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Abstract

Multimodal large language models (MLLMs) have
gained significant attention due to their strong multimodal
understanding capability. However, existing works rely
heavily on modality-specific encoders, which usually dif-
fer in architecture and are limited to common modalities.
In this paper, we present OneLLM, an MLLM that aligns
eight modalities to language using a unified framework.
We achieve this through a unified multimodal encoder and
a progressive multimodal alignment pipeline. In detail,
we first train an image projection module to connect a vi-
sion encoder with LLM. Then, we build a universal pro-
jection module (UPM) by mixing multiple image projec-
tion modules and dynamic routing. Finally, we progres-
sively align more modalities to LLM with the UPM. To
fully leverage the potential of OneLLM in following instruc-
tions, we also curated a comprehensive multimodal instruc-
tion dataset, including 2M items from image, audio, video,
point cloud, depth/normal map, IMU and fMRI brain activ-
ity. OneLLM is evaluated on 25 diverse benchmarks, en-
compassing tasks such as multimodal captioning, question
answering and reasoning, where it delivers excellent perfor-
mance. Code, data, model and online demo are available at
https://github.com/csuhan/OneLLM .

1. Introduction
Large Language Models (LLMs) are getting increasingly
popular in the research community and industry due to their
powerful language understanding and reasoning capabili-
ties. Notably, LLMs such as GPT4 [60] have reached per-
formance nearly on par with humans in various academic
exams. The progress in LLMs has also inspired researchers
to employ LLMs as an interface for multimodal tasks, such
as vision-language learning [3, 42], audio and speech recog-
nition [23, 94], video understanding [10, 43, 95], etc.
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Figure 1. Comparisons of Different Multimodal LLMs. Vi-
sion LLM: one image encoder and projection module. Multimodal
(MM) LLM: modality-specific encoder and projection module.
OneLLM: a universal encoder, a universal projection module and
modality tokens {modal} to switch between modalities. Bottom:
OneLLM expands supported modalities from three to eight.

Among these tasks, vision-language learning is the most
active field, with more than 50 vision LLMs proposed in the
recent half-year alone [19]. Typically, a vision LLM com-
prises a visual encoder, an LLM, and a projection module
connecting the two components. The vision LLM is first
trained on massive paired image-text data [67] for vision-
language alignment and then fine-tuned on visual instruc-
tion datasets, enabling it to complete various instructions
tied to visual inputs. Beyond vision, significant efforts
have been invested in developing other modality-specific
LLMs, such as audio [23], video [43], and point clouds [26].
These models generally mirror the architectural framework
and training methodology of vision LLMs, and rely on the
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solid foundation of pretrained modality-specific encoders
and well-curated instruction-tuning datasets for their effec-
tiveness.

There are also several attempts to integrate multiple
modalities into one MLLM [9, 29, 57, 99]. As an extension
of vision LLM, most previous works align each modality
with the LLM using modality-specific encoders and projec-
tion modules (middle of Fig. 1). For instance, X-LLM [9]
and ChatBridge [99] connect pretrained image, video, and
audio encoders with LLMs using separate Q-Former [42]
or Perceiver [33] models. However, these modality-specific
encoders usually differ in architecture and considerable ef-
fort is required to unify them into a single framework. Fur-
thermore, pretrained encoders that deliver reliable perfor-
mance are usually restricted to widely used modalities such
as image, audio, and video. This limitation poses a con-
straint on MLLMs’ ability to expand to more modalities.
Thus, a crucial challenge for MLLMs is how to build a uni-
fied and scalable encoder capable of handling a wide range
of modalities.

We get inspiration from recent works on transferring
pretrained transformers to downstream modalities [49, 55,
83, 98]. Lu et al. [49] proved that a frozen language-
pretrained transformer can achieve strong performance on
downstream modalities such as image classification. Meta-
Transformer [98] demonstrated that a frozen visual encoder
can achieve competitive results across 12 different data
modalities. The insights from the works mentioned above
suggest that pretrained encoders for each modality may not
be necessary. Instead, a well-pretrained transformer may
serve as a universal cross-modal encoder.

In this paper, we present OneLLM, an MLLM that
aligns eight modalities to language using one unified frame-
work. As shown in Fig. 1, OneLLM consists of lightweight
modality tokenizers, a universal encoder, a universal pro-
jection module (UPM), and an LLM. In contrast to prior
works, the encoder and projection module in OneLLM are
shared across all modalities. The modality-specific tokeniz-
ers, each comprised of only one convolution layer, convert
input signals into a sequence of tokens. Additionally, we
add learnable modality tokens to enable modality switching
and transform input tokens of diverse lengths into tokens of
a fixed length.

Training a model of this complexity from scratch poses
significant challenges. We start from a vision LLM and
align other modalities to the LLM in a progressive way.
Specifically, (i) we build a vision LLM with pretrained
CLIP-ViT [64] as the image encoder, accompanied by sev-
eral transformer layers as the image projection module, and
LLaMA2 [73] as the LLM. After pretraining on massive
paired image-text data, the projection module learns to map
visual representations into the embedding space of LLM.
(ii) To align with more modalities, we need a universal en-

coder and projection module. As discussed before, the pre-
trained CLIP-ViT is possible to serve as a universal encoder.
For UPM, we propose to mix multiple image projection ex-
perts as a universal X-to-language interface. To increase the
model capability, we also design a dynamic router to con-
trol the weight of each expert for the given inputs, which
turns UPM into soft mixtures-of-experts [63]. Finally, we
progressively align more modalities with the LLM based
on their data magnitude.

We also curate a large-scale multimodal instruction
dataset, including captioning, question answering, and rea-
soning tasks across eight modalities: image, audio, video,
point clouds, depth/normal map, Inertial Measurement
Unit (IMU), and functional Magnetic Resonance Imaging
(fMRI). By finetuning on this dataset, OneLLM has strong
multimodal understanding, reasoning, and instruction-
following capabilities. We evaluate OneLLM on multi-
modal captioning, question answering and reasoning bench-
marks where it achieves superior performance than previous
specialized models and MLLMs. In conclusion, we sum-
mary our contributions as:
• We propose a unified framework to align multimodal in-

puts with language. Different from existing works with
modality-specific encoders, we show that a unified mul-
timodal encoder, which leverages a pretrained vision-
language model and a mixture of projection experts, can
serve as a general and scalable component for MLLMs.

• To the best of our knowledge, OneLLM is the first MLLM
that integrates eight distinct modalities within a single
model. With the unified framework and progressive mul-
timodal alignment pipeline, OneLLM can be easily ex-
tended to incorporate more data modalities.

• We curate a large-scale multimodal instruction dataset.
OneLLM finetuned on this dataset achieves superior per-
formance on multimodal tasks, outperforming both spe-
cialist models and existing MLLMs.

2. Related Work
Large Vision-Language Models. Large Language Models
(LLMs) have gained a lot of attention recently. Therefore,
extending LLMs to the vision domain is an emergent and
rapidly growing research area. Flamingo [3] is a pioneer to
inject frozen visual features into LLM with cross-attention
layers, achieving superior performance on a wide range
of vision-language tasks. BLIP2 [42] uses a Q-Former to
aggregate visual features into a few tokens aligned with
LLM. Recently, with the popularity of instruction-following
LLMs, vision LLMs have experienced a new explosion.
LLaMA-Adapter [20, 97] connects pretrained CLIP [64]
and LLaMA [73] with parameter-efficient fine-tuning meth-
ods, which can tackle close-set visual question answering
and image captioning tasks. Subsequent works [20, 46, 90,
100] propose to train such model on large-scale image-text
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Figure 2. The Architecture of OneLLM. OneLLM consists of modality tokenizers, a universal encoder, a universal projection module
(UPM) and an LLM. The modality tokenizer is a 2D/1D convolution layer to transform the input signal into a sequence of tokens. For
simplicity, we omit video, depth/normal map tokenizers. The universal encoder is a frozen vision-language model (i.e. CLIP [64]) to
extract high dimensional features. The UPM is composed of several projection experts and modality routers to align the input signal with
language. For the alignment stage, we train modality tokenizers and UPM, and keep LLM frozen. For the instruction tuning stage, we only
train the LLM and keep other models frozen. In a forward pass of UPM, we concatenate the input and modality tokens as input. Then we
only take the modality tokens as a summary of the input signal and feed it into LLM for multimodal understanding.

data, enabling it to complete various instructions about im-
ages. Among them, LLaVA [46] adopt a linear layer to
directly project visual tokens into LLMs, while MiniGPT-
4 [100] and some other works [20, 90] resample visual
tokens into fixed-length tokens, reducing the computation
cost of LLMs. Our work also belongs to the later branch.
We preset learnable tokens for each modality (i.e., modality
tokens), which are then used to aggregate input information
and generate fixed-length tokens for all modalities.

Multimodal Large Language Models. In addition to vi-
sion LLMs, recent works proposed to extend LLMs to other
modalities, such as audio [23, 94], video [10, 43, 95] and
point cloud [26, 87]. These works make it possible to
unify multiple modalities into one LLM. X-LLM [9] adopts
modality-specific Q-Former [42] and adapters to connect
pretrained image, audio and video encoders with LLMs.
ChatBridge [99] and AnyMAL [57] follow a similar archi-
tecture with X-LLM but adopts Perceiver [33] and linear
layers respectively to align modality encoders with LLMs.
Meanwhile, PandaGPT [72] and ImageBind-LLM [29] uti-
lize ImageBind [22] as the modality encoder and there-
fore naturally support multimodal inputs. However, current
MLLMs are limited to supporting common modalities such
as image, audio and video. It remains unclear how to ex-
pand MLLMs to more modalities with a unified framework.
In this work, we propose a unified multimodal encoder to
align all modalities with language. We show that one uni-
versal encoder and projection module can effectively map
multimodal inputs to LLM. To our knowledge, OneLLM is
first MLLM capable of supporting eight distinct modalities.

Multimodal-Text Alignment. Aligning multiple modali-
ties into one joint embedding space is important for cross-
modal tasks, which can be divided into two lines of works:
discriminative alignment and generative alignment. The
most representative work of discriminative alignment is
CLIP [64], which utilize contrastive learning to align im-
age and text. Follow-up works extend CLIP to audio-
text [28, 80], video-text [51, 85], point-text [96] etc. Be-
sides, ImageBind [22] proposes to bind various modalities
to images with contrastive learning. On the other hand, gen-
erative alignment has attracted much attention in the era
of LLM. GIT [77] aligns image and text using a genera-
tive image-to-text transformer. BLIP2 [42] proposes gener-
ative pretraining to connect frozen vision encoder and LLM.
VALOR [11] and VAST [12] extends the training paradigm
of BLIP2 to more modalities such as audio and video. Our
work also belongs to generative alignment. In contrast to
prior works, we directly align mutlimodal inputs to LLMs,
thus getting rid of the stage of training modality encoders.

3. Method
In this section, we will first introduce the architecture
of OneLLM (Sec. 3.1) and then present our two training
phases: progressive multimodal alignment (Sec. 3.2) and
unified multimodal instruction tuning (Sec. 3.3).

3.1. Model Architecture

Fig. 2 depicts the four main components of OneLLM:
modality-specific tokenizers, a universal encoder, a univer-
sal projection module (UPM) and an LLM. Detailed de-
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scriptions are presented in the following sections.
Lightweight Modality Tokenizers. The modality tok-
enizer is to transform the input signal into a sequence of
tokens, thereby a transformer-based encoder can process
these tokens. We denote the input tokens as x ∈ RL×D,
where L is the sequence length and D is the token dimen-
sion. Considering the variations inherent to different data
modalities, we design a separate tokenizer for each modal-
ity. For visual inputs with 2D position information such as
image and video, we directly utilize a single 2D convolution
layer as the tokenizer. For other modalities, we transform
the input into a 2D or 1D sequence, which is then tokenized
using a 2D/1D convolution layer. For example, we trans-
form audio signals into 2D spectrogram and sample a sub-
set of point clouds with 2D geometric prior. Due to space
limit, please refer to the appendix for more details.
Universal Encoder. As discussed in Sec. 1, frozen pre-
trained transformers demonstrate strong modality transfer
capability [49, 98]. Therefore, we leverage pretrained
vision-language models as the universal encoder for all
modalities. Vision-language models, when trained on ex-
tensive image-text data, typically learn robust alignment be-
tween vision and language, so they can be easily transferred
to other modalities. In OneLLM, we use CLIP-ViT [64]
as a universal computation engine. Following previous
works [49, 98], we keep the parameters of CLIP-ViT frozen
during training. Note that for video signals, we will feed
all video frames into the encoder in parallel and perform
token-wise averaging between frames to speed up training.
Other strategies, such as token concatenation, may further
enhance the model’s video understanding capability.
Universal Projection Module. In contrast to existing
works with modality-specific projection, we propose a Uni-
versal Projection Module (UPM) to project any modality
into LLM’s embedding space. As shown in Fig. 2, UPM
consists of K projection experts {Pk}, where each expert is
a stack of transformer layers pretrained on image-text data
(will discuss in Sec. 3.2). Although one expert can also real-
ize any modality-to-LLM projection, our empirical findings
suggest that multiple experts are more effective and scal-
able. When scaling to more modalities, we only need to
add a few parallel experts.

To integrate multiple experts into one module, we pro-
pose a dynamic modality router R to control each expert’s
contribution and increase the model capacity. The router
R is structured as a straightforward Multi-Layer Perception
that receives input tokens and calculates the routing weights
for each expert, i.e., a soft router [63]. We will also discuss
other types of router in Sec. 4.3, such as constant router and
sparse router. Besides, we add learnable modality tokens
{qm}m∈M to switch between modalities, where M is the
set of modalities and qm ∈ RN×D contains N tokens of di-
mension D. In a forward pass for modality m, we feed the
concatenation of input tokens xm ∈ RL×D and modality

tokens qm into UPM:

[q̄m, x̄m] = UPM([qm,xm]) =

K∑
k=1

wm · Pk([qm,xm]), (1)

wm = σ ◦Rm([qm,xm]), (2)

where wm ∈ RN×K is the routing weight and the SoftMax
function σ is to ensure

∑K
k=1 wm,k = 1. For any modality

m, we only extract the projected modality tokens q̄m as a
summary of input signals, transforming xm from varying
lengths into uniform, fixed-length tokens.
LLM. We employ the open-source LLaMA2 [74] as the
LLM in our framework. The input to LLM includes pro-
jected modality tokens q̄m and the text prompt after word
embedding. Note we always put modality tokens at the be-
ginning of the input sequence for simplicity. Then LLM
is asked to generate appropriate response conditioned on
modality tokens and text prompt.

3.2. Progressive Multimodal Alignment

Image-text alignment has been well investigated in pre-
vious works [20, 47, 100]. Therefore, a naive approach
for multimodal alignment is to jointly train the model on
multimodal-text data. However, training models directly on
multimodal data can lead to biased representations between
modalities due to the imbalance of data scale. Here we pro-
pose to train an image-to-text model as initialization and
progressively ground other modalities into LLM.
Image-Text Alignment. We begin with a basic vision
LLM framework, comprising an image tokenizer, a pre-
trained CLIP-ViT, an image projection module PI and an
LLM. Considering that image-text data is relatively abun-
dant compared to other modalities, we first train the model
on image-text data to well align CLIP-ViT and LLM, i.e.,
learning a good image-to-text projection module. The pre-
trained PI not only serves as a bridge connecting images
and language, but also provides a good initialization for
multimodal-text alignment. Then we build UPM by mix-
ing multiple pretrained PI : UPM = {Pk} = {Init(PI)},
where Init is weight initialization, which effectively re-
duces the cost of aligning other modalities to language.
Multimodal-Text Alignment. We formulate multimodal-
text alignment as a continual learning process [75]. At
timestamp t, we have trained the model on a set of modal-
ities M1 ∪ M2 · · ·Mt−1, and the current training data is
from Mt. To prevent catastrophic forgetting, we will sam-
ple evenly from both previous trained data and current data.
In our case, we divide multimodal-text alignment into mul-
tiple training stages based on their data magnitude: stage I
(image), stage II (video, audio and point cloud) and stage
III (depth/normal map, IMU and fMRI). If we want to sup-
port new modalities, we can repeat the training episode, i.e.,
sampling a similar amount of data from previous modalities
and jointly training the model with the current modalities.
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Multimodal-Text Dataset. We collect X-text pairs for each
modality. The image-text pairs include LAION-400M [67]
and LAION-COCO [66]. The training data for video, au-
dio and point clouds are WebVid-2.5M [7], WavCaps [54]
and Cap3D [52], respectively. Since there is no large-
scale depth/normal map-text data, we use pretrained DPT
model [18, 65] to generate depth/normal map. The source
images and text and from CC3M [69]. For IMU-text pairs,
we use the IMU sensor data of Ego4D [25]. For fMRI-text
pairs, we use fMRI signals from the NSD [4] dataset and
take the captions associated with the visual stimuli as text
annotations. Note that the input to LLM is the concatena-
tion of modality tokens and caption tokens. We do not add
system prompts at this stage to reduce the number of tokens
and speed up training.

3.3. Unified Multimodal Instruction Tuning

After multimodal-text alignment, OneLLM becomes a mul-
timodal captioning model which can generate a short de-
scription for any input. To fully unleash OneLLM’s multi-
modal understanding and reasoning capabilities, we curate
a large-scale multimodal instruction tuning dataset to fur-
ther finetune OneLLM.
Multimodal Instruction Tuning Dataset. We collect in-
struction tuning (IT) dataset for each modality. Following
previous works [14, 46], the image IT datasets are sampled
from the following datasets: LLaVA-150K [47], COCO
Caption [13], VQAv2 [24], GQA [32], OKVQA [53], A-
OKVQA [68], OCRVQA [56], RefCOCO [34] and Visual
Genome [36]. The video IT datasets include MSRVTT-
Cap [86], MSRVTT-QA [84] and video instruction data
from [99]. The audio IT datasets include AudioCaps [35]
and audio conversation data from [99]. The point cloud
IT dataset is a 70K point cloud description, conversation
and reasoning dataset from [87]. The depth/normal map
IT datasets are generated from image IT datasets: we ran-
dom sample 50K visual instruction data from LLaVA-150K
and generate depth/normal map using DPT model [18]. For
IMU and fMRI IT datasets, we also random sample a sub-
set from Ego4D [25] and NSD [4], respectively. Finally,
our mutlimodal IT datasets have about 2M items, covering
multiple tasks such as detailed description/reasoning, con-
versation, short question answering and captioning.
Prompt Design. Given the diverse modalities and tasks
within our multimodal IT datasets, we carefully design the
prompts to avoid conflicts between them. (a) When utiliz-
ing IT datasets generated by GPT4 (e.g., LLaVA-150K), we
adopt the original prompts provided by these datasets. (b)
For captioning tasks, we empoly the prompt: Provide a one-
sentence caption for the provided {modal}. (c) For open-
ended question answering tasks, we enhance the question
with Answer the question using a single word or phrase.
(d) For question answering tasks with options, the prompt

is: {Question} {Options} Answer with the option’s letter
from the given choices directly. (e) For IMU and fMRI
datasets, we apply prompt such as Describe the motion and
Describe this scene based on fMRI data. Despite using
these fixed prompts, our experiments indicate that OneLLM
is capable of generalizing to open-ended prompts during in-
ference. For detailed prompts on each task and modality,
please check out the appendix.

In the instruction tuning stage, we organize the input se-
quence as: {q̄, Sys, [Inst, Anst]

T
t=1} where q̄ is the modal-

ity tokens, Sys is the system prompt, [Inst, Anst] corre-
sponds to the t-th instruction-answer pair in a conversation.
Note that for multimodal inputs involving multiple modali-
ties, such as audio-visual tasks [40], we position all modal-
ity tokens at the start of the input sequence.

We fully finetune the LLM and keep rest parameters
frozen. Although recent works often employ parameter-
efficient methods [31], we empirically show that the full
finetuning approach more effectively harnesses the multi-
modal capabilities of OneLLM, particularly with the uti-
lization of smaller LLMs (e.g., LLaMA2-7B).

4. Experiment
4.1. Implementation Details

Architecture. The universal encoder is CLIP VIT Large
pretrained on LAION [67]. The LLM is LLaMA2-7B [74].
The UPM has K=3 projection experts, where each expert
has eight Transformer blocks and 88M parameters. The size
of modality tokens for each modality is R30×1024.
Training Details. We use AdamW optimizer with β1=0.9,
β2=0.95 and weight decay of 0.1. We apply a linear learning
rate warmup during the first 2K iterations. For stage I, we
train OneLLM on 16 A100 GPUs for 200K iterations. The
effective batch size (using gradient accumulation) is 5120.
The maximum learning rate is 5e-5. For stage II (resp. III),
we train OneLLM on 8 GPUs for 200K (resp. 100K) with
an effective batch size of 1080 and maximum learning rate
of 1e-5. In the instruction tuning stage, we train OneLLM
on 8 GPUs for 1 epoch (96K) with an effective batch size of
512 and maximum learning rate of 2e-5.

4.2. Quantitative Evaluation

We evaluate OneLLM on multimodal tasks and put evalua-
tion details to the appendix.
Image-Text Evaluation. In Tab. 1, we evaluate OneLLM
on visual question answering (VQA), image captioning and
recent multimodal benchmarks. For VQA tasks, OneLLM-
7B outperforms other MMLLMs such as ChatBridge-
13B [99] and AnyMAL-13B [57] by a large margin. Our
7B model is even better than AnyMAL with 70B param-
eters. For image captioning tasks, OneLLM-7B is on-par
with ChatBridge-13B. Although OneLLM is not specifi-
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Model LLM VQA Image Caption MM Benchmark
GQA VQAv2 OKVQA TVQA SQA Vizwiz NoCaps Flickr MME MMB MMVet SEED

vision specialized LLM

Flamingo-9B [3] Chinchilla-7B - 51.8 44.7 30.1 - 28.8 - 61.5 - - - -
Flamingo-80B [3] Chinchilla-70B - 56.3 50.6 31.8 - 31.6 - 67.2 - - - -
BLIP-2 [42] Vicuna-7B - - - 40.1 53.8 - 107.5 74.9 - - - -
BLIP-2 [42] Vicuna-13B 41.0 41.0 - 42.5 61 19.6 103.9 71.6 1293.8 - 22.4 -
InstructBLIP [14] Vicuna-7B 49.2 - - 50.1 60.5 34.5 123.1 82.4 - 36 26.2 -
InstructBLIP [14] Vicuna-13B 49.5 - - 50.7 63.1 34.3 121.9 82.8 1212.8 - 25.6 -
IDEFICS-9B [37] LLaMA-7B 38.4 50.9 38.4 25.9 - 35.5 - 27.3 - 48.2 - -
IDEFICS-80B [37] LLaMA-65B 45.2 60.0 45.2 30.9 - 36.0 - 53.7 - 54.5 - -
LLaMA-Ad.v2 [20] LLaMA-7B 43.9 - 55.9 43.8 54.2 - 42.7 30.5 972.7 38.9 31.4 32.7
Qwen-VL [6] Qwen-7B 57.5 78.2 56.6 61.5 68.2 38.9 120.2 81.0 1487.5 60.6 - 58.2
LLaVA-v1.5 [46] Vicuna-7B 62.0 78.5 - 58.2 66.8 50.0 - - 1510.7 64.3 30.5 58.6

multimodal generalist LLM

ImageBind-LLM [29] LLaMA-7B 41.1 - - 24.0 51.4 - 29.6 23.5 775.7 - - -
ChatBridge-13B [99] Vicuna-13B 41.8 - 45.2 - - - 115.7 82.5 - - - -
AnyMAL-13B [57] LLaMA2-13B - 59.6 33.1 24.7 52.7 24.4 - - - - - -
AnyMAL-70B [57] LLaMA2-70B - 64.2 42.6 32.9 70.8 33.8 - - - - - -
OneLLM-7B (Ours) LLaMA2-7B 59.5 71.6 58.9 34.0 63.4 45.9 115.9 78.6 1392.0 60.0 29.1 61.2

Table 1. Evaluation on 12 Image-Text Benchmarks, including 6 VQA tasks (GQA [32], VQAv2 [24], OKVQA [53], TextVQA
(TVQA) [70], ScienceQA (SQA) [50] and Vizwiz [27]), 2 image captioning tasks (Nocaps [1] and Flickr30K [62]), and 4 multimodal
benchmarks (MME [19], MM Bench (MMB) [48], MMVet [93] and SEED [39]). The LLMs are Chinchilla [30], Vicuna [76], Qwen [5],
LLaMA [73] and LLaMA2 [74]. The evaluation metrics for VQA and captioning tasks are accuracy and CIDEr, respectively. The results
in bold and underline are the best and second-best results, respectively. -: Not reported result.

Model 0-shot NextQA How2QA MSVD VATEX
Acc. Acc. Acc. CIDEr

HGQA [82] ✗ 51.8 - 41.2 -
JustAsk [88] ✗ 52.3 84.4 46.3 -
VALOR [11] ✗ - - 60.0 95.1
SeViLA [92] ✗ 73.8 83.6 - -

FrozenBiLM [89] ✓ - 58.4 33.8 -
InternVideo [79] ✓ 49.1 62.2 55.5 -
ChatBridge-13B [99] ✓ - - 45.3 48.9
AnyMAL-13B [57] ✓ 47.9 59.6 - -
OneLLM-7B (Ours) ✓ 57.3 65.7 56.5 43.8

Table 2. Evaluation on Video-Text Tasks, including video ques-
tion answering (NextQA [81], How2QA [44] and MSVD [84]) and
video captioning tasks (VATEX [78]). Acc.: Accuracy.

Model 0-shot
Clotho Caption Clotho AQA

CIDEr SPIDEr Acc.

FeatureCut [91] ✗ 43.6 27.9 -
Wavcaps [54] ✗ 48.8 31.0 -
MWAFM [41] ✗ - - 22.2
Pengi [16] ✗ - 27.1 64.5

LTU-7B [23] ✓ - 11.9
ChatBridge-13B [99] ✓ 26.2 - -
OneLLM-7B (Ours) ✓ 29.1 19.5 57.9

Table 3. Evaluation on Audio-Text Tasks, including audio cap-
tioning on Clotho Caption [17] and audio question answering on
Clotho AQA [45].

cally designed for vision tasks, our results demonstrate that
OneLLM can also reach the leading level in vision spe-
cialized LLMs, and the gap between MMLLMs and vision
LLMs has further narrowed.
Video-Text Evaluation. As shown in Tab. 2, we evaluate
OneLLM on video QA and captioning tasks. Our model

Model 0-shot
MUSIC-AVQA VALOR AVSD

Acc. CIDEr CIDEr

MAVQA [40] ✗ 71.5 - -
VALOR [11] ✗ 78.9 61.5 -
VAST [12] ✗ 80.7 62.2 -
FA+HRED [59] ✗ - - 84.3
MTN [38] ✗ - - 98.5
COST [61] ✗ - - 108.5

ChatBridge-13B [99] ✓ 43.0 24.7 75.4
OneLLM-7B (Ours) ✓ 47.6 29.2 74.5

Table 4. Evaluation on Audio-Video-Text Tasks, including
audio-visual question answering on MUSIC-AVQA [40] and
audio-visual captioning on VALOR-32K [11] and dialog comple-
tion on AVSD [2].

Model Captioning Classification
BLEU-1 ROUGE-L METEOR GPT4-Acc.

InstructBLIP-7B [14] 11.2 13.9 14.9 38.5
InstructBLIP-13B [14] 12.6 15.0 16.0 35.5
PointLLM-7B [87] 8.0 11.1 15.2 47.5
PointLLM-13B [87] 9.7 12.8 15.3 45.0
OneLLM-7B (Ours) 42.2 45.3 20.3 44.5

Table 5. Evaluation on Point Cloud-Text Tasks. The evalua-
tion dataset is from Objaverse [15], following the data split in
PointLLM [87]. InstructBLIP takes single-view image as input,
while PointLLM and OneLLM take point cloud as input. GPT4-
Acc.: GPT4 as the accuracy evaluator [87].

outperforms both MLLMs [57, 99] and video-specific mod-
els [79, 89] in video QA tasks. Notably, our training
datasets do not include video QA data like NextQA [81]
and How2QA [44], which are video QA tasks that provide
answer options. However, our model’s training on simi-
lar VQA datasets (e.g., A-OKVQA [68]) has evidently en-
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Model 0-shot
NYUv2 SUN RGB-D

Acc. Acc.

ImageBind [22] ✗ 54.0 35.1
Omnivore [21] ✗ 76.7 64.9

Random ✓ 10.0 5.26
CLIP ViT-H∗ [64] ✓ 41.9 25.4
OneLLM-N (Ours) ✓ 46.5 21.2
OneLLM-D (Ours) ✓ 50.9 29.0

Table 6. Evaluation on Scene Classification Tasks Using Depth
/ Normal Map. OneLLM-N/D: OneLLM with Depth / Normal
map inputs. Note that NYUv2 [58] and SUN RGB-D [71] only
have depth maps, we adopt pretrained DPT model [18] to generate
normal maps. ∗: The input to CLIP is depth rendered grayscale
image. ImageBind is trained on image-depth pairs of SUN RGB-
D and therefore is not zero-shot.

hanced its emergent cross-modal capabilities, contributing
to the improved performance in video QA tasks.
Audio-Text Evaluation. We evaluate OnLLM on audio
captioning and QA tasks. In Tab. 3, we outperforms both
ChatBridge and LTU [23] on Clotho Caption [17]. No-
tably, our zero-shot result on Clotho AQA [45] is on par
with fully finetuned Pengi [16]. Similar to our conclusion
on video QA, we believe that the captioning task requires
more dataset-specific training, while the QA task may be
a more accurate measure of the model’s inherent zero-shot
understanding capabilities.
Audio-Video-Text Evaluation. We evaluate OneLLM on
audio-video-text tasks, such as QA (MUSIC AVQA [40]),
captioning (VALOR-32K [11]) and dialog completion
(AVSD [2]) based on the video and background audio. As
shown in Tab. 4, OneLLM-7B surpasses ChatBridge-13B
on all three datasets. Note that ChatBridge was trained on
an audio-visual dataset [11], while OneLLM has not been
trained on any audio-visual datasets. Since all modalities in
OneLLM are well aligned with language, we can directly
input video and audio signals to OneLLM during inference.
Point Cloud-Text Evaluation. In Tab. 5, We evaluate
OneLLM on point cloud captioning and classification tasks.
OneLLM can achieve excellent captioning results due to
our carefully designed instruction prompts for switching
between tasks (Sec. 3.3), while InstructBLIP [14] and
PointLLM [87] struggle to generate short and accurate cap-
tions. On the classification task, OneLLM can also achieve
comparable results to PointLLM.
Depth/Normal Map-Text Evaluation. Since there are
currently no QA and captioning tasks using depth/normal
maps, we evaluate OneLLM on two scene classification
datasets [58, 71]. The performance, as displayed in Tab. 6,
reveals that OneLLM achieves superior zero-shot classifi-
cation accuracy compared to CLIP. These results affirm that
OneLLM trained on synthetic depth/normal map data can
adapt to real world scenarios.

Task NoCaps VQAv2 ClothoQA MSVDQA

(a) Training Mode

Separate 115.6(-0.2) 71.9(+0.3) 37.8(-19.6) 31.0(-25.8)
Joint 115.8 71.6 57.4 56.8

(b) Weight Initialization

Random Init. 98.8(-17.0) 65.6(-6.0) 57.6(+0.2) 53.1(-3.7)
Image Init. 115.8 71.6 57.4 56.8

(c) Number of Experts (Parameters)

1 (88M) 108.7(-7.1) 66.9(-4.7) 58.2(+0.8) 53.3(-3.5)
3 (264M) 115.8 71.6 57.4 56.8
5 (440M) 114.6 71.7 58.2 56.7
7 (616M) 114.9 71.6 58.8 56.0

(d) Router Type

Constant Router 109.8(-6.0) 67.7(-3.9) 56.2(-1.2) 55.3(-1.5)
Sparse Router 112.8(-3.0) 71.1(-0.5) 56.7(-0.7) 55.7(-1.1)
Soft Router 115.8 71.6 57.4 56.8

Table 7. Ablation Experiments. We choose three modalities (im-
age, audio, video) and four datasets (NoCaps [1], VQAv2 [24],
ClothoQA [45] and MSVDQA [84]) for evaluation. The row with
gray background is our default setting.

IMU-Text and fMRI-Text Evaluation. Since IMU/fMRI
to text generation are seldom explored in previous literature,
we solely report our results on IMU/fMRI captioning. For
IMU captioning on Ego4D [25], we evaluate OneLLM on a
held-out subset with 2000 items. The CIDEr and ROUGE-L
score are 24.9 and 19.5, respectively. For fMRI captioning
on NSD [4], we evaluate OneLLM on its testing set, where
OneLLM achieves 31.7 CIDEr and 25.1 ROUGE-L.

4.3. Ablation Experiments

In this section, we explored some key designs of OneLLM.
Our ablation experiments are conducted on three modali-
ties: image, audio and video, except for studies on the num-
ber of experts. Other settings remain unchanged.
Separate Training vs. Joint Training. An important ques-
tion for MLLMs is whether a jointly trained MLLM is better
than modality-specific MLLM? To address this, we com-
pare the performance of separately trained MLLMs against
a jointly trained MLLM in Tab. 7 (a). In separate training,
the model can only access its own data; in joint training,
the model is jointly trained on all data. On two image-text
tasks NoCaps and VQAv2, we can see that separately and
jointly trained models achieve comparable results; While
separately trained audio and video models are much worse
than the jointly trained model on ClothoQA and MSVDQA,
respectively. This suggest that joint training substantially
benefits data-scarce modalities (e.g., audio and video), by
allowing for the transfer of learned knowledge (e.g., ques-
tion answering) across modalities.
Image Alignment Benefits Multimodal Alignment.
Tab. 7 (b) demonstrates that OneLLM with image-text
alignment can help multimodal-text alignment. If we di-
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Describe this poster in detail.

The poster features a man wearing a suit and 
tie, standing in front of a bright light. The 
man is the main focus of the poster, with the 
light illuminating his face. The background is 
dark, creating a stark contrast with the man's 
attire. The poster is advertising the movie 
"Oppenheimer," which is a biographical 
drama about the life of J. Robert 
Oppenheimer, the father of the atomic bomb.

What message does this video convey?

The video seems to convey a message of joy 
and happiness, as the pink animals are 
dancing and singing in a fun and playful 
manner. The video also features a green field 
and trees, which may suggest a connection to 
nature and the importance of enjoying life. 
The video may be trying to promote a 
positive and joyful attitude towards life.

What scene does this fMRI data record?

The fMRI data records a scene of a city street 
with a bus driving down the road.

(reference visual stimulus)

What is the weather?

The weather appears to be sunny, as the bus is 
driving down the street in the sun.

How do you feel when you hear the audio?

When I hear this audio, I feel like I am 
walking along the beach, with the sound of 
the waves crashing and the wind blowing.

Can you write a poem based on the audio?

Sure, here's a poem that I came up :
The waves crash against the shore, As the tide 
moves in and out. The water is calm and still, 
As the wind blows gently, but chill. The sand 
is soft and warm, As I walk along the beach, 
With the waves crashing and the wind 
blowing, I feel at peace and free.

(sea bench, calm waves)

What does this represent?

This is a 3D model of a cartoon-style black 
cat. The cat is designed in a simplistic, 
stylized manner, with exaggerated features 
typical of cartoon characters. It is black in 
color, with a glossy finish that gives it a shiny 
appearance. The model is likely used in 
animations, video games, or other digital 
media that require a fun, playful 
representation of a cat.

What's in the room?

The room contains a large teddy bear sitting 
on a yoga mat, a chair, a table, and a lamp. 
There are also several books scattered around 
the room.

Is there a person in the room?

No, there is no person in the room. The room 
is empty except for the teddy bear and the 
other items.

What is the people farthest from us doing?

The people farthest from us is standing in the 
snow, possibly observing the scene or waiting 
for his turn to ski.

What are the two people in front probably 
doing?

The two people in front are likely skiing, as 
they are holding onto a rope and skiing down 
a snowy slope.

Guess what happened in the motion.

Based on the motion, it seems like a person 
was painting a wooden piece using a brush. 
The motion shows the person's hand holding 
the brush and applying paint to the wooden 
surface. The motion also shows a close-up of 
the wooden piece, which is being painted. 
The motion does not provide any other 
context or information about the video, so it 
is difficult to say what specifically happened.

(GT: paints the wood)    (reference video)

(a) Image (b) Video (c) Audio (d) Point Cloud

(f) IMU(e) fMRI (g) Normal Map (h) Depth Map

Figure 3. Qualitative Results on Eight Modalities. All demo inputs are from the web or the testing set of corresponding modalities.

rectly align all modalities with text using a random initial-
ized model (i.e. UPM), the performance on image and video
will drop significantly. Instead, OneLLM with image-text
pretraining can better balance different modalities.
Number of Projection Experts. The number of projection
experts in UPM is closely related to the number of modal-
ities that OneLLM can accommodate. As shown in Tab. 7,
OneLLM with three projection experts is enough to hold all
modalities. Increasing the number of experts does not bring
about the desired improvement, while the results with one
expert is also not satisfactory.
Router Type. The modality router is to link multiple pro-
jection experts into a single module. Here we discuss three
types of router: constant router, sparse router and the de-
fault soft router. (a) Constant router links K experts with
a constant number 1/K. The output of constant router
is

∑K
k=1

1
K · Pk(x). (b) Sparse router only selects one

expert with the maximum routing weight. The output is
wk∗Pk∗(x) where k∗ = argmax

k
wk. As shown in Tab. 7

(d), soft router outperforms other two routers, indicating its
effectiveness for dynamic routing of multimodal signals.

4.4. Qualitative Analysis

Fig. 3 gives some qualitative results of OneLLM on eight
modalities. We show OneLLM can (a) understand both vi-
sual and textual content in images, (b) leverage temporal in-
formation in videos, (c) do creative writing based on audio

content, (d) understand the details of 3D shapes, (e) analyze
visual scenes recorded in fMRI data, (f) guess the person’s
action based on motion data, and (g)-(h) scene understand-
ing using depth/normal map. Due to space limit, we put
more qualitative results to the appendix.

5. Conclusion
In this work, we introduce OneLLM, which aligns eight
modalities with language using a unified framework. We
first train a basic vision LLM and then design a multimodal
framework with a universal encoder, a UPM and an LLM.
By a progressive alignment pipeline, OneLLM can handle
multimodal inputs with a single model. Besides, we also cu-
rate a large-scale multimodal instruction dataset and evalu-
ate OneLLM on 25 diverse benchmarks, showing its excel-
lent performance.
Limitation and Future Work. Our work faces two primary
challenges: (i) The absence of large-scale, high-quality
datasets for modalities beyond image. (ii) Fine-grained
multimodal understanding in high-resolution images, long
sequences video and audio etc. In the future, we will col-
lect high-quality datasets and design new encoders to realize
fine-grained multimodal understanding [8].
Acknowledgements. This work is partially supported by
the National Natural Science Foundation of China (Grant No.
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