unpaired samples makes it pos-
sible to excavate useful knowledge from mismatched pairs.
To achieve this, we propose L2RM, a general framework
based on Optimal Transport (OT) that learns to rematch
mismatched pairs. In detail, L2RM aims to generate refined
alignments by seeking a minimal-cost transport plan across
different modalities. To formalize the rematching idea in
OT, first, we propose a self-supervised cost function that
automatically learns from explicit similarity-cost mapping
relation. Second, we present to model a partial OT prob-
lem while restricting the transport among false positives
to further boost refined alignments. Extensive experiments
on three benchmarks demonstrate our L2RM significantly
improves the robustness against PMPs for existing mod-
els. The code is available at https://github.com/
hhc1997/L2RM .

1. Introduction
The pursuit of general intelligence has advanced the

progress of multimodal learning, which aims to under-

stand and integrate multiple sensory modalities like hu-

mans. Cross-modal retrieval is one of the most important
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bicycle on a 
crowded road.

A group of 
people sit on a 
wall at the beach.

Figure 1. A toy example to illustrate our idea. The potential se-

mantic similarity among unpaired samples makes it possible to ex-

cavate useful knowledge from mismatched pairs. Our L2RM aims

to rematch PMPs by generating a refined alignment that brings rel-

evant cross-modal samples (green links) together while repelling

irrelevant ones (red links) away from each other. We also show

some real-world rematched cases for our L2RM in Fig. 5.

techniques in multimodal learning due to its flexibility in

bridging different modalities [15, 20, 22, 25, 37, 42], which

has powered various real-world applications.

Despite the remarkable performance of previous meth-

ods, much of their success can be attributed to the voracious

appetite for well-matched cross-modal pairs. In practice,

collecting such ideal data [24] is notoriously labor-intensive

and even impossible. Alternatively, several mainstream

cross-modal datasets utilize the co-occurred information to

crawl data from the Internet, especially for visual-text sam-

ples [11]. Although such a data collection way is free from

expensive annotations, it will inevitably introduce partially

mismatched pairs. For example, the standard image-caption

dataset, Conceptual Captions [36], is estimated to contain

about 3% to 20% mismatched pairs. Such semantically ir-

relevant data will be wrongly treated as the matched pairs

for training, which undoubtedly impairs the performance of

cross-modal retrieval models. Thus, endowing cross-modal

learning with robustness against PMPs is crucial to suit real-

world retrieval scenarios.

To alleviate the PMP problem, existing works [19,23,45]
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typically resort to recasting the estimated soft correspon-

dence into a soft margin to adjust the distance in triplet

ranking loss. However, the underuse of mismatched pairs,

only limited to down-weighting their contribution, has led

to sub-optimal retrieval performance. Hence, it is necessary

to address the PMP issue in a data-efficient manner.

A question naturally arises: Could cross-modal retrieval
models even learn useful knowledge from mismatched
pairs? To answer this question, this paper presents L2RM, a

general framework that learns to rematch mismatched pairs

for robust cross-modal retrieval. As illustrated in Fig. 1,

our key idea is to excavate the potential matching relation-

ship among mismatched cross-modal samples. Specifically,

we first identify possibly mismatched pairs from training

data by modeling the per-sample loss distribution. Then,

we formalize the rematching idea as an OT problem to

generate a new set of refined alignments for mismatched

pairs in every minibatch. Notably, the cost function plays

a paramount role when applying OT, which is typically de-

signed as feature-driven distance [5, 10, 18]. However, the

over-dependence on representations has led to a cycle of

self-reinforcing errors—the existence of PMPs can gener-

ate corrupted representations–in turn, preventing the effec-

tive transport plan. To handle this problem, we propose a

self-supervised learning solution to automatically learn the

cost function from explicit similarity-cost mapping relation,

which is unexplored in previous OT literature. Moreover,

instead of exactly rematching all mismatched samples, we

suggest modeling a partial OT problem while restricting the

transport among false positives to boost the refined align-

ment. In practice, we show that our optimization objective

could be solved by the Sinkhorn algorithm [9], which only

incurs cheap computational overheads.

Our main contributions are summarized as follows: (1)

We propose a general OT-based framework to address the

widely-existed PMP problem in cross-modal retrieval. The

key to our method is learning to rematch mismatched pairs,

which goes beyond previous efforts from the data-efficient

view. (2) To address the error accumulation faced by the

vanilla cost function, we propose a novel self-supervised

learner that automatically learns the transport cost from ex-

plicit similarity-cost mapping relation. (3) To further boost

the refined alignment, we present to model a partial OT

problem and restrict the transport among false positives. (4)

Extensive experiments on several benchmarks demonstrate

our L2RM endows existing cross-modal retrieval methods

with strong robustness against PMPs.

2. Related Work
Cross-Modal Retrieval. Approaches for cross-modal re-

trieval aim to retrieve relevant items across different modal-

ities for the query data. Current dominant methods project

different modalities into a shared embedding space to mea-

sure the similarity of cross-modal pairs, which generally

follow two research lines: 1) Global Alignment focuses

on learning the correspondence between whole cross-modal

data. Existing studies usually propose a two-stream net-

work to learn comparable global features [13, 30, 47]. 2)

Local Alignment. It seeks to align the fine-grained regions

for more precise cross-modal matching. For example, [26]

employ the cross-attention mechanism to fully excavate the

semantic region-word alignments. [43,44] explore the intra-

modal relation to facilitate inter-modal alignments.

Although these prior arts have achieved promising re-

sults, their success mainly relies on well-matched data,

which is extremely expensive and even impossible to col-

lect. To satisfy a more practical retrieval that is robust

against the PMPs, [23, 33, 45] divide the mismatched pairs

from training data and estimate a soft correspondence to

downweight their training contribution. Recently, [21] re-

sorts to complementary contrastive learning that only uti-

lizes the negative information to avoid overfitting. How-

ever, these methods neglect the usage of either the negative

information [23, 33, 45] or the positive one [21]. To fully

leverage the training data, this paper proposes an OT-based

method to rematch those partially mismatched pairs.

Optimal Transport. OT is used to seek a minimal-cost

transport plan from one probability measure to another.

The original OT model is a linear program that incurs

expensive computational cost. [9] proposes the entropy-

regularized OT to provide a computationally cheaper solver.

Recently, OT has gained increasing attention from different

fields in machine learning, including unsupervised learn-

ing [4, 29], semi-supervised learning [39], object detection

[1,17], domain adaptation [14,35], and long-tailed recogni-

tion [32, 40]. To the best of our knowledge, we are the first

to perform the PMP problem from an OT perspective.

3. Preliminaries
3.1. Background on OT

OT provides a mechanism to infer the correspondence

between two measures. We briefly introduce the OT the-

ory to help us better view the PMP problem from an OT

perspective. Consider X = {xi}mi=1 and Y = {yj}nj=1

as two discrete variables, and we denote their probability

measures as p =
∑m

i=1 piδ(xi) and q =
∑n

j=1 qjδ(yj),
where δ is the Dirac function, pi and qj are the probability

mass belonging to the probability simplex. When a mean-

ingful cost function c(·) is defined, we can get the cost ma-

trix C ∈ R
m×n between X and Y , where Cij = c(xi, yj).

Based on these, the OT distance can be expressed as:

OT(p, q) � min
π∈Π(p,q)

〈π,C〉F
s.t. Π(p, q) = {π ∈ R

m×n
+ |π�n = p,π�

�m = q},
(1)
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where 〈·, ·〉F is the Frobenius dot-product and �d denotes a

d-dimensional all-one vector. π is called the optimal trans-

port plan that transport p towards q at the smallest cost.

3.2. Problem Definition

Without losing generality, we take the visual-text re-

trieval as an example to present the PMP problem in

cross-modal retrieval. Consider a training dataset � =
{(Vi, Ti,mi)}Ni=1 consisting of N samples, where (Vi, Ti)
is the visual-text pair and mi ∈ {1, 0} indicates whether

the bimodal data is semantically matched or not. The

key to cross-modal retrieval lies in measuring the simi-

larity across distinct modalities. To achieve this, exist-

ing methods usually project the visual and textual modal-

ities into a comparable feature space via the corresponding

modal-specific networks fv and ft, respectively. Then the

similarity of a given visual-text pair is measured through

Sij = g(fv(Vi), ft(Tj)), where g is a nonparametric or

parametric mapping function. For convenience, we denote

g(fv(Vi), ft(Tj)) as g(Vi, Tj) in the following.

Ideally, the positive (matched) pairs should have higher

similarity while the negative (mismatched) pairs should

have lower ones, which can be achieved by minimizing the

triplet loss [13] or InfoNCE loss [31]. Consider a batch of

Nb pairs {(Vi, Ti)}Nb
i=1, the triplet loss is defined as:

Ltriplet(Vi, Ti) =[α− g(Vi, Ti) + g(Vi, T̂h)]+

+[α− g(Vi, Ti) + g(V̂h, Ti)]+,
(2)

where α is a margin and [x]+ = max(x, 0). V̂h and T̂h are

the most similar negatives in the given batch corresponding

to (Vi, Ti). Eq.(2) aims to enforce the negative pairs to be

distant from the positives by a certain margin value.

Alternatively, InfoNCE loss is extended to cross-modal

scenario [21,34] that encourages the similarity gap between

positives and negatives as large as possible. Formally, the

matching probability of j-th textual sample w.r.t. the i-th vi-

sual query is defined as pv2tij =
exp(g(Vi,Tj)/τ)∑Nb

j′=1
exp(g(Vi,Tj′ )/τ)

, where

τ is a temperature parameter. As InfoNCE loss is symmet-

ric, the matching probability pt2vij is defined similarly. For

notation convenience, we denote pv2t
i = [pv2ti1 , · · · , pv2tiNb

]�

and pt2v
i = [pt2vi1 , · · · , pt2viNb

]� as the probability vectors. To

align cross-modal samples, the corresponding one-hot vec-

tor yi = [yi1, · · · , yiNb
]� is used as supervision, where yij

equal to 1 if i = j while other elements are 0. Thus, the

cross-modal InfoNCE loss is given by:

LInfoNCE(Vi, Ti) = H(yi,p
v2t
i ) +H(yi,p

t2v
i ), (3)

where H is the batched cross-entropy function.

The success of both Eq.(2) and Eq.(3) relies on the

well-matched pairs. However, in practice, the multimedia

datasets are usually web-collected, and thus inevitably con-

tains an unknown portion of irrelevant pairs but are wrongly

treated as matched (mi = 1). Our goal is to combat such

PMPs to facilitate robust cross-modal retrieval.

4. Methodology
To tackle the PMP problem, the mainstream pipeline first

uses the memorization effect [3] of DNNs, i.e., DNNs learn

simpler patterns before memorizing the difficult ones, to

partition the dataset into a matched subset �m, and a mis-

matched subset�m̃ = �/�m. After that,�m can be used

for standard cross-modal training. To mitigate the impact of

PMPs, recent advances [19, 23, 45] introduce a soft margin

into Eq.(2) to down-weight the samples from �m̃. How-

ever, due to the underuse of mismatched pairs, the achieved

performance by them is argued to be sub-optimal. In this

work, we aim to fully leverage PMPs by trying to excavate

the potential semantic similarity among mismatched pairs.

In the following, we present the details of our method.

4.1. Identifying Mismatched Pairs

Following the mainstream learning style, we first iden-

tify possibly mismatched pairs from all training data. The

memorization effect of DNNs indicates that mismatched

samples tend to have relatively higher loss during the early

stage of training. Based on this, we use the difference in loss

distribution between the matched and mismatched pairs to

divide the training set. Empirically, we observe that the dis-

tribution of triplet loss is more distinguishable. Thus, given

the retrieval model (fv, ft, g), we compute the per-sample

loss through Eq.(2):

�(fv,ft,g) = {�i}Ni=1 = {Ltriplet(Vi, Ti)}Ni=1. (4)

Then, we fit a two-component beta mixture model [2,19,45]

to �(fv,ft,g) using the Expectation-Maximization algorithm.

For i-th pair, its probability wi being mismatched is the pos-

terior probability p(b|�i), where b is the beta component

with a higher mean. By setting a threshold on {wi}Ni=1,

we can divide the training data into the matched subset�m

and mismatched subset �m̃ (we set the threshold to 0.5 in

all experiments for brevity).

For initial convergence of the algorithm, we warm up the

model for a few epochs by training on all data with Eq.(2) or

Eq.(3). However, for extreme mismatching rates, the model

would quickly overfit to mismatched pairs and produce un-

reliable loss. To address this issue, we mitigate the overcon-

fidence of the model by adding a reverse cross entropy [41]

term to the InfoNCE loss during warm-up, i.e.,

LRCE(Vi, Ti) = H(pv2t
i ,yi) +H(pt2v

i ,yi). (5)

In the presence of PMPs, yi may provide the wrong match-

ing relation. Instead, the estimated probability could reflect
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Figure 2. Overview of the learnable cost function with self-supervised learning. The up part illustrates the reconstructed pairs that only

(V4, T1), (V2, T3), and (VNb , TNb) are the reserved matching ones. Then, the matching matrix is viewed as supervision to guide the cost

function from the explicit similarity-cost mapping relation through an OT loss (the down part).

the truer distribution to a certain extent. Note that we bound

the one-hot label into [ε, 1−ε] for computational feasibility.

(ε = 10−7 in our experiments).

4.2. Rematching Mismatched Pairs

We formalize the rematching idea as an OT problem,

generating refined alignments by seeking a minimal-cost

transport plan. We will first introduce the novel learnable

cost function to suit the PMP scenario, then we show how

to boost the refined alignment by a relaxed OT model.

Cost Function with Self-Supervised Learning. Cost

function plays a crucial role when learning the transport

plan for OT. In general, Cij is set to a distance measure,

e.g., L2-distance [18] or cosine distance [10] to measure the

expense of transporting a visual sample i to a textual sam-

ple j. However, the existence of PMPs imposes formidable

obstacles for these feature-driven distance measures. On

the one hand, training with PMPs can wrongly bring irrel-

evant data together, which undoubtedly prevents effective

representation learning. Even worse, different modalities

will be embedded into separate regions of the shared space

due to the inherent modality gap [27]. On the other hand,

the refined alignments produced by those corrupted features

would be used to guide subsequent training, leading to the

cycle of self-reinforcing errors [8].

To address the aforementioned limitations, we propose

a novel self-supervised learning approach to automatically

learn the cost function. Intuitively, for a given image and

caption, the transport cost can be modeled as a function

of similarity that higher similarity enjoys a lower cost.

Thus, we formulate the cost function as a single-layer feed-

forward network with parameters Θc, i.e., fc (; Θc), which

takes the similarity matrix of the batched visual-text sam-

ples as input and attempts to learn the corresponding cost

matrix. To achieve this, we reconstruct the visual-text pairs

to guide the cost function from explicit similarity-cost map-

ping relation. Specifically, for the matched pairs sampled

from m, we randomly reserve a part of the matching im-

ages and substitute the images from m̃ for the remaining

ones. With the reserved indexes, we could automatically

obtain a matching matrix that indicates the ideal matching

probability for each reconstructed pair. For the example il-

lustrated in Fig. 2, (V4, T1), (V2, T3), and (VNb
, TNb

) are

the reserved matching pairs with a matching probability of

1, while the others could be considered as mismatched ones

with a matching probability of 0. For convenience, let ′

be the reconstructed data, and (V ,T ) ∈ ′ be matrices

that contain a batch of images and captions. To relate the

similarity-cost mapping with the matching matrix, we opti-

mize the cost function by the following OT loss:

LOT (π
sup,V ,T ) = 〈πsup, fc (g (V ,T ) ; Θc)〉F , (6)

where πsup is the matching matrix, and g (V ,T ) denotes

the similarity matrix for the batched visual-text pairs.

Eq.(6) seeks an effective cost function from a reverse

perspective of OT, which views the ideal transport plan as

the supervision to minimize the transport cost.

Boosting Refined Alignments with Relaxed OT. Given

the defined cost function, we could generate the refined

alignments for mismatched pairs following the OT objec-

tive described in Eq.(1). However, Eq.(1) requires the two

distributions to have the same total mass and that all the

mass of p should be transported to exactly match the mass

of q. In practice, due to the limited batch size, one caption

may be irrelevant to all images in the batch and vice versa.

To this end, we adopt the partial OT model [6, 16] to relax

such strict all-to-all mass constraints, which seeks a mini-

mal cost of only transporting 0 � ρ � min (‖p‖1, ‖q‖1)
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mismatched pairs. Then, we compute the symmetric KL-divergence to optimize the retrieval model (fv, ft, g).

unit mass between the visual and textual distribution, i.e.,

min
π∈Πρ(p,q)

〈π,C〉F , s.t. Πρ(p, q) = {π ∈ R
m×n
+ |π n � p,

π�
m � q, �

mπ n = ρ}. (7)

Furthermore, the false positives contained in the mis-

matched pairs introduce an implicit constraint to our trans-

port plan π that the transport mass between the same ele-

ment in two distributions should be limited. To this end, we

propose to impose a mask operation on the transport plan

that restricts the transport to only concentrate among the

unpaired pairs. Specifically, the mask matrix M ∈ R
m×n

is defined as:

Mij �
{
0, if i = j,

1, otherwise.
(8)

Then the masked transport plan is defined as the Hadamard

product π̃ = M � π and be optimized through Eq.(7).

4.3. The Training Objective

Given the mismatched pairs {(Vi, Ti)}Nb
i=1 sampled from

m̃, if we don’t have any prior knowledge, we could

consider the visual and textual samples follow the uni-

form distributions, i.e., p =
∑Nb

i=1
1
Nb

δ(Vi) and q =∑Nb

i=1
1
Nb

δ(Ti), respectively. To guarantee the efficiency of

our algorithm, we adopt an online strategy to update Θc and

calculate π̃ through a single optimization loop:

min
π̃∈Πρ(p,q)

E(V ,T )∈ m̃
〈π̃, fc (g (V ,T ) ; Θ∗

c)〉F − λH(π̃),

s.t. Θ∗
c = argmin

Θc

E(V ,T ,πsup)∈ ′LOT (π
sup,V ,T )

(9)

where λ > 0 is a regularization parameter for the entropic

constraint H(π̃) = −∑
ij π̃ij log π̃ij . Note that Eq.(9) in-

troduces an entropy regularization item to the OT model,

which enables the transport plan to be solved by the com-

putationally cheaper Sinkhorn-Knopp algorithm [9]. The

detailed solution is presented in Appendix A.

The optimal transport plan from Eq.(9) represents a re-

fined alignment that provides a more reliable matching re-

lation for those mismatched visual-text samples. As our

refined alignment is generated dynamically, we adopt the

KL-divergence to compute the rematching loss instead of

the cross entropy. Besides, a reverse term is added to sym-

metrize the KL-divergence, which makes the training more

stable. Formally, let π̃v2t
i and π̃t2v

i be the row-wise and

column-wise normalized refined alignment for the i-th sam-

ple, respectively. Then, the rematching loss (see Fig. 3) is

defined as:

Lre (Vi, Ti) =
1

2

[
DKL(π̃

v2t
i ‖ pv2t

i ) +DKL(p
v2t
i ‖ π̃v2t

i )
]

+
1

2

[
DKL(π̃

t2v
i ‖ pt2v

i ) +DKL(p
t2v
i ‖ π̃t2v

i )
]
.

(10)

For the pairs that are divided as matched, we use the

triplet ranking loss to directly control the distance gap.

Thus, our final objective function is defined as:

LFinal =
∑

(Vi,Ti)∈ m

Ltriplet (Vi, Ti) +
∑

(Vi,Ti)∈ m̃

Lre (Vi, Ti) . (11)

The detailed training pseudo-code is shown in Appendix B.

5. Experiment
In this section, we experimentally analyze the effective-

ness of L2RM in robust cross-modal retrieval.

5.1. Setup

Datasets. We apply our method to three image-text re-

trieval datasets varying in scale and scope. Specifically,

Flickr30K [46] consists of 31,000 images with five corre-

sponding text annotations for each image from the Flickr

website. Following [23], we split 1,000 images for vali-

dation, 1,000 images for testing, and the rest for training.

MS-COCO [28] is a large-scale cross-modal dataset, which

collects 123,287 images with five sentences each. Follow-

ing [23], we use 5,000 images for validation, 5,000 im-

ages for testing, and the rest for training. Conceptual Cap-

tions [36] is a web-crawled large-scale dataset containing
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MRate Method
Flickr30K MS-COCO

Image-to-Text Text-to-Image
rSum

Image-to-Text Text-to-Image
rSum

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0.2

IMRAM 59.1 85.4 91.9 44.5 71.4 79.4 431.7 69.9 93.6 97.4 55.9 84.4 89.6 490.8
NCR 73.5 93.2 96.6 56.9 82.4 88.5 491.1 76.6 95.6 98.2 60.8 88.8 95.0 515.0
BiCro 74.7 94.3 96.8 56.6 81.4 88.2 492.0 76.6 95.4 98.2 61.3 88.8 94.8 515.1
DECL-SGR 74.5 92.9 97.1 53.6 79.5 86.8 484.4 75.6 95.1 98.3 59.9 88.3 94.7 511.9
DECL-SGRAF 77.5 93.8 97.0 56.1 81.8 88.5 494.7 77.5 95.9 98.4 61.7 89.3 95.4 518.2
RCL-SGR 74.2 91.8 96.9 55.6 81.2 87.5 487.2 77.0 95.5 98.1 61.3 88.8 94.8 515.5
RCL-SGRAF 75.9 94.5 97.3 57.9 82.6 88.6 496.8 78.9 96.0 98.4 62.8 89.9 95.4 521.4
L2RM-SAF 73.7 94.3 97.7 56.8 81.8 88.1 492.4 77.9 96.0 98.3 62.1 89.2 94.9 518.4
L2RM-SGR 76.5 93.7 97.3 55.5 81.5 88.0 492.5 78.4 95.7 98.3 62.1 89.1 94.9 518.5
L2RM-SGRAF 77.9 95.2 97.8 59.8 83.6 89.5 503.8 80.2 96.3 98.5 64.2 90.1 95.4 524.7

0.4

IMRAM 44.9 73.2 82.6 31.6 56.3 65.6 354.2 51.8 82.4 90.9 38.4 70.3 78.9 412.7
NCR 68.1 89.6 94.8 51.4 78.4 84.8 467.1 74.7 94.6 98.0 59.6 88.1 94.7 509.7
BiCro 70.7 92.0 95.5 51.9 77.7 85.4 473.2 75.2 95.3 98.1 60.0 87.8 94.3 510.7
DECL-SGR 69.0 90.2 94.8 50.7 76.3 84.1 465.1 73.6 94.6 97.9 57.8 86.9 93.9 504.7
DECL-SGRAF 72.7 92.3 95.4 53.4 79.4 86.4 479.6 75.6 95.5 98.3 59.5 88.3 94.8 512.0
RCL-SGR 71.3 91.1 95.3 51.4 78.0 85.2 472.3 73.9 94.9 97.9 59.0 87.4 93.9 507.0
RCL-SGRAF 72.7 92.7 96.1 54.8 80.0 87.1 483.4 77.0 95.5 98.3 61.2 88.5 94.8 515.3
L2RM-SAF 72.1 92.1 96.1 52.7 78.8 85.9 477.7 74.4 94.7 98.3 59.2 87.9 94.4 508.9
L2RM-SGR 73.1 92.4 96.3 52.3 79.4 86.3 479.8 75.2 94.8 98.1 59.4 87.8 94.1 509.4
L2RM-SGRAF 75.8 93.2 96.9 56.3 81.0 87.3 490.5 77.5 95.8 98.4 62.0 89.1 94.9 517.7

0.6

IMRAM 16.4 38.2 50.9 7.5 19.2 25.3 157.5 18.2 51.6 68.0 17.9 43.6 54.6 253.9
NCR 13.9 37.7 50.5 11.0 30.1 41.4 184.6 0.1 0.3 0.4 0.1 0.5 1.0 2.4
BiCro 64.1 87.1 92.7 47.2 74.0 82.3 447.4 73.2 93.9 97.6 57.5 86.3 93.4 501.9
DECL-SGR 64.5 85.8 92.6 44.0 71.6 80.6 439.1 69.7 93.4 97.5 54.5 85.2 92.6 492.9
DECL-SGRAF 65.2 88.4 94.0 46.8 74.0 82.2 450.6 73.0 94.2 97.9 57.0 86.6 93.8 502.5
RCL-SGR 62.3 86.3 92.9 45.1 71.3 80.2 438.1 71.4 93.2 97.1 55.4 84.7 92.3 494.1
RCL-SGRAF 67.7 89.1 93.6 48.0 74.9 83.3 456.6 74.0 94.3 97.5 57.6 86.4 93.5 503.3
L2RM-SAF 66.1 88.8 93.8 47.8 74.2 82.2 452.9 71.2 93.4 97.5 56.5 85.9 93.0 497.5
L2RM-SGR 65.1 87.8 93.6 47.0 73.5 81.5 448.5 72.7 93.9 97.5 56.9 86.2 93.3 500.5
L2RM-SGRAF 70.0 90.8 95.4 51.3 76.4 83.7 467.6 75.4 94.7 97.9 59.2 87.4 93.8 508.4

0.8

IMRAM 3.1 9.7 5.2 0.3 0.9 1.9 21.1 1.3 5.0 8.3 0.2 0.6 1.3 16.7
NCR 1.5 6.2 9.9 0.3 1.0 2.1 21.0 0.1 0.3 0.4 0.1 0.5 1.0 2.4
BiCro 2.3 9.2 17.2 2.6 10.2 16.8 58.3 62.2 88.6 94.6 47.4 79.2 88.5 460.5
DECL-SGR 44.4 72.6 82.0 33.9 59.5 69.0 361.4 60.0 88.7 94.5 45.9 78.8 88.3 456.2
DECL-SGRAF 53.4 78.8 86.9 37.6 63.8 73.9 394.4 64.8 90.5 96.0 49.7 81.7 90.3 473.0
RCL-SGR 47.1 70.5 79.4 30.3 56.1 66.3 349.7 63.2 89.3 95.2 47.6 78.7 88.0 462.0
RCL-SGRAF 51.7 75.8 84.4 34.5 61.2 70.7 378.3 67.4 90.8 96.0 50.6 81.0 90.1 475.9
L2RM-SAF 50.8 77.9 85.5 35.6 62.6 72.7 385.1 64.7 90.8 95.8 50.0 80.9 89.4 471.6
L2RM-SGR 50.5 77.2 83.9 34.2 61.1 71.6 378.5 65.2 90.3 96.1 49.8 81.0 88.2 470.6
L2RM-SGRAF 55.7 80.8 87.8 39.4 65.4 74.9 404.0 69.0 91.9 96.4 52.6 82.4 90.3 482.6

Table 1. Image-text retrieval performance under different mismatching rates (MRate) on Flickr30K and MS-COCO.

3.3M one-to-one images and captions. Following [23], we

use the subset, i.e., CC152K to conduct experiments, which

has 150,000 images for training, 1,000 images for valida-

tion, and 1,000 images for testing.

Implementation Details. As a general method, L2RM

could be directly applied to almost all cross-modal retrieval

methods to improve their robustness. Following [21, 33],

we apply L2RM to SGR, SAF, and SGRAF for a compre-

hensive comparison. We evaluate the retrieval performance

with the Recall@K (R@K) metric. Following [23], we save

the best performance checkpoint on the validation set w.r.t.

the sum of the evaluation scores and report its results on the

testing set. We follow the same training setting as [23], our

specific parameters setting can be found in Appendix C.1.

Baselines. We compare L2RM with eight state-of-the-art

cross-modal retrieval methods, including four general meth-

ods (i.e., IMRAM [7], SGR, SAF, and SGRAF [12]) and

four robust learning methods against the PMPs (i.e., NCR

[23], DECL [33], BiCro [45], and RCL [21]). Note that the

original BiCro combines four models, i.e., two co-trained

SGR, and two co-trained SAF. For a fair comparison, we

report the results of 2 co-trained SGR for BiCro like [23].

5.2. Main Results

In this section, we conduct comparison experiments with

different mismatching rates on three datasets to evaluate the

performance of our L2RM. As Flickr30K and MS-COCO

are well-established datasets, we carry out experiments by
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generating the synthesized false positive pairs, i.e., the mis-

matching rate (MRate) increases from 0.2 to 0.8 in intervals

of 0.2. Following [21, 33], we randomly select a specific

percentage of images and randomly permute all their corre-

sponding captions, which is more challenging and practical

than the setting in [23, 45]. For the web-collected dataset

CC152K, which naturally contains about 3% ∼ 20 % un-

known mismatched pairs [36]. Thus we directly conduct ex-

periments on it to evaluate the performance with real PMPs.

Results on Synthesized PMPs. Tab. 1 shows the experi-

mental results on Flickr30K and MS-COCO. Note that for

MS-COCO, the results are computed by averaging over 5

folds of 1K test images like [21, 33]. Due to space limita-

tion, we omit the results of some general methods (SGR,

SAF, and SGRAF), and the comparison on original datasets

(0 MRate), which could be found in Appendix C.2. From

the results, we can find that L2RM achieves the best re-

sults on all metrics than the other state-of-the-art meth-

ods, which shows the superior robustness of L2RM against

PMPs. Moreover, when the mismatching rate is high, e.g.,

0.6 and 0.8, the improvement of L2RM is more evident,

proving that excavating mismatched pairs could effectively

facilitate robust cross-modal retrieval.

Results on Real-World PMPs. We validate our method

on the real-world dataset CC152K, which contains an un-

known portion of mismatched pairs. As shown in Tab. 2,

our method considerably outperforms the best baseline in

terms of sum in retrieval by 9.8%. Notably, our L2RM-SGR

surpasses all SGR variants by a clear margin, achieving as

much as a 16.9% (rSum) absolute improvement over the

best variant. It is because the real-world rematched pairs are

more likely to involve only local alignments, e.g., Fig. 5(e)-

Fig. 5(f), while the SGR model itself is adept at capturing

the relationship between local alignments.

Method
Image-to-Text Text-to-Image

rSum
R@1 R@5 R@10 R@1 R@5 R@10

IMRAM 27.8 52.4 60.9 29.2 51.5 61.2 283.0
SAF 32.5 59.5 70.0 32.5 60.7 68.7 323.9
SGR 14.5 35.5 48.9 13.7 36.1 47.9 196.6
NCR 39.5 64.5 73.5 40.3 64.6 73.2 355.6
BiCro 39.7 64.6 72.6 39.2 65.0 74.1 355.2
DECL-SAF 36.6 63.0 73.3 38.5 63.2 73.5 348.1
DECL-SGR 36.2 63.6 73.2 37.1 63.6 73.7 347.4
DECL-SGRAF 39.0 66.1 75.5 40.7 66.3 76.7 364.3
RCL-SAF 37.5 63.0 71.4 37.8 62.4 72.4 344.5
RCL-SGR 38.3 63.0 70.4 39.2 63.2 72.3 346.4
RCL-SGRAF 41.7 66.0 73.6 41.6 66.4 75.1 364.4
L2RM-SAF 37.3 62.7 71.7 38.8 65.7 74.8 351.0
L2RM-SGR 39.5 66.2 76.0 41.8 65.9 74.9 364.3
L2RM-SGRAF 43.0 67.5 75.7 42.8 68.0 77.2 374.2

Table 2. Image-text retrieval performance on CC152K.

5.3. Ablation Study

Impact of Each Component. To study the influence of

specific components in our method, we carry out the abla-

tion study on the Flickr30K with 0.6 MRate. Specifically,

we ablate the contributions of three key components of

L2RM, i.e., partial OT, positives masked, and the learnable

cost function (we use the cosine distance to measure the cost

instead). Besides, we compare L2RM with different formu-

las of rematching loss: KL-divergence and InfoNCE. From

Tab. 3, we observe the following conclusions: 1) The full

L2RM could achieve the best overall performance, showing

that all three components are important to improve the ro-

bustness against PMPs. 2) Using the learnable cost function

substantially outperforms the variant with the cosine dis-

tance cost (e.g.,+11.9 in terms of the rSum), which signifies

the simple feature-driven cost is sub-optimal to the PMP sit-

uation. 3) Formulating different rematching loss could also

achieve decent results, which verifies the ability of L2RM

to provide effective matching relations.

Ablation
Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10

L2RM 65.1 87.8 93.6 47.0 73.5 81.5
L2RM w KL-divergence 64.7 87.6 93.2 46.7 74.0 81.5
L2RM w InfoNCE Loss 64.9 87.5 93.5 46.0 72.9 80.9
L2RM w/o Partial OT 62.2 86.4 91.5 44.7 68.6 72.6
L2RM w/o Positives Masked 64.9 87.6 92.7 46.4 73.2 81.1
L2RM w/o Cost Function 61.3 85.6 91.4 44.9 72.4 81.0

Table 3. Ablation studies on Flickr30K with 0.6 MRate.

Parameter Analysis. We now investigate the effect of the

parameter ρ by plotting the recall scores with incremental

ρ on Flickr30K. The figure shows that the overall perfor-

mance tends to decrease as ρ increases. We further analyze

how untransported pairs benefit the model training in Ap-

pendix C.3. Experimentally, we find that the refined align-

ments for untransported pairs can be equivalent to the label

smoothing strategy [38].

(a) Image to Text (b) Text to Image

Figure 4. Parameter analysis of L2RM-SGR in terms of recall

scores on the testing set of Flickr30K under 0.2 MRate.

Discussions on Warm-up Methods. We use different

warm-up methods, i.e., triplet loss [13] and InfoNCE loss

[31] for our L2RM-SGR. The experiments are conducted

on the Flickr30K with 0.8 MRate and the CC152K with real
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Given: a survey has revealed that a 
third would be less likely to travel if 
it was no longer a member 

Rematched: suspension bridge 
over a city (0.963)

Given: day on the place
unknown

Rematched: a couple of men 
stand on a small hill (0.938)

Given: video: fans sing composition 
after mic issue 

Rematched: most popular sports in 
the world – hockey (0.965)

Given: a general view of 
atmosphere outside the diesel 
and launch party

Rematched: a motorcycle winds 
their way through country (0.626)

Given: the gift of 
the present 

Rematched: a man 
on a bicycle (0.996)

(b)

Given: view bar out on the 
lounge chairs

Rematched: the facade can be 
lit up at night using different 
coloured led lights (0.988)

(a) (c) (d) (e) (f)

Figure 5. The ability of our L2RM to rematch the mismatched visual-text samples. The figure shows some representative rematched pairs

for L2RM-SGR on the training set of CC152K dataset. We highlight the matched words in green and the mismatched words in red.

Method

Flickr30K CC152K

Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Triplet 0.1 0.7 1.3 0.1 0.7 1.1 38.2 64.2 71.4 39.5 64.2 71.9
InfoNCE 45.9 71.4 80.3 29.2 52.7 61.1 39.3 66.8 75.0 40.8 65.2 74.2

Table 4. Comparison with different warm-up methods on

Flickr30K with 0.8 MRate and CC152K.

PMPs. As shown in Tab. 4, one could see that the triplet

loss cannot achieve satisfactory performance under the ex-

treme mismatching rate. Compared with the results of the

L2RM-SGR in Tab. 1, one could find that it is necessary to

limit the overconfidence of the model during the warm-up

process. The results on CC152K show that our method is

robust to the choice of warm-up methods under a relatively

low mismatching rate.

5.4. Visualization and Analysis

Distribution of Transport Cost. To intuitively show the

effectiveness of the learnable cost function, we illustrate the

transport cost for matched and mismatched training pairs on

Flickr30K with 0.8 MRate. From Fig. 6, one could see that

our cost function first learns to assign higher transport costs

to those mismatched pairs. Although the costs of matched

pairs are distributed over a large range in the early stage,

they gradually become smaller and tend toward 0 as train-

ing proceeds. In conclusion, our cost function could suc-

cessfully learn to distinguish matched and mismatched data,

which lays the foundation for the further OT model.

Visualizing Re-matched Image-Text Pairs. To visually

illustrate the rematching ability of our L2RM, we conduct

the case study on CC152K to show real-world rematched

examples. Specifically, the first two rows of Fig. 5 show

the image and its original mismatched caption, respectively.

The third row shows the rematched caption provided by

our method, and we also show the refined alignment scores

in brackets. In particular, we could find that some real-

world visual-text pairs are completely uncorrelated (e.g.,

Fig. 5(a)-Fig. 5(b)) or contain only a few local similari-

ties (e.g., Fig. 5(c)-Fig. 5(e)). Thanks to our L2RM, the

(a) Epoch 5 (b) Epoch 35

Figure 6. Transport cost distribution for matched and mismatched

pairs at different training phases of our L2RM. The experiments

are conducted on Flickr30K with 0.8 MRate.

potential matching relation among mismatched pairs could

be fully excavated to provide refined alignments. For ex-

ample, one could see that the rematched caption, i.e., "a
man on a bicycle" nicely expresses the semantic concept

in Fig. 5(a). Although some rematched captions could not

perfectly share the same semantics with images, they also

contain some local similarities to the given images. For ex-

ample, the image in Fig. 5(f) is correctly described with the

words "a motorcycle" and our L2RM provides a relatively

low refined alignment score as the target. In summary, our

proposed rematching strategy could embrace better data ef-

ficiency and robustness against PMPs.

6. Conclusion

This work studies the challenge of cross-modal retrieval

with partially mismatched pairs (PMPs). To address this

problem, we propose L2RM, a generalized OT-based frame-

work that learns to rematch mismatched pairs. Our key idea

is to excavate the potential semantic similarity among un-

paired samples. To formalize this idea through OT, first, we

propose a self-supervised learner to automatically learn ef-

fective cost function. Second, we model a partial OT prob-

lem and restrict the transport among false positives to fur-

ther boost refined alignments. Extensive experiments are

conducted to verify that our L2RM can endow cross-modal

retrieval models with strong robustness against PMPs.
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