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Abstract

The creation of new datasets often presents new chal-
lenges for video recognition and can inspire novel ideas
while addressing these challenges. While existing datasets
mainly comprise landscape mode videos, our paper seeks to
introduce portrait mode videos to the research community
and highlight the unique challenges associated with this
video format. With the growing popularity of smartphones
and social media applications, recognizing portrait mode
videos is becoming increasingly important. To this end, we
have developed the first dataset dedicated to portrait mode
video recognition, namely PortraitMode-400. The taxon-
omy of PortraitMode-400 was constructed in a data-driven
manner, comprising 400 fine-grained categories, and rigor-
ous quality assurance was implemented to ensure the accu-
racy of human annotations. In addition to the new dataset,
we conducted a comprehensive analysis of the impact of
video format (portrait mode versus landscape mode) on
recognition accuracy and spatial bias due to the different
formats. Furthermore, we designed extensive experiments
to explore key aspects of portrait mode video recognition,
including the choice of data augmentation, evaluation pro-
cedure, the importance of temporal information, and the
role of audio modality. Building on the insights from our
experimental results and the introduction of PortraitMode-
400, our paper aims to inspire further research efforts in
this emerging research direction.

1. Introduction
Most efforts in video recognition have focused on improv-
ing the accuracy and efficiency of different models and
architectures on public benchmarks. Over the past two
decades, there has been a dramatic shift in the types of video
recognition models, starting from bags of features [34, 41,
42, 45, 49, 54–56], moving on to convolutional neural net-
works [8, 13, 14, 22, 33, 52, 53, 58, 59, 65, 66], and more
recently, vision transformers [1, 2, 4, 7, 12, 30, 32, 35,

*Work is done during an internship at ByteDance.

PortraitMode-400

Figure 1. A glance of PortraitMode-400, which is the first dataset
dedicated to portrait mode video recognition. It covers videos
from 9 domains and 400 specific categories. We show video sam-
ples (left to right, top to down) for aerial yoga, riding neck, partner
dancing (pop music), acrobatics, cooking fish soup, catching crab,
styling hair with hairpins and opening mystery card packs, from
different domains of our dataset.

36, 40, 67]. With the evolution of various models, video
datasets have played a crucial role in driving each genera-
tion of models. The introduction of each video dataset has
guided the research community to focus on new challenges.
We have moved from using datasets collected in controlled
environments (e.g., KTH [43], Weizmann [5]) to more real-
istic videos (e.g., UCF101 [46], HMDB51 [27]), and now
to large-scale web video datasets (e.g., Kinetics-700 [9],
HowTo100M [37]).

While existing video datasets are mostly built on land-
scape mode videos, portrait mode videos have become in-
creasingly more popular on major social media applica-
tions. The shift from landscape mode to portrait mode is
not just changing the aspect ratios of the videos. It has sig-
nificant implications for the types of content that are cre-
ated and the spatial bias inherent in the data. Portrait mode
videos bring in distinct challenges for video recognition as
well. For example, they tend to focus more on the subject
(i.e., typically humans) with much less background context,
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and include more egocentric content. In addition, they con-
tain a lot of verbal communication that is essential to under-
stand the video content. There is a pressing need for portrait
mode video datasets to explore these new problems.

This paper introduces the first dataset dedicated to por-
trait mode video recognition, named PortraitMode-400 (ab-
breviated as PM-400), shown in Figure 1. The dataset con-
sists of 76k videos collected from Douyin1, a popular short-
video application, and annotated with 400 categories. The
taxonomy of PM-400 is built in a data-driven way by aggre-
gating search queries and covers a wide range of categories,
including sports, food, music, handicrafts, and daily activi-
ties, among others. Many of the categories are fine-grained,
as shown in Figure 2 (a). The data annotation was per-
formed by professionally trained human annotators, and ad-
ditional quality assurance was conducted to improve the an-
notation accuracy and consistency. We built PortraitMode-
400 as a single-label dataset, and removed videos that can
be tagged with multiple labels during annotation. While the
recent 3Massiv [18] dataset also includes a significant per-
centage of portrait mode videos, it is mostly built for multi-
lingual and multi-modal research, and only has 34 coarse
visual concepts, unlike PortraitMode-400.

In addition to introducing the PortraitMode-400 dataset,
we have also made preliminary attempts to investigate sev-
eral critical research problems related to portrait mode
video recognition:

• How well does a model trained on landscape mode videos
perform on portrait mode videos, and vice versa? We in-
vestigate this question by constructing a subset from the
Kinetics-700 dataset [9] for a rigorous comparison and
visualize classification heatmaps (shown in Figure 3 and
Figure 4) to reveal the differences in spatial bias resulting
from the change in video format.

• What are the optimal training and testing protocols for
portrait mode video recognition? We delve into vari-
ous components of state-of-the-art deep learning systems,
such as data augmentation, evaluation cropping strategies,
etc. Our discoveries challenge the existing conventions
for landscape mode videos, thus necessitating further ex-
ploration into portrait mode videos.

• How important is temporal information for portrait mode
videos? Can we recognize the actions from single
frames [17] or do we need to utilize temporal informa-
tion for accurate results? We explore different strategies
to leverage temporal information and find that temporal
information can substantially boost recognition accuracy.

• Audio is another critical modality for video understand-
ing [15, 24]. Does audio help portrait mode video recog-
nition? Our experiments show that even simple audio

1 Douyin is a popular social media application built for smartphones
and primarily features portrait mode short-form videos. https://www.
douyin.com/

integration can improve recognition accuracy, indicating
the importance of multimodal understanding for portrait
mode videos.

2. Related Work
Datasets play a crucial role in investigating research prob-
lems, particularly in applications like video recognition.
Several pioneering datasets for video recognition were col-
lected in a controlled setting, including KTH [43], Weiz-
mann [5], IXMAS [62], and UIUC [51], etc. The videos
in these datasets are typically staged with simple and static
backgrounds, and human actors are instructed to perform
scripted actions repeatedly. By simplifying the action
recognition problem, these datasets allow the models to fo-
cus on the action of interest. They have inspired the devel-
opment of hand-crafted features [25, 28, 29, 55] in combi-
nation with the bag of features models [11, 45].

Popular video websites, such as YouTube, have become
the primary source of video datasets. Unlike the controlled
datasets, Internet videos are more realistic and challenging
due to factors like background clutter, camera motion, etc.
Several datasets are created by collecting videos from web-
sites like YouTube, such as UCF101 [46], HMDB51 [27],
Activitynet [21], Kinetics-400 [23], Moments in Time [38],
etc. These datasets serve as the primary testbeds for the de-
velopment of many successful CNN architectures [8, 13, 14,
22, 33, 52, 53, 58, 59, 65, 66] and vision transformer mod-
els [1, 2, 4, 7, 12, 30, 32, 35, 36, 40, 67] in the deep learn-
ing era. A recent trend is to build large-scale pre-training
datasets, such as HowTo100M [37] and WebVid-10M [3],
using text supervision instead of labelled categories.

Social media applications have experienced tremendous
growth in recent years, creating a new type of video data
known as portrait mode short-form videos. These videos
differ significantly from conventional landscape videos
used in previous datasets, inspiring us to create a dataset
dedicated to portrait mode videos. It is worth noting that
the 3Massiv dataset [18] also includes a significant propor-
tion of portrait mode videos. However, it was intentionally
designed for multi-lingual and multi-modal purposes, fo-
cusing on visual concepts rather than specific actions, with
only 34 coarse concepts in total.

3. The PortraitMode-400 dataset
In this section, we provide a comprehensive overview of the
process behind constructing our PortraitMode-400 dataset.
We begin by discussing our data-driven approach to build-
ing a taxonomy, which is based on user queries. Next,
we detail our rigorous annotation process and the criteria
we applied to ensure high-quality and consistent annota-
tions. Finally, we compare PortraitMode-400 with exist-
ing datasets that are relevant to our work, highlighting the
unique contributions and advantages of our dataset.
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PortraitMode-400

(a) Hierarchical structure of our taxonomy

(b) Distribution of video numbers per category

(c) Distribution of aspect ratios for retrieved videos
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Figure 2. Overview of our dataset. (a) We construct our taxonomy in a three-level hierarchical structure, which contains 9 domains and
400 leaf-node categories. (b) We show the distribution of video numbers per category in our dataset, which contains a relatively balanced
distribution of categories. (c) We plot the distribution of aspect ratios for the retrieved videos via search queries. The majority of videos
(over 85%) are in portrait mode, with 16:9 being the dominant format.

3.1. Taxonomy

The videos in PortraitMode-400 were sourced from
Douyin1. To better capture the various types of content
that portrait mode videos can provide, we created a new
taxonomy for PortraitMode-400 instead of reusing cate-
gories from existing datasets. Our approach involved build-
ing the taxonomy based on popular search queries from
Douyin users, which often include text descriptions about
the corresponding videos. However, we found that many
search queries lacked visual semantic meaning, such as
celebrity names or song names. To address this, we manu-
ally selected candidate queries containing verbs (e.g., “eat-
ing cakes”) or nouns indicating potential actions (e.g., “con-
cealer” which often leads to videos about how to use a
concealer). After manually examining approximately 38k
search queries, we identified about 2.4k usable queries with
corresponding videos that might contain actions or motions,
as we aimed to incorporate more temporal information.

With the initial set of selected search queries, our second
step is to recursively aggregate the queries in a bottom-up
manner. This process generates increasingly abstract con-
cepts, resulting in a hierarchical tree structure taxonomy,
as illustrated in Figure 2 (a). In addition to producing the
final taxonomy, we have two other objectives in this step:
1) merging similar queries into a final leaf node category
of the taxonomy; 2) splitting or removing queries that may
overlap with existing categories, so that all final categories
are mutually exclusive. For example, we merge tutorials
for fitness, exercises for weight loss and fat-burning fitness

exercises to aerobics; we split calligraphy exercise into pen
calligraphy and brush calligraphy. After completing the
second step, we obtained about 500 candidate categories
derived from the 2.4k selected search queries, which are or-
ganized in a three-layer hierarchy as depicted in Figure 2.

The taxonomy used in the Kinetics-400 [23] dataset is
built through a combination of reusing categories from pre-
vious datasets and crowdsourcing. In contrast to Kinetics-
400, our taxonomy is developed using a data-driven ap-
proach that better reflects the current trends in social me-
dia. Besides, our taxonomy covers a wider range of con-
tent, including everyday activities (food, beauty care, enter-
tainment, etc.) , natural phenomena (raining, snowing, etc.)
as well as transportation-related activities (airplane taking
off, launching rocket, etc.). This is in contrast to existing
datasets that mostly focus on human actions. Furthermore,
our taxonomy offers more fine-grained categories compared
to 3Massiv [18], which is designed for coarse visual con-
cept classification. For instance, while 3Massiv has only
one class for food, our taxonomy includes 89 distinct cate-
gories under the food parent node, covering various types of
food and food-related activities such as cooking and eating.

3.2. Sampling and annotation

For each of the 500 candidate categories in the taxonomy,
we have about 2 to 50 selected search queries associated
with it, as described in Section 3.1. We retrieve 1.2k to 740k
videos for each query from Douyin1 depending on how fre-
quently the query has been searched. Subsequently, we cre-
ate a pool of videos for each category by aggregating all the
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Dataset % of PM # of Classes # of Videos Duration Avg. Duration Year

S100-PM [9] 100% 100 20k 1s-10s 9s ’19
3Massiv [18] 95% 34 50k 5s-2min 20s ’21

PortraitMode-400 100% 400 76k 2s-1min 27s ’23

Table 1. Comparison of different portrait mode video datasets. S100-PM is a portrait-mode-only subset sampled from Kinetics-700,
as detailed in Section 3.3. 3Massiv contains 5% landscape mode videos and is designed for coarse visual concept recognition. Our
PortraitMode-400 contains portrait mode videos only and has more videos in a diversified taxonomy (400 classes).

retrieved videos from their corresponding queries. Figure 2
(c) illustrates the distribution of the aspect ratio of the re-
trieved videos. Although 16:9 is the dominant aspect ratio,
there are also other aspect ratios for portrait mode videos,
such as 4:3. For the video pool, we use a few criteria to sam-
ple target videos for annotation: 1) we select videos whose
aspect ratios (height/width) are greater than 1 to ensure that
PortraitMode-400 includes only portrait mode videos; 2)
we select videos whose duration is shorter than 1 minute
to limit annotation costs; and 3) we select videos that have
been viewed over 700 times by Douyin users to ensure that
our dataset better reflects the typical types of content for
portrait mode videos.

Finally, we perform deduplication on the video pool to
eliminate duplicated or similar videos. To achieve this,
we extract feature vectors of each video using Uniformer-
Base [30] pretrained on Kinetics-700 dataset [9]. Next, we
build a graph by connecting video pairs with feature vec-
tors having a cosine similarity greater than 0.98. We then
apply the Louvain algorithm [6] on the graph to identify
video clusters and discard all the videos in each cluster ex-
cept one. About 25% of videos are removed through dedu-
plication, and only videos that meet all the aforementioned
criteria move on to the next stage for human annotation.

The human annotation task is straightforward. An anno-
tator is presented with a given category and its video pool,
and is asked to confirm or deny whether the category name
is a good match for the content of each video. Before start-
ing annotation, annotators undergo training to learn the an-
notation criteria for all candidate categories, and they are
required to pass a quality check test. Only annotators with
an accuracy greater than 95% are qualified for annotation
to ensure the accuracy and consistency of their annotations.
During annotation, annotators discard videos that may be
confused with multiple categories of our taxonomy, ensur-
ing that PortraitMode-400 is a strictly single-label dataset.
Under our restricted rules, approximately 65% of videos are
rejected. To ensure annotation quality, approximately 20%
of annotations are reviewed by two additional examiners.

3.3. Comparisons with existing datasets

After finishing annotating all the videos, we keep all the cat-
egories that have at least 100 videos. We keep at most 400

videos per category so that the distribution of videos across
different categories are more or less balanced, as shown in
Figure 2 (b). Our dataset contains 76k videos in total, span-
ning over 400 categories. We randomly sample 50 videos
per category for testing, and the rest are used for train-
ing. Table 1 compares the statistics of PortraitMode-400
with other relevant datasets. Though 3Massiv mostly in-
cludes portrait mode videos, it is a multi-lingual and multi-
modal dataset designed for concept recognition with only
34 coarse concepts. PortraitMode-400 has a more diversi-
fied and fine-grained taxonomy that is dedicated for portrait
mode video recognition.

To conduct a rigorous comparison between landscape
mode and portrait mode video recognition, we created two
subsets from the Kinetics-700 dataset: a portrait mode sub-
set and a corresponding landscape mode subset. The de-
tails of these subsets are shown in Table 1. We first con-
structed the portrait mode subset, named Selected-100 Por-
trait Mode (S100-PM), using the top 100 categories with
the most portrait mode videos in Kinetics-700. Each cate-
gory in S100-PM contains 160 to 352 portrait mode videos,
resulting in a total of 20k videos. To build a counter-
part landscape mode version from Kinetics-700, we sam-
pled the same number of landscape mode videos as S100-
PM for each category, resulting in a landscape mode subset
named Selected-100 Landscape Mode (S100-LM). There-
fore, S100-PM and S100-LM have the same taxonomy and
the same video distribution per category. Although the
video content of S100-PM and S100-LM may differ due to
different video formats, we believe that they are still useful
benchmarks for illustrating and validating the difference be-
tween landscape mode and portrait mode video recognition.
We have also tried AutoFlip2 to convert landscape mode
videos to portrait mode, thereby ensuring the same video
content in both subsets. However, the converted portrait
mode videos had unsatisfactory data quality. Thus, building
S100-PM and S100-LM from Kinetics-700 remains the best
option for rigorously comparing different video formats on
recognition tasks.

2https://ai.googleblog.com/2020/02/autoflip-
open-source-framework-for.html
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Model Train Val. Acc. GFLOPs×views

X3D-M[13]
PM

PM 52.0 4.9×3×10
LM 41.2 4.9×3×10

LM
PM 44.5 4.9×3×10
LM 43.5 4.9×3×10

Uniformer-S[30]
PM

PM 42.0 41.8×1×4
LM 36.2 41.8×1×4

LM
PM 40.1 41.8×1×4
LM 40.8 41.8×1×4

MViTv2-S[32]
PM

PM 41.0 64.0×1×5
LM 35.7 64.0×1×5

LM
PM 33.7 64.0×1×5
LM 36.3 64.0×1×5

Table 2. Cross mode evaluation with different models on Selected-
100. Evaluation results performed on the PM subset correspond to
the last column of Table 3. Views during inference are shown by
the multiplication of # of spatial crops and # of temporal views.
Rows highlighted perform best for the corresponding model.

4. Landscape Mode vs. Portrait Mode

Landscape and portrait mode videos, often shot in different
ways and purposes, display unique content and biases. This
affects subjects’ action patterns and overall visual dynam-
ics. Therefore, models trained on one mode may struggle in
the other. This section examines how models adapt across
these different modes, focusing on their spatial information
and cross-mode generalizability.

4.1. Cross Mode Evaluation

To show the impact of the different domain priors of land-
scape and portrait mode videos on video recognition tasks,
comparisons need to be made between the same video con-
tent shot in portrait mode and landscape mode. Ideally, for
each action or event, we should shoot it with both portrait
mode and landscape mode cameras. However, such a pro-
cess is time-consuming and hard to achieve. Therefore, we
opt for sampling original portrait mode videos and land-
scape mode videos with the same distribution and taxonomy
from Kinetics-700 [9], as detailed in Section 3.3.

To explore the impact of the different priors to video
recognition models, we conducted extensive experiments
using different subsets of S100 (S100-PM and S100-LM).
We trained various models on different subsets and evalu-
ated their performance on landscape mode videos and por-
trait mode videos, by randomly selecting 25% videos as the
validation set for each subset. For example, evaluated on
S100-PM, models trained with S100-PM and S100-LM re-
spectively can be fairly compared to see which video type is
more effective to train models for videos in portrait mode.
We conduct the experiments on three models, i.e. a CNN
model X3D [13], a hybrid transformer model Uniformer
[30], and a pure transformer model MViTv2 [32] to show
the impact of video formats on different model architec-

tures. During training and testing, we resize frames based
on the shorter side while preserving aspect ratios and crop
them into 224×224 pixel squares for input. We train all
models from scratch without pretraining to avoid the impact
of pretraining dataset. Popular pretraining datasets such as
ImageNet [26] are biased towards landscape images which
may add additional bias to our analysis.

We summarize all results as in Table 2. By compar-
ing results in each row, we find that models trained on PM
videos has a larger performance gap on the PM and LM test-
sets than models trained with LM videos. Moreover, mod-
els trained on PM data usually have better performance on
PM testset compared to the models trained with LM videos.
For example, evaluated on S100-PM, X3D trained with PM
videos outperforms the model trained with LM videos by a
large margin of 8% (52.0% vs. 44.5%). When evaluated
on S100-LM, X3D achieves relatively comparable perfor-
mance either trained with PM videos or LM videos (41.2%
vs. 43.5%). This indicates that training videos in portrait
mode are necessary to achieve satisfying performance on
portrait mode videos.

4.2. Spatial priors

To investigate the different spatial data priors of portrait
mode videos and landscape mode videos, we extensively
evaluate the models trained on S100-PM and S100-LM on
different frame positions to show the importance of frame
features at different locations.

Specifically, we first train Uniformer-S [30] with
112×112 crops and shorter-side resized (set to a random
value between 256 and 320) frames on either S100-PM
or S100-LM. We name the resulted two models Probing-
P and Probing-L. Then we evaluate the models with crops
of 112×112 on different locations in a sliding window at
the shorter-side resized video clips. The sliding strides vary
for portrait mode and landscape mode videos in both height
and width. For portrait mode videos, the stride in height is
set to 1/16 of the frame height and the stride in width is set
to 1/9 of the frame width. Sliding strides of landscape mode
videos are adjusted vice versa.

Using Probing-P and Probing-L, we compose an accu-
racy map of size 16 × 9 from the accuracies obtained from
the different evaluation positions on the S100-PM valida-
tion set as shown in Figure 3 (a) and Figure 3 (b). We fur-
ther compute the difference between the two heat maps in
Figure 3 (a) and (b) and obtain the difference map as in
Figure 3 (c). Here, the difference value in each position
indicates the gap of recognition abilities of the same model
trained on landscape mode videos and portrait mode videos,
respectively. If a value on the different map is greater than
0, it indicates that Probing-P achieves higher accuracy than
Probing-L. For example, as outlined by the yellow boxes in
Figure 3 (c), mark 1 indicates the model trained with PM
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Figure 3. The heatmaps of evaluating the Probing-P (a) and
Probing-L (b) at different spatial locations on the validation set of
S100-PM. (c) shows the accuracy differences between Probing-P
and Probing-L.

videos is stronger to recognize the video categories at this
location, while mark 2 indicates models trained by PM and
LM videos have similar performance at this location. In
general, it can be inferred from the brighter areas in Figure 3
(a) that informative areas in PM videos are more densely
concentrated at the middle to lower half of the video. It can
also be inferred from Figure 3 (c) that the bottom part of the
PM videos contains specific domain knowledge that does
not exist in the LM videos, leading to bad performance of
models trained on LM videos in this region.

Similarly, we show the accuracy heat maps of the
Probing-L and Probing-P evaluated on the LM videos in
Figure 4 (a) (b), with the difference of the two heat maps
shown in Figure 4 (c). It can be seen that the informative
areas in LM videos are in the center part of the video, and
the left and right sides on the video frame contain specific
domain knowledge that cannot be learned from PM videos.
For example, some actions with a wide background in LM
videos may not have similar visual cues in the PM videos.

5. Comparison of data preprocessing recipes
Effective data preprocessing is essential for achieving high
performance in video classification tasks. In this section, we
investigate the impact of different data preprocessing strate-
gies on the performance of portrait mode video recognition.
We hypothesize that videos in different aspect ratios may
require different crop resolutions for optimal performance.
To test this hypothesis, we perform extensive experiments
on various portrait mode video datasets, using different crop
resolutions and data augmentation techniques. Through our
experiments, we identify the best recipes for portrait mode
videos when using CNN or transformer models, which are
different from that of landscape mode videos.

5.1. Resizing and area sampling

Resizing and cropping are critical steps in the data prepro-
cessing pipeline for video recognition, as they allow videos

Figure 4. The heatmaps of evaluating the Probing-L (a) and
Probing-P (b) at different spatial locations on the validation set of
S100-LM. (c) shows the accuracy difference between Probing-L
and Probing-P.

to be processed efficiently and are also important ways of
data augmentation. Different models in various architec-
tures adopt different strategies. The two popular strategies
are the Inception-style method [12, 14, 30, 35, 48, 50], and
the shorter-side resizing method [44]. In this subsection, we
will explore these two methods in more detail and investi-
gate their effectiveness for portrait mode video recognition.

The shorter-side resizing method is widely used in video
recognition methods [4, 8, 10, 13, 31, 39, 47, 53, 57, 59–
61, 63, 64, 66, 68]. It involves resizing the video frames
so that the shorter side of the frame is set to a length
that is fixed [10, 64] or randomly sampled within a range
[4, 8, 13, 31, 39, 47, 53, 57, 59–61, 63, 66, 68], while the
longer side is scaled proportionally. Then the frames are
centre-cropped to a square shape, typically 224×224 and
passed into the model. This approach ensures that the in-
put frames have a consistent aspect ratio and are cropped
without distortion. In contrast, the Inception-style method
augments the shorter-side resizing method with two addi-
tional random sampling steps. The first one is to sample
a target pixel number from the whole-size video frame by
the random ratio between 8% and 100%. Then, it randomly
samples an aspect ratio between 3/4 and 4/3 and reshapes
the crop area accordingly. Finally, it crops the frames at a
random position and resizes them to a fixed resolution in
squares (e.g., 224×224) without keeping the aspect ratio.
This approach can sample a diverse set of inputs and is de-
signed to adapt the model to videos in different sizes.

We carry out extensive experiments on models of dif-
ferent architectures with the two resizing strategies in Ta-
ble 3. To alleviate the bias introduced by mixed-orientation
data, the models are trained from scratch and we keep any
other training setup identical to their original papers, except
for learning hyper-parameters, such as batch size and learn-
ing rate. During inference, identical augmentation and sam-
pling methods are adopted for different recipes. We guide
the readers to supplemental materials for more details.

As shown in Table 3, each model is evaluated on three
different portrait mode video benchmarks. For the CNN-
based model, i.e., X3D-M [13], the random scaling strategy
from the Inception-style method brings an improvement of
2.2% (54.2% vs. 52.0%) on S100-PM [9], 1.1% (53.7%
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Model Data Incep. Short. GFLOPs×views

X3D-M[13]
S100-PM 54.2 52.0 4.9×3×10
3Massiv 53.7 52.6 4.9×3×10
PM-400 61.7 61.2 4.9×3×10

Uniformer-S[30]
S100-PM 39.7 42.0 41.8×1×4
3Massiv 42.8 43.6 41.8×1×4
PM-400 50.2 50.4 64.0×1×5

MViTv2-S[32]
S100-PM 36.9 41.0 64.0×1×5
3Massiv 50.4 52.1 64.0×1×5
PM-400 61.7 62.0 64.0×1×5

Table 3. Comparison of top-1 accuracy (%) of different resizing
and area sampling strategies for portrait mode videos, i.e., incep-
tion style (Incep.) and shorter-side style(Short.). Views during
inference are shown by the multiplication of # of spatial crops and
# of temporal views.

Model Data
Training crops

224×224 256×192 288×192

X3D-M[13]
S100-PM 52.0 51.6 50.8
3Massiv 52.6 52.5 50.8
PM-400 61.2 61.0 60.8

Uniformer-S[30]
S100-PM 42.0 43.3 45.4
3Massiv 43.6 44.6 45.8
PM-400 50.4 50.8 51.6

MViTv2-S[32]
S100-PM 41.0 40.0 45.5
3Massiv 52.1 52.3 53.8
PM-400 62.0 61.4 62.8

Table 4. Top-1 accuracy (%) of different training crop resolu-
tions. The models are always tested with the same square crops in
224×224 to ensure the same inference cost across different train-
ing crop resolutions.

vs. 52.6%) on 3Massiv [18] and 0.5% on PM-400. Differ-
ently, as for the transformer-based models, i.e., Uniformer-
S [30] and MViTv2-S [32], randomly scaled input crops
bring down the accuracy by a large margin. For example,
the random scaling reduces the performance of Uniformer-
S by 2.3% (42.0% vs. 39.7%) on S100-PM, 0.8% (43.6%
vs. 42.8%) on 3Massiv and 1.3% (72.1% vs. 70.8%) on
PM-400. MViTv2-S also shows performance drops from
0.3% to 4.1% across benchmarks. This suggests that opti-
mal strategies diverge from those used in mixed orientation
benchmarks like Kinetics[23].

It may be hard to determine the cause of the interest-
ing phenomenon, but we can make a reasonable assumption
that it is due to the different data priors in portrait mode
only video benchmarks, such as S100-PM and PM-400.
With portrait mode videos, the object and its movement are
typically limited to a vertical space, which may result in
unique visual patterns that are not present in hybrid orienta-
tion benchmarks, such as Kinetics. While the cause requires
further investigation, these results suggest that there may be
unique characteristics of portrait mode videos that require
specialized recognition methods.

Model Data
Testing crops

256×192 288×192

X3D-M[13]
S100-PM 51.40.2↓ 50.40.4↓
3Massiv 52.60.1↑ 52.01.2↑
PM-400 62.91.9↑ 63.12.3↑

Uniformer-S[30]
S100-PM 44.41.1↑ 46.51.1↑
3Massiv 45.71.1↑ 47.31.5↑
PM-400 51.91.1↑ 53.31.7↑

MViTv2-S[32]
S100-PM 39.80.2↓ 46.81.30↑
3Massiv 52.70.4↑ 54.81.0↑
PM-400 62.10.7↑ 63.70.9↑

Table 5. Top-1 accuracy (%) of using the same resolution for both
training and testing crops. We also report the performance differ-
ence compared with using 224×224 testing crops from the first
column of Table 4, where ↑ means higher result.

5.2. Shape of frame crop

In this subsection, we explore the impact of different crop
strategies on model performance in portrait mode video
recognition. Specifically, we investigate the performance
of models trained and tested on crops of varying sizes and
aspect ratios.

Traditional methods typically use square frame crops to
ensure even coverage of object and movement in both ver-
tical and horizontal directions. However, we argue that
this approach may not be optimal for portrait mode videos,
which typically contain object and movement information
in vertical directions. Cropping the frames into squares
could potentially result in a loss of critical information and
more background noise. As shown in Figure 3, portrait
mode videos possess more informative content distributed
vertically, and cropping into squares may not effectively
capture this information.

To comply with the unique information distributive char-
acteristics, we propose to crop the areas in vertical rectan-
gles and input them directly into models without distortion.
We experiment with crops in different aspect ratios and in
similar pixel numbers to the square input, i.e., 256×192 and
288×192, in order to fairly compare the models under dif-
ferent input resolutions. With input shape changed, we only
modify the last global pooling layer. We keep any other
training details identical to the setup using square inputs.

As shown in Table 4, we train models with different
input crops on portrait mode video benchmarks and test
with square crops, i.e., 224×224 to ensure identical in-
ference cost. It is thrilled to see that increase in aspect
ratio introduces continuing performance improvement for
transformer-based models, i.e., Uniformer-S and MViTv2-
S. We also observe that change in aspect ratio degrades
the performance of X3D-M, showing different behaviour to
transformer-based models. The potential reason could be
due to the fixed square receptive field of convolution net-
works regardless of the input resolutions, which is not com-
patible with the elongated image shape.
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Data Model # of Frames Top1-Acc.

K400 [23]
Uniformer-frames 16×4 72.1
Uniformer-S [30] 16×4 76.64.5↑

3Massiv [18]
Uniformer-frames 16×4 41.9
Uniformer-S [30] 16×4 42.80.9↑

PM-400
Uniformer-frames 16×4 45.7
Uniformer-S [30] 16×4 50.34.6↑

Table 6. Temporal information importance: Effect of utilizing
temporal information for video recognition on different benchmarks.

Data Modality Top1-Acc.

3Massiv [18]
Visual 52.7
Audio 31.6

Visual+Audio 54.9

PM-400
Visual 54.6
Audio 15.2

Visual+Audio 57.0

Table 7. Audio importance: Comparison of differ-
ent modalities with offline feature embeddings.

In order to further validate the benefits of rectangu-
lar input, we evaluate the performance of X3D-M [13],
Uniformer-S [30] and MViTv2-S [32] on non-square train-
ing resolutions and tested them on three portrait mode video
benchmarks. We find that the three models achieve higher
accuracies on 3Massive and PM-400 with both crops in
256×192 and 288×192. On S100-PM, Uniformer-S and
MViTv2-S achieve better testing results with 288 × 192
resolution, with FLOPs increased by around 15% (47.5G
vs 41.8 for Uniformer-S; 72.7G vs. 64.5G for MViTv2-
S). Note that FLOPs of 256×192 are smaller than square
224×224 (single clip inference cost: 40.6G vs. 41.8G for
Uniformer-S; 62.9G vs. 64.5G for MViTv2-S). The perfor-
mance boost further supports the potential benefits of rect-
angular input for video recognition in portrait mode.

6. The importance of temporal information
In this subsection, we investigate the importance of utilizing
temporal information for portrait mode video recognition.
We show that the PortraitMode-400 is a valuable resource
for evaluating video models in the challenging setting of
portrait mode video recognition.

We design two baselines with different temporal utiliza-
tion approaches and extensively evaluate the models trained
on Kinetics-400 [23], 3Massiv [18] and our PortraitMode-
400. Specifically, we build our baselines with Uniformer-S
and train the models with 224 × 224 crops. Uniformer-
frames is constructed with image-based Uniformer-S and
temporal aggregation of predicted logits using mean pool.
It serves as a naive baseline since the temporal informa-
tion is incorporated simply by merging the predicted log-
its across frames. For more advanced temporal correspon-
dance, we train a video-based Uniformer-S endowed with
self-attention on temporal dimension, building and learning
temporal relations in different levels.

As shown in Table 6, by leveraging temporal self-
attention, Uniformer-S obtain accuracy improvement by
4.5% and 4.6% on Kinetics-400 and PortraitMode-400 re-
spectively. Interestingly, the 3Massiv dataset, most of
which videos are in portrait mode, does not show as large of
a performance gain from using temporal information as our
PM-400. In contrast, our PortraitMode-400 dataset shows a
significant performance gain from using temporal informa-

tion, attributable to its diverse collection of videos rich in
intricate temporal dynamics.

7. The importance of the audio modality

In this section, we aim to explore the significance of au-
dio information in portrait mode video recognition. To
achieve this, we adopt the R3D-50 [19] backbone trained
on Kinetics-700 [9] for spatio-temporal modeling and the
VGG [20] model trained for sound classification [16] for
audio modeling, following the practice in 3Massiv [18]. We
freeze the audio-visual backbones and train the classifier
and multimodal fusion layers.

Our findings, as presented in Table 7, reveal that the
model trained with audio consistently outperforms the
model trained without audio on both the PM-400 and 3Mas-
siv by approximately 2.4 points. This indicates that au-
dio information plays a crucial role in portrait mode video
recognition. Incorporating audio information can signifi-
cantly enhance the performance of the model. We argue
that audio cues can provide additional information about the
subject’s actions, emotions, and the surrounding environ-
ment, which poses unique challenges for video recognition
in portrait mode.

8. Discussions

In this work, we advocate conducting research on portrait
mode videos. To this end, we introduce the PortraitMode-
400 dataset dedicated for portrait mode video recognition
with a fine-grained taxonomy. We also make initial attempts
to explore the specific properties of portrait mode videos,
including their spatial bias, and the optimal training and
evaluation protocols, with effects of the temporal informa-
tion and audio modality. We believe our dataset can serve
as a testbed to facilitate further research such as novel ar-
chitecture designs and multi-modality modeling on portrait
mode videos.
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