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Abstract

We present NeRSP, a Neural 3D reconstruction tech-
nique for Reflective surfaces with Sparse Polarized images.
Reflective surface reconstruction is extremely challenging
as specular reflections are view-dependent and thus violate
the multiview consistency for multiview stereo. On the other
hand, sparse image inputs, as a practical capture setting,
commonly cause incomplete or distorted results due to the
lack of correspondence matching. This paper jointly han-
dles the challenges from sparse inputs and reflective sur-
faces by leveraging polarized images. We derive photomet-
ric and geometric cues from the polarimetric image forma-
tion model and multiview azimuth consistency, which jointly
optimize the surface geometry modeled via implicit neural
representation. Based on the experiments on our synthetic
and real datasets, we achieve the state-of-the-art surface
reconstruction results with only 6 views as input.

1. Introduction

Multiview 3D reconstruction is a fundamental problem in
computer vision (CV) and has been extensively studied for
many years [14]. With the advancement of implicit surface
representation [27, 28] and neural radiance fileds [22], re-
cent multiview 3D reconstruction methods [5, 33, 38, 41]
have made tremendous progress. Despite the compelling
shape recovery results, most multiview stereo (MVS) meth-
ods still rely heavily on finding correspondence between
views, which is particularly challenging for reflective sur-
faces and sparse input views.

For reflective surfaces, the view-dependent surface ap-
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Figure 1. Shape recoveries of a reflective surface from 6 sparse
polarized images capturing (top rows). Our NeRSP achieves a
better shape reconstruction result compared to existing methods
that either address sparse inputs (S-VoIlSDF [35]) or reflective re-
flectance (PANDORA [9]).

pearance breaks the photometric consistency assumption
used in the correspondence estimation in MVS. To address
this problem, recent neural 3D reconstruction methods (e.g.,
Ref-NeuS [13], NeRO [19], and PANDORA [9]) explic-
itly model the reflectance and simultaneously estimate the
reflectance and environment maps via inverse rendering.
However, dense image acquisition under diverse views is re-
quired to faithfully handle the additional unknowns besides
shape, such as albedo, roughness, and environment map.

From sparse input views, it is often challenging to find
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sufficient multiview correspondences. Especially when
representing view-dependent reflectances, it is difficult to
disentangle shape from radiance under a limited num-
ber of correspondences, leading to shape-radiance ambi-
guity [40]. Recent neural 3D reconstruction methods for
sparse views (e.g., S-VoISDF [35] and SparseNeuS [20])
require regularization using photometric consistency, which
can be violated for reflective surfaces.
To address both problems, we propose to use sparse po-
larized images instead of RGB inputs. Specifically, we pro-
pose NeRSP, a Neural 3D reconstruction method to recover
the shape of Reflective surfaces from Sparse Polarized im-
ages. We use the angle of polarization (AoP) derived from
polarized images, which directly reflects the azimuth an-
gle of the surface shape up to 7 and 7 /2 ambiguities. This
geometric cue is known to enable multiview shape recon-
struction regardless of surface reflectance properties, but
the estimated shape based solely on the geometric cue is
ambiguous [0] under sparse views settings. On the other
hand, photometric cue from the polarimetric image for-
mation model [2] helps neural surface reconstruction (e.g.,
PANDORA [9]) by minimizing the difference between re-
rendered and captured polarized images. However, esti-
mated shape based solely on the photometric cue is also
ill-posed under sparse inputs due to the shape-radiance
ambiguity. Unlike the existing polarimetric-based method
PANDORA [9] considering the photometric cue only, our
NeRSP shows the integration of both geometric and photo-
metric cues effectively narrows down the solution space for
surface shape, shown to be effective in reflective surface re-
construction based on sparse inputs, as visualized in Fig. 1.
Besides the proposed NeRSP for 3D reconstruction, we
also build a Real-world MultiView Polarized image dataset
containing 6 objects with aligned ground-truth (GT) 3D
meshes, named RMVP3D. Different from existing datasets
such as PANDORA dataset [9] providing polarized images
only, the aligned GT meshes and the surface normals for
each view allow a quantitative evaluation of multiview po-
larized 3D reconstruction.
To summarize, we advance multiview 3D reconstruction
by proposing
* NeRSP, the first method proposing to use the polarimet-
ric information for reflective surface reconstruction under
sparse views;

* a comprehensive analysis for the photometric and geo-
metric cue derived from polarized images; and

* RMVP3D, the first real-world multiview polarized image
dataset with GT shapes for quantitative evaluation.

2. Related work

Multiview 3D reconstruction has been extensively stud-
ied for decades. Neural Radiance Fields (NeRF) [3, 22, 40]
achieves great success on novel view synthesis in recent

years. Inspired by NeRF, neural 3D reconstruction meth-
ods [24] are proposed, where the surface shape is modeled
implicitly via signed distance field (SDF). Beginning from
DVR [24], the followed-up methods improve the shape re-
construction quality via differentiable sphere tracing [37],
volume rendering [26, 33, 38], or detail enhanced shape
representation [18, 34]. These methods can achieve con-
vincing shape estimation for diffuse surfaces where photo-
metric consistency is valid across views.

3D reconstruction for reflective surfaces is challenging
as the photometric consistency is invalid. Existing meth-
ods [5, 41, 42] explicitly model the view-dependent re-
flectance, and disentangle the shape, spatially-varying il-
luminations, reflectance properties like albedo and rough-
ness. However, the estimates of the above variables are open
unsatisfactory as the disentanglement is highly ill-posed.
NeRO [19] proposes using the split-sum approximation of
the image formation model and further improves shape re-
construction quality without requiring object masks. How-
ever, the above methods typically require dense image cap-
ture to guarantee plausible shape recovery results for chal-
lenging reflective surfaces.

3D reconstruction with sparse views is essential for
practical scenarios requiring efficient capture. Due to the
lack of sufficient correspondence from limited views, the
shape-radiance ambiguity cannot be resolved, leading to
noisy and distorted shape recoveries. Existing methods ad-
dress this problem by adding regularizations such as surface
geometry smoothness [25], coarse depth prior [10, 32], or
frequency control of the positional encoding [36]. Some
methods [7, 20, 39] formulate the sparse 3D reconstruction
as a conditioned 3D generalization problem where image
features pre-trained are used as generalizable priors. S-
VoISDF [35] applies classical multiview stereo method as
initialization and regularizes the neural rendering optimiza-
tion with a probability volume. However, it is still chal-
lenging for current methods to recover reflective surfaces
accurately.

3D reconstruction using polarized images has been
studied for both single view setting [1, 2, 16, 23, 29] and
multiview setting [6, 8, 9, 11, 12, 43]. Unlike RGB images,
the AoP from polarized images provides direct cues for sur-
face normal. Single-view shape from polarization (SfP)
techniques benefit from this property and estimate the sur-
face normal under single distant light [21, 29] or unknown
natural light [1, 16]. Multiview SfP methods [8, 43] resolve
the 7 and 7/2 ambiguities in the AoP based on the mul-
tiview observations. PANDORA [9] is the first neural 3D
reconstruction method based on polarized images, demon-
strated to be effective in recovering surface shape and illu-
mination. MVAS [6] recovers surface shape from multiview
azimuth maps, closed related to the AoP maps derived from
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Figure 2. Visualization of polarized images, derived AoP map, and
Stokes vectors.

polarized images. However, these methods do not explore
using polarized images for reflective surface reconstruction
under sparse shots.

3. Polarimetric Image Formation Model

Before dive into the proposed method, we first introduce
polarimetric image formation model and derive the photo-
metric cue and geometric cue in our method.

As shown in Fig. 2, a snapshot polarization camera
records image observations at four different polarization an-
gles, with its pixel values denoted as {Iy, I45, Ioo, I135}-
This four images reveal the polarization state of received
lights, which is represented as a 4D Stokes vector s =
[S0, $1, S2, 83] computed as

1
So = 5(-’0 + L5 + Igo + I135)
s1 = Iy — Igo M
sg = Iys — Ii3s.

We assume there is no circularly polarized light thus assign
s3 to be 0. The Stokes vector can be used to compute the
angle of polarization (AoP), i.e.

1
bq = 3 arctan(i—j). )
Based on the AoP and Stokes vector, we derive the geomet-
ric and photometric cue correspondingly.

3.1. Geometric cue

Given AoP ¢,, the azimuth angle of the surface can be ei-
ther ¢, + 7/2 or ¢, + m, known as the 7 and 7/2 ambigu-
ity depending on whether the surface is specular or diffuse
dominant. In this section, we first introduce the geometric

cue brought by multiview azimuth map, and then extend it
to the case of AoP.

Following MVAS [6], for a scene point x, its surface nor-
mal n and the projected azimuth angle ¢ in one camera view
follow the relationship as

rirncos¢—r;—nsin¢ =0, 3)
where R, = [ry,ro,13] " is the rotation matrix of the camera
pose. We can further re-arrange Eq. (3) to get the orthogonal

relationship between surface normal and a projected tangent
vector t(¢) as defined below,

n' (cos¢r; —sin¢ry) = 0. 4
t(4)

The m ambiguity between AoP and azimuth angle can be
naturally resolved as Eq. (4) stands if we add ¢ by 7. The
/2 ambiguity can be addressed by using a pseudo pro-
jected tangent vector t(¢) such that

n' (sin¢r; + cos ¢ry) = 0. Q)
t(¢)

If one scene point x is observed by f views, we can stack
Eq. (4) and Eq. (5) based on k different rotations and ob-
served AoPs, leading to a linear system

T(x)n(x) = 0. (6)

We treat this linear system as our geometric cue for multi-
view polarized 3D reconstruction.

3.2. Photometric cue

Assuming the incident environment illumination is unpolar-
ized, the Stokes vector of the incident light direction w can
be represented as

Sz(w) - L(w)[1’07070}—r7 (7)

where L(w) denotes the light intensity. The outgoing light
recorded by the polarization camera becomes partially po-
larized due to the reflection. This process is modeled via a
4 x 4 Muller matrix H. Under an environment illumination,
the outgoing Stokes vector s, can be formulated as the inte-
gral of incident Stokes vector multiplicated with the Muller
matrix, i.e.

So(Vv) = /QHsi(w) dw, (8)

where v and (2 denote the view direction and integral do-
main. Following the polarized BRDF (pBRDF) model [2],
the output Stokes vector can be decomposed into the dif-
fuse and specular parts modeled via H,; and H correspond-
ingly, i.e.

So(V) = /QHdSi(w) dw‘i‘/ﬂHsSi(w) dw. €))
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Following the derivation from PANDORA [9], we can
furhter formulate the output Stokes vector as

T R
B T, cos(2¢y,) R~ cos(2¢r)
o) = La | _p—gnagn) | 5 | —R-sin2en) |+ 1O
0 0

where Lq = [, pL(w)w 'nT;'T;” dw is denoted as dif-
fuse radiance related to surface normal n, Fresnel transmis-
sion coefficients [2] Tfo and TZTO, diffuse albedo p, and the
azimuth angle of incident light ¢,,. Ly = [, L(w) 4£TGV dw
denotes specular radiance related to Fresnel reflection coef-
ficients [2] R* and R, the incident azimuth angle ¢;, w.r.t.

the half vector h = m, and the normal distribution

and shadowing term D and G in the Microfacet model [31].

Please check supplementary material for more details.
Based on polarimetric image formation model shown in

Eq. (10), we build the photometric cue.

4. Proposed method

Our NeRSP takes sparse multiview polarized images, the
corresponding silhouette mask of the target object, and cam-
era poses as input, outputs surface shape of the object rep-
resented implicitly via SDF. We begin by the discussion on
photometric cue and geometric cue in resolving the shape
reconstruction ambiguity, followed by the instruction of
network structure and loss function of our NeRSP.

4.1. Ambiguity in sparse 3D reconstruction

The geometric cue and photometric cue play an important
role in reducing the solution space of the surface shape un-
der sparse views. As shown in Fig. 3, we illustrate the
shape estimation under 2 views with different cues. Given
only RGB images as input (corresponding to the setting
in NeRO [19] and S-VoISDF [35]), different combination
of scene point positions, surface normals, and reflectance
properties such as albedo can lead to the same image ob-
servations, since there are only two RGB measurements for
each 3D points along the camera ray. With Stokes vectors
extracted from the polarized images, the photometric cue
brings 6 measurements for each 3D points (Stokes vector
has 3 elements), reducing the surface normal candidates un-
fit to the polarimetric image formation model.

On the other hand, based on AoP maps' from polarized
images, we can uniquely determine the surface normal up to
a m ambiguity for every scene point along the camera ray.
However, it is still ambiguous to find the position where
camera ray intersects the surface, unless the third view is
provided [6]. Therefore, under sparse views setting (e.g., 2

L AoP is related to the azimuth map discussed in MVAS [6].
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Figure 3. Ambiguity of determining 3D postions under sparse
views with geometric and photometric cues.

Photometric cue (Stokes vectors)

views in Fig. 3), determining scene point position based on
either geometric or photometric cue remains ambiguous.

Our method combines these two cues derived from polar-
ized images. As visualized in the bottom-right part of Fig. 3,
the correct scene point position should have its surface nor-
mal lay in the intersection of normal candidate groups de-
rived from both photometric and geometric cues. As surface
normal at different sampled scene point is uniquely deter-
mined by geometric cue, we can easily determine whether
the point is on the surface with the aid of photometric cue.
In this way, we reduce the solution space of sparse-shot re-
flective surface reconstruction.

4.2. NeRSP

Network structure As shown in Fig. 4, our NeRSP ap-
plies a similar network structure with PANDORA [9] orig-
inally derived from Ref-NeRF [30]. For a light ray emitted
from camera center o with the direction v, we sample a
point on the ray with travel distance ¢;, its location is de-
noted at x; = o + t;v. Following the volume rendering
used in NeRF [25], the observed Stokes vector s(v) can be
integrated by the volume opacity o; and the Stokes vectors
at the sampled points along the ray, i.e.

s(v) =Y Wiso(xi, V)i, (11)
=1
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Figure 4. Pipeline of our NeRSP.

where W; = H;;ll(l — o) denote the accumulated trans-
mittance of a sampled point.

Motivated by recent neural 3D reconstruction method
NeusS [33], we derives the volume opacity from a SDF net-
work and also extract the surface normal from the gradient
of the SDF. To compute s,(x;,v) at sampled points, we
follows the polarmetric image formation model in Eq. (10).
Specifically, the diffuse radiance L, is related to the dif-
fuse albedo and Fresnel transmission coefficients, which de-
pends on the scene positions but invariant to the view direc-
tion. Therefore, we use a diffuse radiance network to map
L4 from the feature of each scene point. The specular ra-
diance L, is related to the specular lobe determined by the
view direction, surface normal, and the surface roughness.
We therefore use a RoughnessNet to predict surface rough-
ness. Together with the camera view direction and predicted
surface normal, we estimate the specular radiance L fol-
lowing the integrated positional encoding module proposed
by Ref-NeRF [30]. Combining L4 and L, we reconstruct
the observed Stokes vector following Eq. (10).

Loss function The photometric loss is defined as the
L1 distance between the observed §(v) and reconstructed
Stokes vectors s(v), i.e.,

L, =Y ls(v) = 8(v)|h. (12)

vey

where )V denotes all the camera rays casted within object
masks at different views.

For the geometric loss. we first find the 3D scene point x
along the camera ray v until touching the surface and then
locate the projected 2D pixel positions at different views.
The geometric loss is defined based on the Eq. (6), i.e.,

Ly =) T3,

xXEX

13)

where X denotes all the ray-surface intersections inside the
object masks at different views.

Besides the photometric and geometric loss, we add
mask loss supervised by the object masks and the Eikonal
regularization loss. The mask loss is defined as

Ly, =Y BCE(My,Oy), (14)
where Oy, = Y. | W, ;0 ; represents the predicted mask
at k-th camera ray, whose GT mask value is denoted as M.
BCE represents binary cross entropy loss.

The Eikonal loss is defined as

1
== 3 (Imixl = 1,
£e= 27 2 llnesl =)

5)

where n; j, is the surface normal derived from the SDF net-
work at i-th sampled point along k-th camera ray.

Our NeRSP is supervised by the combination of the
above loss terms, i.e.

E - Ep + )\gﬁg + )\mﬁm + )\eﬂey (16)

where A¢, A, and )\, are the coefficients for the correspond-
ing loss terms.

4.3. RMVP3D Dataset

To quantitatively evaluate the proposed method, we cap-
ture a Real-world Multiview Polarized image dataset with
aligned ground truth meshes. Figure 5 (left) illustrates
our capturing setup, which includes a polarimetric camera,
FLIR BFS-U3-51S5PC-C, equipped with a 12 mm lens and
a rotation rail. We use OpenCV for demosaicing the raw
data and obtain 1224 x 1024 color images with polarizer an-
gles at 0, 45, 90, and 135 degrees. During the data capture,
we place target objects at the center of the rail, and capture
60 images per object by manually moving the camera. We
collect 4 objects as targets: DOG, FROG, LION, and BALL,
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Figure 5. Capture setup and overview of our real-world multiview polarized image dataset RMVP3D.
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Figure 6. Overview of synthetic dataset SMVP3D. Top and bottom
rows show image observations and the corresponding AoP maps.

as shown in Fig. 5 (middle). For the quantitative evaluation,
we adopt a laser scanner Creaform HandySCAN BLACK
with the accuracy of 0.01 mm to obtain the ground truth
mesh. To align the mesh to the captured image views, we
first apply PANDORA [9] to estimated a reference shape
using all available views and then align the scanned mesh
to the estimated one via ICP algorithm [4]. Besides the
ground-truth shapes and multiview images, we also capture
the environment map using a 360-degree camera THETA
Z1, benefiting quantitative evaluations on the illumination
estimation for related neural inverse rendering works.

5. Experiments

We evaluate NeRSP with three experiments: 1) comparison
with existing multiview 3D reconstruction methods quanti-
tatively on synthetic dataset; 2) ablation study on the con-
tribution of geometric and photometric loss terms 3) qual-
itative and quantitative evaluations on real-world datasets.
We also provide the BRDF and novel view results in the
supplementary material.

5.1. Datasets & Baselines

Dataset. We prepare two real-world datasets: the PAN-
DORA dataset [9] and our proposed RMVP3D, where
PANDORA dataset [9] is only used for qualitative eval-
uation as the ground truth meshes are not provided. We
also prepare a synthetic multiview polarized image dataset
SMVP3D with Mitsuba rendering engine [15], which con-

tains 5 objects with spatially-varying and reflective re-
flectance, as visualized in Fig. 6. The objects are illumi-
nated by environment maps” and captured by 6 views ran-
domly distributed around the objects. Besides rendered po-
larized images, we also export the stokes vectors, GT sur-
face normal maps, and AoP maps for each object.

Baselines. Our work solves multiview 3D reconstruction
for reflective surfaces based on sparse polarized images.
Therefore, we choose the state-of-the-art 3D reconstruction
methods targeting reflective surfaces NeRO [19] and sparse
views S-VoISDF [35]. The above two methods are based
on RGB image inputs. For multiview stereo based on po-
larized images, we select PANDORA [9] and MVAS [6] as
our baselines. NeRO [19] does not require silhouette masks
as input. For a fair comparison, we remove the background
in the RGB images with the corresponding masks before
inputting to NeRO [19]. To compare different methods, we
apply Chamfer distance (CD) between the estimated and the
GT meshes, and the mean angular error (MAE) between the
estimated and the GT surface normals at different views as
our evaluation metrics.

5.2. Shape recovery on synthetic dataset

As shown in Table 1, we summarize the shape estimation er-
ror of existing methods and ours on SMVP3D. Our method
achieves the smallest Chamfer distance along all of the 5
synthetic objects. Based on the visualized shape estimates
shown in Fig. 7, NeRO [19] and S-VoISDF [35] cannot ac-
curately recover surface details as highlighted in the closed-
up views. One possible reason is that the disentanglement of
the shape and reflective reflectance from the sparse images
is too challenging for these methods based on only RGB
information. MVAS [6] and PANDORA [9] address the ge-
ometric and photometric cues of the polarized images, sepa-
rately. However, the reconstructed reflective surface shapes
are still unsatisfactory due to the ambiguities in geometric
and photometric cues under the sparse views setting. As
highlighted in the closed-up views, benefiting from both
geometric and photometric cues, our method reduces the

Zhttps:/polyhaven.com. Retrieved March, 2024.
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Table 1. Comparison on shape recoveries on synthetic dataset eval-
uated by Chamfer distance ({). The smallest and second smallest
errors are labeled in bold and underlined. “N/A” denotes the ex-
periment where a specific method cannot output reasonable shape
estimation results.

Method HEDGEHOG  SQUIRREL SNAIL DAVID DRAGON
NeRO [19] 5.39 4.69 14.19 45.8 6.51
S-VoISDF [35] 7.33 5.33 16.8 5.12 N/A
MVAS [6] 5.37 5.72 8.01 7.01 6.48
PANDORA [9] 9.33 11.1 18.8 7.86 17.4
NeRSP (Ours) 343 4.55 5.59 4.16 4.77

NeRO [19]

@J @K w(

MVAS (6] PANDORA [9] NeRSP (ours)

Figure 7. Qualitative evaluation on shape recoveries from 6 sparse
inputs. Our recovered shapes are closer to the GT, as highlighted
in the closed-up views.

S VoISDF [35]

solution space of shape estimation, leading to the most rea-
sonable shape recoveries compared with the GT shapes.

Besides the evaluation of the reconstructed mesh, we
also test the surface normal estimation results. As shown in
Table 2, we summarize the mean angular errors of estimated
surface normals at 6 views from different methods. Consis-
tent with the evaluation results in Table 1, NeRSP achieves
the smallest mean angular errors in average. We also ob-
served that the results from NeRO [19], MVAS [6], and
PANDORA [9] have larger errors on objects with fine de-
tails, such as DAVID and DRAGON objects. As an example,
MVAS [6] has the second smallest Chamfer distance shown
in Table 1, but the mean angular error is over 20°. One po-
tential reason is existing methods output smooth shapes in
the sparse views setting, where the surface details such as
the flakes of the DRAGON are not well recovered.

5.3. Ablation study

In this section, we conduct an ablation study to test the ef-
fectiveness of geometric and photometric cues. Taking the
DRAGON object as an example, we conduct our method
with and without the photometric loss £, and the geomet-
ric loss £4. As shown in Fig. 8, we plot the shape and
surface normal estimations by disabling the different loss
terms. Without the photometric loss, the shape ambiguity
due to the sparse views occurs. As shown from the closed-
up views, the shape near the leg part has a concave artifact,
as there are only two visible views for this region, unable to

Table 2. Comparison on surface normal estimation on synthetic
dataset evaluated by mean angular error (MAE) ({).

Method HEDGEHOG  SQUIRREL SNAIL DAVID DRAGON
NeRO [19] 9.14 10.15 11.45 42.02 24.22
S-VoISDF [35] 11.26 13.28 7.59 17.05 N/A
MVAS [6] 7.06 10.28 619 2186  24.29
PANDORA [9] 19.75 23.52 16.54 21.88 28.82
NeRSP (Ours) 7.89 9.80 4.82 13.70 18.03

GT wilo L,

wilo L, Ours

Figure 8. Ablation study on different loss terms. The top and bot-
tom rows visualize the estimated shape and surface normal, with
the Chamfer distance and the mean angular error labeled on the
top of each sub-figure, respectively.

formulate a unique solution for the shape merely based on
the AoP maps [6]. Without geometric loss, we also obtain
distorted shape results as the sparse image observations are
not sufficient to uniquely decompose the shape, reflectance,
and illumination. By combining the photometric and geo-
metric loss, our NeRSP reduces the ambiguity of shape re-
covery and the estimated shape is closer to the GT, as high-
lighted in the closed-up views.

5.4. Shape recovery on real data

Besides the synthetic experiments shown in the previous
section, we also evaluate our method on real-world datasets
PANDORA dataset [9] and RMVP3D to test its applicabil-
ity in real-world 3D reconstruction scenarios.

Qualitative evaluation on PANDORA dataset [9]. As
shown in Fig. 9, we provide qualitative evaluations on PAN-
DORA dataset [9]. Compared to the image appearance with
the estimated results from S-VolSDF [35] and NeRO [19],
the shape is not fully disentangled from the reflectance,
leading to bumpy surface shapes that are closely related to
the reflectance texture. MVAS [6] and PANDORA [9] have
over-smoothed shape estimates or concave shape artifacts,
due to addressing only geometric or photometric cues un-
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Figure 9. Qualitative evaluation on PANDORA dataset [9].

Table 3. Quantitative evaluation on RMVP3D with Chamfer dis-
tance (J.). Our method achieves the smallest error on average.

Method DoG LIoON FROG BALL Average
NeRO [19] 9.11 10.74 .21 3.87 7.48
S-VoISDF [35] 993 739 7091 18.4 10.91
MVAS [6] 923 751 990 477 7.86

PANDORA [9] 143 15.04 1127 3.96 11.14
NeRSP (Ours) 880 518 670 3.84 6.13

der the sparse capture setting. Our shape estimation results
have no such shape artifacts and match the image observa-
tions closely.

Quantitative evaluation on RMVP3D. As shown in Ta-
ble 3, we present a quantitative evaluation on RMVP3D
based on Chamfer distance. Consistent with the synthetic
experiment, our NeRSP achieves the smallest estimation
error in average. The visualized shapes shown in Fig. 10
further reveal that reflective surfaces are challenging to S-
VoISDF [35] for disentangling the shape from reflectance,
as highlighted by the bumpy surface of the FROG object in
the closed-up views. NeRO [19] and PANDORA [9] have
similar estimation error with us on the simple BALL object.
For complex shapes like LION, distorted shape recoveries
are obtained from these methods due to the sparse views
setting, while ours are closer to the GT meshes, demonstrat-
ing the effectiveness of our method on real-world reflective
surface reconstruction under sparse inputs.

NeRO [19]

MVAS [6] PANDORA [9]
GT
MVAS [6]

&

Figure 10. Comparison on shape recoveries on RMVP3D dataset.

S-VoISDF [35]

6. Conclusion

We propose NeRSP, a neural 3D reconstruction method for
reflective surfaces under sparse polarized images. Due to
the challenges of shape-radiance ambiguity and complex
reflectance, existing methods struggle with either reflec-
tive surfaces or sparse views and cannot address both prob-
lems with RGB images. We propose to use polarized im-
ages as input. By combining the geometric and photometric
cues extracted from polarized images, we reduce the solu-
tion space of the estimated shape, allowing for the effec-
tive recovery of reflective surface with as few as 6 views, as
demonstrated by publicly available and our own datasets.

Limitation The inter-reflections and polarized environ-
ment light are not considered in this work, which could
influence the shape reconstruction accuracy. We noticed a
most recent work NelISF [17] focusing on this topic, and we
are interested in combining our sparse shot merit with this
work in the future.
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