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Figure 1. Text Conditioned Extrapolation outside of Image Boundaries: The red rectangles indicate the resolution boundaries that
our HyperCGAN model was trained. By design, our model can synthesize meaningful pixels at surrounding (x, y) coordinates beyond
these boundaries without any explicit training. For example, it can meaningfully extend bird images with more natural details like the tail,
background, and the branch of the tree.

Abstract

Existing GAN-based text-to-image models treat images as
2D pixel arrays. In this paper, we approach the text-to-image
task from a different perspective, where a 2D image is repre-
sented as an implicit neural representation (INR). We show
that straightforward conditioning of the unconditional INR-
based GAN method on text inputs is not enough to achieve
good performance. We propose a word-level attention-based
weight modulation operator that controls the generation pro-
cess of INR-GAN based on hypernetworks. Our experiments
on benchmark datasets show that HyperCGAN achieves com-
petitive performance to existing pixel-based methods and re-
tains the properties of continuous generative models. Project
page link: https://kilichbek.github.io/webpage/hypercgan

1. Introduction

Humans have the innate ability to connect what they visu-
alize with language or textual descriptions. Text-to-image
(T2I) synthesis, an AI task inspired by this ability, aims to
generate an image conditioned on text input. Compared to
other possible inputs in the conditional generation literature,
sentences are an intuitive and flexible way to express visual
content that we may want to generate. The main challenge
in traditional T2I synthesis lies in learning from the un-
structured description and connecting the different statistical
properties of vision and language inputs. This field has seen
significant progress in recent years in synthesis quality, the
size and complexity of datasets used as well as image-text
alignment (e.g., [24, 39, 40, 42, 44, 60, 65, 69, 73]).

Despite the significant progress, images in existing T2I
approaches are typically represented as a discrete 2D pixel
array which is a cropped, quantized version of the true contin-
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uous underlying 2D signal. In this paper, we take an alterna-
tive view, where we represent images as a continuous signal
through an Implicit Neural Representation (INR), which pro-
vides a natural way to parameterize images using a neural
network that predicts the RGB color at an (x, y) image loca-
tion. Operating directly with INR naturally facilitates several
benefits such as extrapolation outside of image boundaries,
accelerated inference of low-resolution images, and out-of-
the-box superresolution. In addition, INRs do not depend on
spatial resolution, allowing for arbitrary-resolution genera-
tion while maintaining nearly constant memory requirements.
In contrast, discrete-based GANs require both generator and
discriminator to scale w.r.t spatial resolution, making train-
ing of such models impractical. Figure 2 shows that for
discrete-based models, increasing training resolution leads
to decreasing effective batch size during training due to
GPU memory limits which eventually break. Current dif-
fusion models [19, 55, 57], despite their impressive results,
suffer from the same scalability limitations due to depen-
dency on spatial resolution and slower sampling speed com-
pared to GAN-based models. Recent works [21, 47] prove
GANs can rival diffusion models when carefully scaled up.

Figure 2. Scalability limitations
in discrete decoders: Increasing
training resolution decreases batch
size/GPU hitting GPU limits. As
resolution approaches the value
2048, training becomes invisible
due to batch size per GPU ap-
proaching 1.

The prevalent T2I
models [65, 69, 71]
use architecture-
specific designs to
condition the generator
and discriminator on
textual information
and often introduce ad-
ditional text-matching
losses. These ap-
proaches utilize text
embeddings c to
condition their models
by updating a hidden
representation h. Un-
like these approaches,
we explore a different
paradigm: we use

hypernetworks [17] to condition the model on textual
information c by modulating the model weights. Such a
procedure can be viewed as creating a different instance of
the model for each conditioning vector c and was recently
shown to be more expressive than the embedding-based
conditioning approaches [12].

Our proposed HyperCGAN introduces a hypernetwork-
based conditioning mechanism for text-to-continuous image
(T2CI) generation. It enables unconditional INR-GAN [53]
backbone to efficiently generate continuous images condi-
tioned on input text while preserving the desired properties of
the continuous signal. A vanilla hypernetwork [6] generates
the entire parameter vector θ from the conditioning signal

c, i.e. θ = F (c), where F (c) is a modulating hypernet-
work. However, this quickly becomes infeasible in modern
neural networks where |θ| can easily span millions of pa-
rameters. To address this issue, our HyperCGAN instead
produces a tensor-decomposed modulation F (c) = M of
the same size as the weight tensor W . This tensor is then
used to alter W via an element-wise multiplicative oper-
ation Wc = W ⊙ F (c). We develop an attention-based
word level modulation (WHAtt) to alter weight tensors W
of the INR-based decoder using F (c). Figure 1 shows im-
ages generated by our HyperCGAN on CUB [64] dataset.
By harnessing the power of hypernetwork-based condition-
ing and leveraging continuous representation via INRs, our
HyperCGAN demonstrates its ability to augment bird im-
ages with enhanced natural details, e.g., the tail, background,
and branches of the tree. This finding poses a promising
paradigm for the future progression of generative models,
i.e., the natural capability of producing images of arbitrary
resolutions while maintaining visual semantic consistency
at low training costs. We hope our work paves the way
towards efficient conditional image generation at arbitrary
resolutions. Our primary contributions are as follows:
• We propose the HyperCGAN framework for synthesizing

continuous images from text input. The model is aug-
mented with a novel language-guided mechanism termed
WHAtt, that modulates weights at the word level.

• We show that our method has a natural ability to mean-
ingfully extrapolate outside the image boundaries, and
can outperform most existing discrete methods on CUB,
COCO, and ArtEmis datasets, including stacked genera-
tors and single generator methods.

• We establish a new affective T2I benchmark based on
the ArtEmis dataset [1], which has 455,000 affective ut-
terances collected on more than 80K artworks. ArtEmis
contains captions that explain emotions elicited by a visual
stimulus, which can lead to more human emotion-aware
T2I generative models.

2. Related Work
Text-to-image synthesis: T2I synthesis has been an active
area of research since at least [32, 41] proposed a DRAW-
based [15] model to generate images from captions. [41]
first demonstrated improved fidelity of the generated im-
ages from text using GANs [14]. Since then, several works
adopted text-conditional GANs approaches for T2I synthe-
sis [24, 60, 65, 68, 69, 71, 73]. With the development
of diffusion models [8, 19, 57], autoregressive (AR) trans-
formers [7], and large-scale language encoders [20, 38], T2I
synthesis has shown remarkable improvement in zero-shot
setting. Both AR-based models (e.g. DALL-E [39] Make-
A-Scene [11], CogView [9], Parti [66]) and Diffusion-based
models (e.g., GLIDE [35], DALL-E 2 [40], Imagen [44],
Stable Diffusion [42]) achieved remarkable results replacing

6317



popular GAN-based architectures, but their iterative sam-
pling process is computationally expensive to synthesize
the high-quality images. Although there were attempts
to accelerate the sampling process by reducing sampling
steps [31, 33, 45, 56], precomputed features [25], or per-
forming the reverse process in low-dimensional latent space
instead of pixel space, the reverse process still remains time-
consuming and not competitive to GANs inference speed.
Recent works show GANs can still be competitive to dif-
fusion and AR methods in zero-shot T2I generation setup
by redesigning their architecture for this task [21, 47, 61].
However, these methods are still typically limited to discrete
image generation and do not easily support continuous image
generation.
Implicit Neural Representation (INR): INRs parametrize
any type of signal (e.g. images, audio signals, 3D shapes)
as a continuous function that maps the domain of the signal
to values at a specified coordinate [13, 34, 51, 52]. For 2D
image synthesis, several works have explored ways to enable
INRs using generative models [3, 50, 53, 54]. Our goal is
to enable INR-based generative models via hypernetwork-
based conditioning.
Connection to hypernetworks: Hypernetworks are mod-
els that generate parameters for other models. They have
been applied to several tasks in architecture search [67],
few-shot learning [4], and continual learning [63]. Genera-
tive hypernetworks, also called implicit generators [3, 53]
were recently shown to rival StyleGAN2 [22] in generation
quality. Despite the progress in unconditional INR-based
decoders (e.g., [3, 27, 53, 54]), generating high-quality con-
tinuous images conditioned on text is less studied compared
to discrete image generators. Our hypernetwork-augmented
modulation approach facilitates conditioning the continuous
image generator on text while preserving the desired INR
properties (e.g., superresolution, extrapolation).
Art generation: Synthetically generating realistic artworks
with conditional GAN is challenging due to unstructured
shapes and their metaphoric nature. Several works have
explored learning artistic style representations by condition-
ing GANs on labels such as artist, genre, style, and emo-
tion [2, 58, 59] or by learning about styles and deviating from
style norms [10, 48]. We extend prior work by applying our
method to the novel text-to-continuous-image generation
task on the challenging ArtEmis [1] dataset, where we lever-
age verbal explanations as conditioning signals to achieve
better human cognition-aware T2I synthesis.

3. Method

Baseline INR-based decoder. We build our approach
upon the INR-based generator [53], which consists of two
main modules: a hypernetwork H(z) and an MLP model
Fθ(z)(x, y). The hypernetwork H(z) samples a noise vec-

tor z ∼ N (0, I) and produces two matrices Aℓ ∈ Rdℓ
out×r

and Bℓ ∈ Rr×dℓ
in , and through matrix multiplication ob-

tains modulating matrix W ℓ
h = Aℓ × Bℓ with rank r for

each layer ℓ of Fθ(z)(x, y). The shared parameter matrix
W ℓ

s ∈ Rdℓ
out×dℓ

in of the MLP model Fθ(z)(x, y) is updated
via W ℓ = W ℓ

s ⊙ σ(W ℓ
h), where σ denotes sigmoid func-

tion. The MLP model Fθ(z)(x, y) then predicts RGB values
at each location (x, y) of a predefined coordinate grid to
synthesize an image x′.
Discriminator. We adopt the discriminator proposed in
LAFITE [72] because of its simplicity and effectiveness.
Given the text features h from a text encoder, this type of
discriminator outputs: D(x,h) = fd(x)+⟨h, fs(x)⟩, where
fd(x) yields high value when image x is real, while inner
product ⟨h, fs(x)⟩ indicates how well the input image x is
semantically aligned with text features h.
Training objectives. We use the standard conditional GAN
losses for the generator and discriminator:

LG = −
n∑

i=1

log σ(D(x′
i,hi)),

LD = −
n∑

i=1

log σ(D(xi,hi))−
n∑

i=1

log(1− σ(D(x′
i,hi))),

(1)

where σ(·) denotes a sigmoid function. Following previ-
ous works [21, 69, 72], in order to increase text and image
alignment, we use the following contrastive regularizers:

LConD = −τ

n∑
i=1

log
exp(cos(fs(xi),hi)/τ)∑n
j=1 exp(cos(fs(xj),hi)/τ)

,

LConG = −τ

n∑
i=1

log
exp(cos(fI(x

′
i),hi)/τ)∑n

j=1 exp(cos(fI(x
′
j),hi)/τ)

,

(2)

where cos denotes cosine similarity between, τ is hyper-
parameter. LConD forces discriminator to output image
features fs(xi) that is similar to the corresponding text fea-
ture hi. LConG enforces image features from pretrained
CLIP image encoder fI(x′) to be similar to corresponding
text features hi. Our final objective losses for the generator
and discriminator are defined as:

L′
G = LG + γLConD + λLConG,

L′
D = LD + γLConD

(3)

Our initial experimentation reveals that the straightfor-
ward conditioning of INR-GAN is insufficient, and training
the model with the aforementioned Discriminator and objec-
tives does not yield stable results. Consequently, we intro-
duce a novel approach called word-level modulation, which
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enhances the model’s learning capability by incorporating
word-level hypernetworks in conjunction with our WHAtt
attention mechanism. The specifics of this mechanism will
be elaborated upon in subsequent sections of this paper.

3.1. Hyper-Conditional GANs (HyperCGANs)

Text Conditioning. In line with previous works [21, 44],
our approach also employs conditioning mechanisms for
the generator. The choice of text information utilized for
conditioning depends on the granularity of language rep-
resentation, which can be either at the word-level or the
sentence-level. To facilitate conditioning, we preprocess the
input text by tokenizing it and padding it to a fixed length
of C = 77. Subsequently, we extract text features from two
different sources: (1) features tproj obtained from the pro-
jection layer of the pre-trained CLIP model (which remains
fixed during training), (2) contextual features denoted as t
from the penultimate layer of the same CLIP text encoder.
Each component in the vector ti of t corresponds to the rep-
resentation of the ith word in the input sentence. Specifically,
we refer to the set of components tlocal = t1:C ∈ RC×512 as
capturing local word-level information. Additionally, we use
the ”end of text” (EOT) component of t which aggregates
global information and is denoted as tglobal ∈ R512.

3.1.1 Conditioning signals for weight modulation.

Sentence-level Conditioning. A direct approach for con-
ditioning the unconditional INR-GAN is to utilize either
tproj or tglobal, both of which have dimensions dc, as ex-
tracted text embeddings. In this scenario, the Hypernet-
work backbone receives the concatenation of the noise vec-
tor z ∼ N (0, I) with the text embedding t, denoted as
[z, t]. The value of t can be either tproj or tglobal. Sub-
sequently, for each linear layer ℓ within the MLP-decoder
Fθ(z)(x, y), separate modulating tensors M ℓ

z,s are gener-
ated through the hypernetwork H([z, t]). These tensors,
M ℓ

z,s, are then used to modulate the weights W ℓ
s of the

INR-based decoder at layer ℓ through element-wise multipli-
cation: W ℓ = W ℓ

s ⊙ σ(M ℓ
z,s). However, our preliminary

experiments revealed that this form of conditioning resulted
in subpar performance and unstable training. We hypoth-
esize that sentence-level information may not provide an
adequate level of detail necessary to effectively guide the
generation process. Consequently, we propose a novel condi-
tioning mechanism that leverages word features to enhance
the synthesis of T2CI models.
Word-level Conditioning. Word embeddings tlocal ∈
RC×dw are represented as a sequence of individual vec-
tors of size dw for each word in the sentence, where C
denotes sequence length of the word embeddings (i.e., the
number of tokens). We generate a set of C weight matri-
ces {W ℓ

i ∈ Rdℓ
out×dℓ

in}Ci=1 for each i-th word in the se-

quence through a fully connected layer FC, then use our a
novel Word-level Hyper-Attention mechanism proposed in
this work, termed WhAtt, to select more important “word”
weights, detailed later in this section.

3.1.2 Extreme Modulating Tensor Factorization (X-
factorization).

Producing a full-rank tensor directly W ℓ
i for each layer ℓ

is memory-intensive and infeasible even for modestly sized
architectures. For example, if the hidden layer size of our hy-
pernetwork is of size dh = 512 and the weight tensor at layer
ℓ is of dimensionality do = cout × cin = 512× 512 ≈ 0.26
million, then the output weight matrix in the hypernetwork
will be of size do × dh ≈ 0.134 billion. To overcome this
issue, we propose factorizing the modulating tensor with
an extreme low-rank tensor decomposition for learning ef-
ficiency. The canonical polyadic (CP) decomposition [23]
lets us express a rank-R tensor T ∈ Rd1×...×dn as a sum of
R rank-1 tensors:

T =

R∑
r=1

vr
1 ⊗ ...⊗ vr

n (4)

where ⊗ is the tensor product and vk
r is a vector of length dk.

Thus, we generate separately low-rank factors vk
r and build

a modulating tensor out of these low-rank factors. Going
back to our previous example, this factorization leads to
do = cout + cin = 512 + 512 = 1024. So, the output weight
matrix in the hypernetwork will be of size do × dh ≈ 0.5
million parameters which leads to ≈ 99.6% decrease in the
parameter size. Therefore, each W ℓ

i ∈ Rdℓ
out×dℓ

in will be the
tensor product of two vectors vℓ

1i ∈ Rdℓ
out and vℓ

2i ∈ Rdℓ
in :

W ℓ
i = vℓ

1i ⊗ vℓ
2i.

3.1.3 Word-level Hyper Attention (WHAtt).

In contrast to sentence embedding where words are sum-
marized in one vector, individual word embeddings consist
of sequences of individual word encodings, containing fine-
grained information that is typically visually grounded to
the image. Hence, we focus on how to leverage this infor-
mation in our model. We introduce a Word-level Hyper
Attention mechanism, denoted as WhAtt, that can leverage
this word-level as well as information through self-attention.
Given a set of weights {W ℓ

i ∈ Rdℓ
out×dℓ

in}Ci=1 from our
hypernetworks, we need to select the most relevant word
weight for the current layer ℓ. To do this, we incorporate
an attention mechanism. The set of weights can be viewed
as a tensor Qℓ ∈ RC×(dℓ

out×dℓ
in), where C denotes sequence

lengths. We apply scaled dot product attention mechanism
[62] to attend to the relevant word weights to get modulating
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Figure 3. The architecture of the proposed HyperCGAN: Linear layers are used as hypernetworks. Overall, given text embeddings and
noise vector, hypernetworks generate parameters for modulating weights of INR-based decoder.

weight M ℓ
w ∈ Rdℓ

out×dℓ
in :

M ℓ
w = WHAtt(W ℓ,Qℓ) = softmax(

W ℓ(Qℓ)T√
dℓout × dℓin

)Qℓ,

(5)

where W ℓ is the weight matrix at layer ℓ, M ℓ
w is the word-

level modulating tensor, W ℓ and M ℓ
w ∈ Rdℓ

out×dℓ
in . Finally,

the modulating tensors for the generator for both sentence
and word-based modulation are defined by Eq. 6:

Ŵ ℓ
G = W ℓ

s ⊙ σ(M ℓ
z,s)

W̄ ℓ
G = Ŵ ℓ

G ⊙ σ(WHAtt(Ŵ ℓ
G,Q

ℓ))
(6)

where W̄ ℓ
G is the modulated weight at layer ℓ for the

generator. The first modulation operation can be viewed as
obtaining a general context about the image, whereas the
attention operation helps to choose the more relevant infor-
mation. More generally, word-level conditioning benefit
for visual-semantic consistency was first demonstrated for
discrete decoders in AttnGAN [65]. Our word-level modula-
tion is our proposed mechanism to bring similar properties to
text-conditioned continuous image generation. The overall
architecture of our model can be seen in Figure 3.

4. Experiments and Results
In this section, we first define the used datasets, metrics,
and our baselines following which we compare our model
relative to the baselines on the benchmarks, and study the
various properties and limitations of our approach.
Datasets. We comprehensively evaluate HyperCGAN on
the standard text-to-image benchmarsk MS-COCO [29],
CUB [64] datasets, as well as on ArtEmis [1] dataset.

– COCO 2562 contains over 80K images for training and
more than 40K images for testing. Each image has 5 associ-
ated captions that describe the visual content of the image.
We use the splits proposed in [65] to train and test our mod-
els.
– ArtEmis 2562 (introduced T2I benchmark) contains over
450K emotion attributes and explanations from humans on
more than 81K artworks from WikiArt dataset. Each image
is associated with at least 5 captions. The unique aspect of
the dataset is that utterances are more affective and subjective
rather than descriptive. These aspects of the dataset impose
additional challenges on T2I generation task. We use the
train and test splits provided by the authors and benchmark
recent T2I methods on it. Both COCO and ArtEmis are
scene-level T2I benchmarks.
– CUB 2562 contains 8,855 training and 2,933 test images
of bird species. Each image has 10 corresponding text de-
scriptions. In contrast to COCO and ArtEmis, CUB is an
object-level benchmark, yet challenging since this dataset
contains fine-grained details about the bird species.
Evaluation Metrics. We evaluate all models in terms
of both Image Quality and Text-Image Alignment. Due
to the limitations of the Inception score (IS) [46] to cap-
ture the diversity and quality of the generation, we report
Frechet Inception Distance (FID) [18] score following pre-
vious works [60, 69, 70, 72]. Additionally, we compute
R-precision since image quality scores alone cannot reflect
whether the generated image is well conditioned on the given
text description. Given a generated image, R-precision mea-
sures the retrieval rate for the corresponding caption using a
multi-modal network which computes the similarity score
between image features and text features. As suggested in
[36], we also report the R-precision score where image-text
similarity is computed with CLIP [37], dubbed as CLIP-R.
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Figure 4. Exploring Model Sensitivity: Here, the input noise z is kept fixed while varying color names in the prompt ”a small {color},
bird with white and dark gray wingbars and white breast and long tail”, aiming to assess the model’s sensitivity to word-level modulation.

Out of an input text as a positive and 99 negative captions for
the generated image, the CLIP model should give the high-
est similarity score for the positive caption if the generated
image aligns with it.

Configuration CLIP-R ↑ FID ↓
INR-GAN - -

+ tproj, rank 1 34.81% 78.23
+ tproj, rank 5 40.13% 69.92
+ tglobal, rank 1 45.67% 62.52
+ tglobal, rank 5 51.81% 57.25

+ WHAtt OOM OOM
+ X-factorization 51.12% 19.13

+ tglobal, rank 1 53.78% 18.15
+ tglobal, rank 5 51.87% 14.12

Table 1. T2CI Performance on CUB 2562. Our hypernetwork-
based conditioning makes it possible to use word-level conditioning,
which is crucial in achieving good results.

Figure 5. FID scores (in log scale) on CUB 2562. Using our
word-level conditioning gives a clear advantage. ”kimg” denotes
the number of images seen by D.

Effectiveness of Word-level modulation. Our study begins
by evaluating the effectiveness of our hypernetwork-based
word-level attention mechanism through an ablation study
on the CUB dataset (Table 1). Since our work is the first
attempt at T2CI, we start transforming unconditional INR-
GAN to be conditioned on either sentence embeddings tproj
or global embeddings tglobal and adopt it as a baseline. In this
transformation, this baseline simply takes the concatenated

noise vector and sentence/global embeddings and then gener-
ates parameters for the decoder to synthesize an image. For
consistency, we employ the discriminator from LAFITE [72]
in all our experiments. We observe that simply increasing
the rank of the INR does not yield improvements in both FID
and CLIP-R results. In contrast, our proposed word-level
conditioning mechanism enhances convergence rate (refer
to Figure 5) and FID scores. Note that without factorization,
the models that use word conditioning fail due to the Out-Of-
Memory (OOM) error. We hypothesize that our word-level
modulation has significantly better performance due to the
improved granularity connecting the generated images to
the input text. Moreover, incorporating additional global
embeddings and increasing the rank further improves the re-
sults. Figure 4 shows that word-level modulation effectively
captures the color change for fine-grained generation.

5. Analysis on Continuous Image Synthesis

Figure 6. Qualitative results on extrapolation (from 2562 to 5122)

In this section, we take a close look at the capability of
our models in terms of continuous image synthesis: extrapo-
lation and superresolution.

Extrapolation. In this section, we evaluate the capability
of our model in generating images beyond the resolution en-
countered during training. HyperCGAN is trained on a fixed
coordinate grid within the range [−1, 1]2. During inference,
we extend the grid beyond this range (e.g., [−1.5, 1.5]2) to
do extrapolation. While there is no clear text-conditioned
counterpart model for direct comparison, we use Infinity-
GAN [28], designed for generating images of arbitrary di-
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Figure 7. Qualitative results on three datasets: MS-COCO 2562, CUB 2562, and ArtEmis 2562.

mensions, as a reference point. We train InfinityGAN from
scratch on the MS-COCO dataset. During the inference,
owing to its unconditional nature, we conduct two types
of image generation with InfinityGAN: 1) Unconditional
(uncond.) arbitrary-sized image generation, and 2) Pseudo-
conditional (Pseudo-cond.) generation. For the latter, we
employ images generated by HyperCGAN as initial images,
invert them, and perform extrapolation using InfinityGAN.

The results are quantified in terms of Scale Inverse FID
(ScaleInv-FID), as suggested by InfinityGAN, and presented
in Table 2. Remarkably, our model demonstrates superior
performance compared to InfinityGAN, even though it was
not explicitly trained for this task. For a visual representation
of the results, please refer to Figure 6. Notably, InfinityGAN
tends to blend disparate styles in unconditional generation,
resulting in inconsistencies. On the other hand, the pseudo-
conditional version of InfinityGAN shows improved results,
although enhancements are still needed for extended regions.
Our method, even when employed in a zero-shot manner,
outperforms InfinityGAN with fewer parameters.

High-resolution sampling. Another useful property of
our model is to generate images at any resolution, even
though it was trained on lower resolution. High-resolution
synthesis can be achieved by sampling denser coordinate
grids within range [−1, 1]2. We evaluate our model and
compare against unconditional AnyResGAN [5] as well as
SD-Upsampler [42] on COCO dataset. AnyResGAN was
trained from scratch for this comparison. As input to SD-
Upsampler, we utilized outputs from our model. We report

Table 2. ScaleInv-FID Results on Extrapolation on COCO: Models
trained on 2562 resolution and evaluated on 2x and 4x extrapola-
tion.

Method 1x 2x 4x NoP

InfinityGAN [28](uncond) 76.94 103.13 153.64 73M
InfinityGAN [28] (pseudo-cond) 41.71 132.24 120.32 73M

HyperCGAN 29.92 62.01 85.4 57M

Table 3. High-resolution sampling results 2562 → 10242 on
COCO. Inference time (Inf time) is computed in GPU.

Method pFID Inf time NoP

SD-Upsampler 21.12 14.8 s 846 M
AnyResGAN 34.68 0.006s 61 M

HyperCGAN (ours) 34.64 0.019s 57 M

patch-FID (pFID) scores in Table 3. The results reveal that
our method achieves comparable results to AnyResGAN, a
model specifically trained with two-stage patch-based train-
ing for high-resolution synthesis (training details in Sup-
plementary). It’s important to note that our model was not
trained for superresolution but rather generation was done in
zero-shot fashion, while having fewer parameters. However,
a fair comparison with SD-Upsampler is challenging, as this
model is trained on a 10M subset of LAION containing im-
ages of resolutions > 20482 and involves significantly more
parameters.

Comparison to the State-of-the-Art. In our final evalua-
tion, we benchmark HyperCGAN against discrete state-of-
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Table 4. Comparison to SOTA Discrete T2I models. Bold, blue, and cyan indicates 1st, 2nd, and 3rd places. VQ-Diffusion-F* was
pre-trained on CC dataset [49] and all other methods are trained from scratch.

Model COCO 2562 ArtEmis 2562 CUB 2562

Year FID ↓ CLIP-R ↑ FID ↓ CLIP-R ↑ FID ↓ CLIP-R ↑ NoP ↓ Cont

AttnGAN [65] 2018 35.49 29.31% 45.64 7.11% 23.98 31.23% 230M q
ControlGAN [24] 2019 34.52 24.96% 42.01 7.38% 22.85 35.71% 250M q
DM-GAN [73] 2019 32.64 40.31% 31.4 12.92% 16.09 45.07% 46M q
DAE-GAN [43] 2021 28.12 - - - 15.19 - 98M q
TIME [30] 2021 31.14 - - - 14.30 - 120M q
DF-GAN [60] 2022 19.32 26.13% 25.4 9.81% 14.81 28.39% 19M q
SSA-GAN [26] 2022 19.37 30.28% - - 15.61 29.60% 109M q
XMC-GAN [69] 2021 9.87 48.31% 15.47 36.68% 15.56 30.40% 166M q
LAFITE [72] 2022 8.12 95.59% 12.04 88.93% 10.48 59.08% 75M q
GALIP [61] 2023 5.85 99.84% - -% 10.08 -% 82M q

VQ-Diffusion-F [16]* 2022 13.86 60.32% - - 10.32 43.13% 370M q

HyperCGAN (ours) 13.54 85.12% 15.89 55.23% 14.12 51.87% 57M ¥

Real Images - 89.43% - 45.12% - 26.20%

the-art approaches [16, 24, 60, 61, 65, 69, 71, 73]. Figure 7
visually compares the qualitative results of our model to
these state-of-the-art methods, showcasing comparable gen-
eration qualities. Table 4 provides a comprehensive overview,
demonstrating that our models outperform many of the com-
parison methods, including most 2022 ones. Notably, our
model achieves competitive results against the diffusion-
based model VQ-Diffusion-F in terms of FID on COCO.
It’s crucial to consider that VQ-Diffusion contains 370M
parameters, undergoing training on 7M samples from the
Conceptual Captions dataset and fine-tuning on COCO and
CUB datasets. When compared to recent advancements such
as LAFITE and GALIP, our models exhibit higher FID val-
ues. It is important to note that in contrast, our models utilize
significantly fewer parameters and offer additional continu-
ous properties like superresolution and extrapolation, which
uniquely characterize our method.

6. Limitations and Discussions

Figure 8. Failure Cases: blob patches, ignoring some words, not
counting objects.

Our studies shed light on the potential to narrow the per-
formance gap between discrete and continuous text-to-image

synthesis paradigms by leveraging our innovative condition-
ing mechanism for INR-based models. This mechanism
holds promise for advancing continuous text-to-image gen-
eration. While our model captures the semantic meaning
of inputs and offers competitive results, there is room for
improvement in visual quality to further reduce the gap com-
pared to the recent discrete state-of-the-art. Furthermore,
our model occasionally struggles with accurately capturing
counting and the correct composition of objects. Figure 8
illustrates instances of failure cases. One contributing factor
to the visual limitations might be the fact that our model
generates pixels independently, lacking spatial local context.
Also, common artifacts associated with INR-based GANs,
such as wavy or patterned textures, and stains can be ob-
served, especially during superresolution and extrapolation
tasks. To address this, incorporating specialized training
techniques, akin to those proposed in [5], may help improve
extrapolation/superresolution performance.

7. Conclusion

In this paper, we propose HyperCGAN, a novel HyperNet-
based conditional continuous GAN. HyperCGAN is a text-to-
continuous-image generative model with a single generator
that operates with a novel language-guided tensor modu-
lation operator for sentence-level and word-level attention
mechanisms. To our knowledge, HyperCGAN is the first
approach that facilitates text-to-continuous-image genera-
tion for objects and complex scenes, and we show its ability
to meaningfully extrapolate images beyond training image
dimension while maintaining alignment with the input lan-
guage description. We showed that HyperCGAN achieves
comparable performance compared to most of the existing
discrete-based text-to-image synthesis baselines. We hope
that our method may encourage future work on hypernet-
works on text-to-continuous Image Generation (T2CI).
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