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Abstract

Zero-shot referring expression comprehension aims at
localizing bounding boxes in an image corresponding to
provided textual prompts, which requires: (i) a fine-grained
disentanglement of complex visual scene and textual con-
text, and (ii) a capacity to understand relationships among
disentangled entities. Unfortunately, existing large vision-
language alignment (VLA) models, e.g., CLIP, struggle with
both aspects so cannot be directly used for this task. To
mitigate this gap, we leverage large foundation models to
disentangle both images and texts into triplets in the for-
mat of (subject,predicate,object). After that,
grounding is accomplished by calculating the structural
similarity matrix between visual and textual triplets with a
VLA model, and subsequently propagate it to an instance-
level similarity matrix. Furthermore, to equip VLA mod-
els with the ability of relationship understanding, we de-
sign a triplet-matching objective to fine-tune the VLA mod-
els on a collection of curated dataset containing abun-
dant entity relationships. Experiments demonstrate that
our visual grounding performance increase of up to 19.5%
over the SOTA zero-shot model on RefCOCO/+/g. On the
more challenging Who’s Waldo dataset, our zero-shot ap-
proach achieves comparable accuracy to the fully super-
vised model. Code is available at https://github.
com/Show-han/Zeroshot_REC.

1. Introduction

Visual grounding is a fundamental task across computer
vision and natural language processing, where the goal is
to find the correspondences between image content and
textual descriptions. It has broad applications in image
captioning [18, 53], visual question answering [43, 66],
vision-language navigation [11], etc. Collecting detailed
grounding annotations to train specialist models, however,
is cumbersome. Therefore, zero-shot visual grounding
[30, 38, 54] is an attractive alternative.

Cat touching a paper roll

A man watches as a man shoots over a man

Figure 1. Illustration of how we disambiguate visual entities
based on their interactions with other entities. The same entity
or relationships in the image and caption are in the same color.

As a visual grounding task, the essence of referring
expression comprehension (REC) is the alignment of text
queries with corresponding image regions. To achieve this
goal, it is critical for a grounding model to understand the
relationships of entities[28], both within and cross different
modalities (visual vs. textual), when identifying referred en-
tities within an image. As shown in the upper part of Fig. 1,
the touching relationship is the key to resolve the ambi-
guity of identifying the correct cat. Similarly, the lower
part of Fig. 1 illustrates a more complex situation where
multiple entities are engaged in various interactions. Both
scenarios highlight the importance of relationship under-
standing within both the image and caption, where entities
are not merely isolated elements but interact dynamically
with others in the scene. In a zero-shot learning context,
the task of understanding these relationships can be more
challenging, as the model lacks exposure to specific train-
ing instances that could aid in interpretation.

Recent advances in zero-shot REC [30, 54, 65] have
been largely driven by the integration of large-scale vision-
language aligned (VLA) models such as CLIP [47] and
FLAVA [52], which serve as bridges connecting text and
image domain. These approaches, however, fall short in
relationship understanding. On the one hand, in the tex-
tual domain, existing approaches adopt hand-crafted lan-
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guage parsers [54, 65] to decompose the input caption into
a set of phrases, which are fragile and do not generalize
well to long, complex captions in real-world applications,
as shown in the bottom of Fig. 1. On the other hand, the
visual relationship understanding capability of VLA mod-
els is inherently not good enough. Recent studies have re-
vealed that VLA models behave like “bags-of-words” [67],
and demonstrated that they fail to perform beyond chance
level at simple tasks requiring compositional understand-
ing [7, 8, 12, 57, 67]. Some effort have been dedicated
to mitigate this issue by generating hard negative prompts
through word replacement [8, 20, 67], caption augmenta-
tion [7, 8], and feature augmentation [22]. These rule-based
methods, however, are limited in producing diverse samples
and have potential bias of design pattern, consequently re-
stricting their generalization capabilities.

In this paper, we focus on the REC task by explic-
itly modeling the entity relations within both images and
captions using the structural similarity between them to
solve the zero-shot visual grounding problem. Specifi-
cally, we decompose the image and caption into two sets of
triplets in the form of (subject,predicate,object),
in which each triplet captures a pair of potential entities
with their interrelation. By considering the similarity of
subject, object, and predicate jointly, we can find
better matchings of object proposals and their referrings.
Compared with existing work [54], our approach is more
principled and eliminates the ad-hoc post-processing spa-
tial relation resolver. More importantly, to improve the re-
lationship understanding in the caption, we resort to Chat-
GPT and leverage its powerful in-context learning capabil-
ity [56, 59] for the triplet decomposition to find all possible
relation triplets given a sentence. In contrast to the depen-
dency parser in [54], our parsing works better when dealing
with long captions and do not restrict to spatial relation-
ships (e.g., to the left of), which can fully capture
the rich compositional semantics present in actions or inter-
actions, such as walking or talking to.

To address the limitation of a VLA model’s visual re-
lationship understanding, we harness a curated collection
of data sources rich in relational knowledge, which in-
clude human-object interaction datasets [3, 46] and image
scene graph dataset [27]. Similar to our grounding pipeline,
we isolate visual entities and construct triplets in both vi-
sual and textual sides and then implement a triplet-level
contrastive learning objective to fine-tune the VLA model.
Compared with the existing rule-based negative prompts
construction, this design has two unique advantages. First,
by decomposing a single image into multiple triplets, we
can obtain more training instances and improve the diver-
sity of the training data than simply using the entire im-
age for fine-tuning. Furthermore, the isolation of entities
removes the distraction of other content in the image, pro-

viding more useful supervision for the model fine-tuning.
We fine-tune a VLA model in a parameter-efficient man-
ner [15] using LoRA [19], improving its visual relationship
understanding while preserving its powerful generic feature
representations learned from large-scale data. Our resulting
model is called VR-VLA (Visual Relationship VLA).

Experimental results show that on the standard Ref-
COCO/g/+ datasets [42, 63], we can surpass the SOTA zero-
shot baseline [54] up to 19.5%, and an average of 9.7%. On
the challenging Who’s Waldo dataset [6], whose captions
are much longer and depict much richer interactions of hu-
mans, our zero-shot method significantly outperforms [54],
achieving comparable accuracy to supervised methods. We
also conduct ablation studies validating the effectiveness of
our model design.

To summarize, our main contributions are three-folded.
(1) A novel zero-shot visual grounding model, where we
harness the powerful capabilities of foundation models
(e.g., ChatGPT and CLIP) to explicitly model the structural
similarity between entities. (2) A novel recipe to improve
a VLA model’s visual relationship understanding by effi-
ciently incorporating the supervision from a collection of
curated data sources. (3) We report SOTA zero-shot vi-
sual grounding results on the REC datasets and also show
promising results on the Who’s Waldo dataset, where our
zero-shot approach achieves comparable accuracy to the
fully supervised method.

2. Related Work
Visual grounding. Based on the focus of the ground-
ing task, visual grounding diverges into two main cate-
gories. The first emphasizes the noun properties of the
query text. Precise understanding of the noun’s meaning
enables locating the corresponding grounding box in the
image. Representative datasets contain MS-COCO [37],
Object365 [49] (fixed-category), Flickr30K Entities [45]
(open-vocabulary), etc. The second category emphasizes
comprehending the interrelations among entities to localize
the correct visual entity (potentially from among many sim-
ilar ones) corresponding to the query text. Representative
datasets contain RefCOCO/+/g [42, 63], Who’s Waldo [6],
etc. Our research of interest belongs to the second category,
where relations are strong grounding clues.

Based on the use of grounding data, visual grounding
can be classified into supervised and zero-shot categories.
The majority of research [23, 35, 73] focuses on supervised
visual grounding, where models are specifically designed
and trained with grounding data for this purpose. Con-
versely, zero-shot visual grounding methods [30, 38, 54]
adapt pre-existing vision-language models for grounding
tasks. Our work is situated within this zero-shot visual
grounding paradigm.
Visual relationship understanding. Images and texts are
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constructed using fundamental elements — objects in im-
ages and noun spans in texts — along with their interactions
and relationships. For a model to understand relationship,
it must not only detect individual entities but also establish
relational links between them. Research communities such
as human-object interaction [3, 10, 24, 25, 34, 40, 46, 69–
71, 75] and visual scene graph [27, 33, 55, 60, 61, 68, 72,
76] emphasize the relational aspect for visual tasks.

Visual relationship understanding is also highly rele-
vant to the compositional reasoning [8, 12, 17, 20, 22, 67]
ability for VLA models. Although we anticipate that
VLA models, trained via contrastive learning on extensive
image-text pairs, would inherently develop a capacity for
compositional reasoning, the reality is somewhat different.
Most SOTA VLA models behave like “bags-of-words” [67].
They are capable of matching textual entities with corre-
sponding visual elements, but falling short in interpreting
their relationships or attributes. To address this, many stud-
ies have implemented strategies such as introducing nega-
tive text prompts [7, 8, 67] in training batches — including
noun substitutions, attribute and verb modifications, cap-
tion augmentation — or integrating scene graphs [17] dur-
ing training or inference. In our work, we show that fine-
tune the VLA models on the visual relationship datasets can
alleviate this problem. Furthermore, the explicitly defined
structural representation also help strengthen the composi-
tional reasoning for visual grounding tasks.
Language parsing. In the language side, structure predic-
tion [1, 5, 44, 50] is well studied and aims for solving sev-
eral problems including entity recognition [9, 32, 51], rela-
tion classification [14, 74], semantic role labeling [2, 16],
event extraction [21, 31], coreference resolution [29, 58],
etc. The acquired structural representation can be illustrated
as either a language parsing tree [54] or a set of labels that
indicate the respective roles of each word [50].

3. Proposed Approach

Our proposed grounding pipeline contains two stages. First,
we decouple image and text entities and construct triplets
in the format of (subject,predicate,object). Sec-
ond, we calculate triplet-level similarity matrix and prop-
agate it to the instance-level and then obtain the bounding
box with the highest similarity score. The primary focus in
our matching pipeline is to accurately model the relation-
ship between entities, which is achieved by the the triplet-
level structural similarity, as shown in Fig. 2. We also pro-
vide a novel recipe to equip the VLA models with better
compositional understanding ability.

3.1. Constructing Triplets

Given a caption, denoted by C, and its associated image,
denoted by I, we postulate that both C and I comprise sets

Cat touching a paper roll

input

Text Encoder

Cat touching a paper roll

structural
similarity + +

subject 
similarity

predicate 
similarity

object
similarity

Image Encoder

grounded triplets

=

Figure 2. Illustration of the triplet-level structural similar-
ity. Visual and textual triplets are encoded by image encoder
and text encoder, respectively. Then the structural similarity is
calculated as the sum of cosine similarities between subject,
predicate, and object.

of entities1, denoted by ET = {eTi }Mi=1 for the text and EI =
{eIi }Ni=1 for the image, where M and N represent the total
number of entities in C and I, respectively. Interrelation of
an entity pair is represented by rT (·) for the text and rI(·)
for the image. In this stage, our objective is to construct
entity-relation triplets for both modalities.

For text, we denote the triplets as:

TT = {tTij = (eTi , r
T (eTi , e

T
j ), e

T
j ) | 1 ≤ k, l ≤ M}. (1)

For image, we denote the triplets as:

TI = {tIkl = (eIk, r
I(eIk, e

I
l ), e

I
l ) | 1 ≤ i, j ≤ N}. (2)

The cardinality of the above two sets are defined as M ′

for text and N ′ for image, respectively.
Textual triplets construction. Large language models
have exhibited a powerful capacity for a range of down-
stream tasks. Here, we leverage its powerful in-context
learning capability to parse a caption C into triplets TT .
Specifically, We design a prompt to instruct the ChatGPT
to parse the caption text C. Fig. 3 provides an overview on
how we design prompt for RefCOCO/+/g dataset, and fur-
ther details are elaborated as follows. Note that the prompts
can vary depending on datasets to accommodate different
distributions of the data.

As shown in Fig. 3, the prompt can be divided into four
parts: (i) general instruction; (ii) supporting details; (iii)
in-context learning examples, and (iv) task instruction, fol-
lowed by LLM completion, which yields the output of the
LLM in the specified format and content. In part (i), we de-
fine a clear and general instruction for specific task. Then,
we elaborate supporting details in part (ii), including the
expected output format, essential elements, and preferences
for what should or should not be included, etc. In part (iii),
we curate several in-context learning examples to guide the

1We use “entities” to denote objects to differentiate from object in a
triplet.
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Given a sentence, first determine the main entity (with its attributes) that the 
sentence is describing. Then analyze and extract all the spacial relation/action 
between the determined main entity with other entities.
Return in the JSON format: {"entity": "xxx", "relations": [["xxx", "yy", "zz"], ["aa", 
"bb", "xxx"], ...]}. All the returned relations must be a triplet containing exactly 
three elements. The first… The second… The third… You can make some guess if…
Your response must accurately follow the above instruction in both content and 
format, akin to the examples provided below, without any extra explanatory text.
##Examples##

INPUT: a woman wearing blue jeans sitting on a chair with a baby sitting in her lap

OUTPUT: {"entity": "a woman", "relations": [["a woman", "wearing", "blue jeans"], ["a woman", "sitting on", "a 
chair"], ["a baby", "sitting in", "a woman"]]}

INPUT: ……

OUTPUT: ……
##Your Task##
INPUT: [user input, e.g., one small girl in white t-shirt is touching the elephant]

OUTPUT:

General Instruction

Supporting 
Details

In-context Learning 
Examples

Task Instruction

{"entity": "one small girl", "relations": [["one small girl", "wearing", "white t-shirt"], ["one small 
girl", "is touching", "the elephant"]]}

LLM completion

Figure 3. Illustration of leveraging ChatGPT’s powerful in-context learning capability to parse a caption into triplets.

LLM, which is immediately followed by part (iv), where
we append the input caption T . Finally, we feed the above
input into LLM, and then decoupled textual triplets will be
generated through the LLM completion. We also do a sim-
ple format check after the completion.
Visual triplets construction. In an image, entities are rep-
resented by bounding boxes, each enclosing an individual
object. These boxes might be predefined by the dataset or
extracted using a pre-trained object detector. Without prior
knowledge about how these entities are related, we assume
potential interactions can happen between every pair of en-
tities. Therefore, we generate visual pairs using a Cartesian
product, which includes all possible combinations of enti-
ties. A notable case is when a pair consists of the same
entity (box) twice. This represents a self-relation, suggest-
ing the entity’s own attributes, such as color (e.g., red) or
self-actions (e.g., walking). Then we use the union area
of two entity boxes to represent rI(eIi , e

I
j ), the interrelation

between entities.
Here, we derive triplets set TT and TI from caption and

image, respectively. Before moving on, we filter out redun-
dant triplets tIij ∈ TI based on heuristic rules similar to Re-
CLIP [54]. Specifically, given a textual triplet tTij , where its
predicate contains keywords that reflect some spacial
relationships, e.g., to the left of. In such a case, we
filter out visual box pairs where the central point of the for-
mer box (i.e., subject) is in the right of the latter one
(i.e., object). This approach is much simpler than build-
ing complicated spatial semantic trees like in ReCLIP, yet it
effectively adds spatial context and improves performance.

3.2. Grounding Based on the Structural Similarity

With the triplets derived from the image and caption, we
can use them to solve the visual grounding problem, which

allows us to leverage the structural similarity between both
modalities to more accurately link the textual descriptions
of their corresponding image regions.

We consider two grounding directions: text→ image
and image → text, each serving unique task require-
ments. The text → image grounding is applied when
identifying specific image regions based on a textual de-
scription (e.g., RefCOCO/+/g [42, 63] dataset). Con-
versely, image → text grounding involves locating rel-
evant textual descriptions for a given image region (e.g.,
Who’s Waldo [6] dataset). Given their symmetrical nature,
this section will primarily focus on the text → image
grounding scenario.
Triplet-level grounding. Given a text triplet tTij =

(eTi , r
T (eTi , e

T
j ), e

T
j ), we separately feed eTi , rT (eTi , e

T
j ),

and eTj into a VLA text encoder to obtain three text embed-
dings, denoted as (ti, ti,j , tj). Similarly, for a image triplet
tIkl = (eIk, r

I(eIk, e
I
l ), e

I
l ), we derive three image embed-

dings (vk,vk,l,vl) using the image encoder. The similarity
between these two triplets is then given by:

S(tTij , t
I
kl) = cos(ti,vk)+cos(ti,j ,vk,l)+cos(tj ,vl), (3)

where cos(·, ·) denotes the cosine similarity function. S ∈
RM ′×N ′

is the similarity matrix between all text triplets
with all image triplets. We subsequently get a binary in-
dicator matrix B ∈ {0, 1}M ′×N ′

by:

B(tTij , t
I
kl) =

{
1 if k, l = argmaxm,n(S(t

T
ij , t

I
mn)).

0 otherwise.

Here, for each text triplet tTij , the binary indicator matrix B

assigns the value of 1 to the most similar image triplet tIkl
and 0 to all others.
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A man watches as a man shoots over a man

visual triplets visual entities
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Figure 4. Illustration of propagating the similarity scores from grounded triplets to the instance level. Via the aggregation of the
similarity scores from multiple grounded triplets, it helps find the instance-level correspondences more accurately. For instance, in the
lower part, the referring expression a man and the blue bounding box appear in two different triplets, acting as the subject and object,
respectively. Such structural similarity provide more useful cues to improve the instance-level grounding. (Best viewed in color.)

Instance-level grounding. Another substantial challenge
in the visual grounding problem is that both the subject
and object in a triplet may have multiple interactions
with other entities. To this end, we design a novel method
to propagate the triplet-level grounding results to the in-
stances.

Specifically, based on the triplet-level grounding results,
we can compute the instance-level structure-aware similar-
ity matrix R as follows:

R(eTi , e
I
k) =

∑
j,l

B(tTij , t
I
kl)S(t

T
ij , t

I
kl)+∑

j,l

B(tTji, t
I
lk)S(t

T
ji, t

I
lk). (4)

The two terms in Eq. 4 consider both the cases where eTi
and eIk appear as the subject and object in different
triplets, as shown in lower part of Fig. 4. By aggregating the
similarity scores from multiple grounded triplets, it helps
find the instance-level correspondences more accurately.

Finally, for each text entity, we compute the most rele-
vant image entity as follows:

êIk = argmaxmR(eTi , e
I
m), (5)

where êIi denotes the corresponding visual entity for eTi .
Notably, our approach can easily extend to the one-to-many
grounding scenario if we implement a threshold-based se-
lection in place of the argmax function in Eq. 4 and Eq. 5.
We limit our discussion to one-to-one grounding for clearer
understanding.

3.3. Enhanced Relational Understanding

In Equation 3, the interaction between two entities is rep-
resented by the term cos(ti,j ,vk,l). This term is crucial

as it attempts to quantify the relationship between entities
through cosine similarity, under the assumption that VLA
models can adequately grasp these relationships. Neverthe-
less, as indicated by other studies [54, 67], this assumption
often falls short in practice. To address this issue, we fine-
tuned VLA models using a combination of datasets rich in
relational knowledge. These datasets include HICO-det [3],
SWiG [46], and Visual Genome (VG) [27]. Notably, in the
case of the VG dataset, we excluded all the images from
COCO to maintain the integrity of the zero-shot protocol,
aligning with our experiments based on RefCOCO/+/g.

The datasets mentioned provide annotation bounding
boxes for objects together with their textual descriptions and
relationships with other objects. So we can easily follow
what we have done in the triplet-level grounding stage to
create visual-textual triplets, and then utilize a contrastive
learning loss on these triplets. To clarify, we use the same
notation in Eq. 3 to calculate the similarity between two
triplets. Assume tTij and tIkl are two corresponding triplets,
we define the contrastive loss as follows:

L =
∑

(tTij ,t
I
kl)

[
log

(
S(tTij , t

I
kl)∑

m,n S(t
T
ij , t

I
mn)

)

+ log

(
S(tTij , t

I
kl)∑

m,n S(t
T
mn, t

I
kl)

)]
. (6)

Through this refined approach, we aim to enhance the VLA
models’ ability to understand and accurately score the rela-
tionship between entities, thereby enhancing the zero-shot
grounding capability.

Compared with the existing rule-based negative prompts
construction [7, 8, 67], this design has two unique advan-
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RefCOCOg RefCOCO+ RefCOCO
Model Val Test Val TestA TestB Val TestA TestB
Random 18.12 19.10 16.29 13.57 19.60 15.73 13.51 19.20
Supervised SOTA [35] 88.73 89.37 85.24 89.63 79.79 92.64 94.33 91.46
CPT-Blk w/ VinVL [62] 32.10 32.30 25.40 25.00 27.00 26.90 27.50 27.40
CPT-Seg w/ VinVL [62] 36.70 36.50 31.90 35.20 28.80 32.20 36.10 30.30
CLIP (ViT-B/32)
CPT-adapted [54] 21.77 22.78 23.46 21.73 26.32 23.79 22.87 26.03
GradCAM [48] 49.51 48.53 44.64 50.73 39.01 42.29 49.04 36.68
ReCLIP [54] 56.96 56.15 45.34 48.45 42.71 45.77 46.99 45.24
Ours 57.60 56.64 45.64 47.59 42.79 48.24 48.40 49.15
Ours+VR-CLIP 59.87 59.90 55.52 62.56 45.69 60.62 66.52 54.86
FLAVA
Ours 60.95 59.99 48.89 50.02 46.86 49.37 47.76 51.68
Ours+VR-FLAVA 61.25 60.86 50.79 53.35 47.62 52.46 52.66 52.92

Table 1. Accuracy on the RefCOCOg, RefCOCO+ and RefCOCO datasets. Ours represents leveraging our triplet-to-instance pipeline
for grounding. Ours+VR-CLIP/VR-FLAVA further replaces the original VLA model with our relationship-enhanced model. Except for
the supervised method, the best results are highlighted in bold, and second-best results are underlined.

tages. First, by decomposing a single image into multiple
triplets, we can obtain more training instances and improve
the diversity of the training data than simply using the entire
image for fine-tuning. Furthermore, the isolation of entities
removes the distraction of other content in the image, pro-
viding more useful supervision for the model fine-tuning.

4. Experiments
4.1. Setup

RefCOCO/RefCOCO+[42]/RefCOCOg[63] are collected
from MS-COCO [36]. RefCOCO includes 19,994 im-
ages with 142,210 referring expressions. RefCOCO+ has
19,992 images and 141,564 expressions. RefCOCOg con-
tains 26,771 images with 104,560 expressions. In Ref-
COCO and RefCOCO+, expressions are shorter, averaging
1.6 nouns and 3.6 words. In RefCOCOg, expressions are
longer, averaging 2.8 nouns and 8.4 words.
Who’s Waldo [6] introduces a person-centric visual
grounding task, where all names in the captions are masked,
forcing models to link boxes and the masked [NAME] to-
kens through attributes and interactions between visual en-
tities. The captions are long and contain complex scene de-
scriptions. We use its test split for evaluation, which con-
tains 6741 images. Each caption contains about 30 words.
Evaluation metrics. On RefCOCO/+/g, we follow previ-
ous work [54] to use accuracy as the grounding results, i.e.,
if the IoU (Intersection over Union) value between the pre-
dicted box and ground truth region is larger than 0.5, it is
a correct prediction. On Who’s Waldo, following previous
work [6], given the grounding results of person in textual
descriptions to bounding boxes in the image, we report the
accuracy against ground-truth links on the test set.

4.2. Implementation Details

RefCOCO/+/g On RefCOCO/+/g datasets, we adopt the
test-time augmentation strategy outlined in ReCLIP [54],
where they use both cropping and blurring for isolated vi-
sual entities. When blurring the union region, we separately
process each box in the box pair, isolating only the area
where the box is located, rather than directly using the union
area, which helps to minimize distraction from other visual
objects. We use the whole caption instead of the decoupled
main entities before feeding into the text encoder since it
produces better results. All the heuristic rules mentioned in
Sec. 3.1 are also adopted from ReCLIP.
VLA fine-tuning We fine-tune the CLIP model based on
the code from [8], where LoRA rank r = 4, batch size is
1024, learning rate is 5e − 6, and epoch is 20. We use the
huggingface PEFT [41] for fine-tuning FLAVA, where we
set lora rank r = 16 for 10 epochs. Since the SWiG dataset
[46] does not contains triplet annotations, we use ChatGPT
to convert the existing annotation into triplets.
Box generator Following ReCLIP, we use bounding boxes
generated from MAttNet [64] as the box proposals on Re-
fCOCO/+/g. On the Who’s Waldo dataset, we use the box
proposals provided in the annotations.

4.3. Main Results

RefCOCO/+/g We benchmark our approach against vari-
ous zero-shot visual grounding models, including Colorful
Prompt Tuning (CPT) [62], GradCAM [48], and ReCLIP
[54]. CPT-adapted is introduced and adapted by [54]. Re-
CLIP represents the latest SOTA in zero-shot REC methods.

As shown in Table 1, compared to other models utilizing
the same CLIP architecture, our proposed method consis-
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Method Test Accuracy
Supervised
Who’s Waldo [6] 63.5
Pretrained on grounding data
Gupta et al. [13] (COCO) 35.6
Gupta et al. [13] (Flickr30K) 38.2
SL-CCRF [39] 46.4
MAttNet [64] 24.1
UNITER [4] 34.2
CLIP
ReCLIP [54] 29.4
Ours 60.8
Ours+VR-CLIP 61.3
FLAVA
Ours 59.6
Ours+VR-FLAVA 59.8

Table 2. Accuracy on the Who’s Waldo dataset. The best results
are highlighted in bold, and second-best results are underlined.

tently outperforms all competitors across all splits. Specif-
ically, our model exhibits a performance improvement of
up to 19.53% over ReCLIP, with an average enhancement
of 9.74%. Remarkably, even without fine-tuning the back-
bone CLIP model, our method can surpass the ReCLIP by
up to 3.91%, with an average of 1.05%, showing that the
structural similarity based on ChatGPT’s parsing also con-
tributes to the relational understanding.

In addition, we also extend our methodology to another
VLA model, FLAVA [52], to verify the generalizability of
our approach. Not surprisingly, when integrated into our
matching pipeline, FLAVA demonstrates superior perfor-
mance compared to the CLIP model. This can be attributed
to FLAVA’s inherently more robust architecture. After fine-
tune the FLAVA, the resulting VR-FLAVA consistently im-
prove the performance across all dataset splits, reinforcing
the effectiveness of our method in enhancing the relation-
ship understanding of various VLA models.
Who’s Waldo We compare our approach with the mod-
els trained on grounding dataset, which include Gupta et
al. [13], SL-CCRF [39], MAttNet [64] and UNITER [4].
The Who’s Waldo method serves as a supervised base-
line, as reported in its original paper [6]. Additionally, we
adapte ReCLIP [54] for our dataset, utilizing their language
parser to identify potential referring expressions, followed
by grounding using their original approach2.

As shown in Table 2, our approach outperforms all mod-
els trained on the grounding dataset, with a notable margin.
Among these, SL-CCRF was the closest competitor, yet it
falls behind our method by 14.9%. When compared to the
supervised Who’s Waldo method, our zero-shot setting only
shows a 2.2% reduction in performance. This highlights

2The experiment is conducted using the authors’ released code.

Triplet VR-CLIP Val Test

✗ ✗ 55.35 54.33
✗ ✓ 56.90 56.81
✓ ✗ 57.60 56.64
✓ ✓ 59.87 59.90

Table 3. Effectiveness of each component of our ground-
ing pipeline on RefCOCOg. Triplet means whether we use
the triplet-to-instance grounding (instead of scoring-and-ranking).
VR-CLIP represents whether we use fine-tuned VR-CLIP instead
of the original CLIP model.

our method’s effectiveness in visual grounding, especially
in processing long and complex captions. Notably, perfor-
mance of ReCLIP is no better than random choice. This is
because their language parser fails to handle the real-world
complex captions as in Who’s Waldo. It validates our de-
sign choice of using the in-context learning capability of
LLMs for better generalization ability.

We show visualization results in Fig. 5. The left two
columns display results from RefCOCOg, while the right-
most column shows results from Who’s Waldo. ReCLIP
failed in all examples listed. Our approach, which explicitly
models relationships (indicated by arrows in the images),
provides more helpful information for grounding. Addi-
tionally, it is observed that ChatGPT consistently excels in
parsing complex captions, such as those in Who’s Waldo.

4.4. Ablation Studies

In this section, we conduct ablation studies on RefCOCOg.
This dataset is particularly suitable for our evaluation be-
cause it has longer captions and rich entity interactions,
making it an ideal testbed for assessing each component.
Effectiveness of components in the grounding pipeline.
We explore two key variations: Triplet and VR-CLIP. The
Triplet variation examines the impact of utilizing triplet-
to-instance matching as opposed to a basic scoring-and-
ranking approach, i.e., scoring each isolated boxes using
CLIP, than select one with the highest similarity. The VR-
CLIP variant assesses the performance differences between
the fine-tuned VR-CLIP and the original CLIP model.

As shown in Table 3, substituting the CLIP model with
the VR-CLIP yields superior results because of the en-
hanced relational capability. Note that although we do not
explicitly use the structural similarity in this context, we
are still using the whole caption as the referring expres-
sions, which inherently convey the relationship informa-
tion. Further analysis reveals that if we replace the scoring-
and-ranking with our proposed triplet-to-instance matching
pipeline, we can get better results through the relationship
modeling. By combining both, we can achieve best results.
Effectiveness of triplet components. We separately re-
move the subject, object and predicate terms in
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Figure 5. Zero-shot visual grounding results. Left two columns are results from RefCOCO, where our predictions are in green box,
distraction objects are in red box. The rightmost column shows results from Who’s Waldo, where predicted annotation links are in the
same color. Arrows represent relationships between visual objects, and the text on the images are the parsed triplets.

Val Test

full 59.87 59.90
w/o subject 48.35 47.83
w/o object 56.92 57.05

w/o predicate 56.90 56.81

Table 4. Effectiveness of each triplet component on Ref-
COCOg. Each removal is done by set the corresponding term
in Eq. 3 to 0. For w/o predicate, we also turn off the box pair
filter to remove any spatial information provided in the caption.

Eq. 3 to explore their effectiveness in grounding perfor-
mance. As shown in Table 4, the absence of subject or
object leads to the loss of most noun information and its
attributes, resulting in a clear accuracy drop. This impact is
particularly significant for subject removal, since most
main entities in RefCOCOg are represented as subject.
Without predicate, meaning no interrelation between
entities is considered, the accuracy degrades by about 3
points. It emphasizes the importance of our structural simi-
larity in modeling the entity relationships.
Effectiveness of triplet- to instance-level grounding . We
separately remove the first and second terms in Eq. 4 to val-
idate our design of triplet- to instance-level grounding. The
results are reported in Table 5, which shows that utilizing
both pieces of information yields the best performance.

4.5. Limitations

While our method enhances the visual relationship under-
standing of VLA models, it sacrifices the model’s zero-shot

Val Test

full 59.87 59.90
w/o 1st term 59.54 59.37
w/o 2nd term 59.11 59.26

Table 5. Effectiveness of different terms in Eq. 4 for triplet- to
instance-level grounding on RefCOCOg.

capabilities as generalist models and downgrades them to
specialist ones. For example, after fine-tuning, CLIP’s zero-
shot image classification accuracy decreases from 0.63 to
0.50 and the R@5 for image retrieval on COCO decreases
from 0.57 to 0.54. A promising future direction is to apply
large-scale unlabeled image-caption pairs during VLA fine-
tuning, and probably we can generate region-text triplets
using ChatGPT and SAM (Segment Anything Model) [26]
as pseudo ground-truths.

5. Conclusion
In this paper, we proposed a novel zero-shot referring ex-
pression comprehension model by resorting to powerful ca-
pabilities of foundation models (e.g., ChatGPT and CLIP)
to explicitly model the structural similarity between enti-
ties and then find their correspondences by propagating the
similarity from triplets to instances. We also introduced a
novel recipe to improve a VLA model’s visual relationship
understanding by training from a collection of curated data
sources. Experimental results on RefCOCO/+/g and Who’s
Waldo validate the effectiveness of our approach.
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