
DSGG: Dense Relation Transformer for an End-to-end Scene Graph Generation

Zeeshan Hayder1, Xuming He2,
1Data61-CSIRO, Australia, 2ShanghaiTech University,

zeeshan.hayder@data61.csiro.au, hexm@shanghaitech.edu.cn

Abstract

Scene graph generation aims to capture detailed spa-
tial and semantic relationships between objects in an im-
age, which is challenging due to incomplete labelling, long-
tailed relationship categories, and relational semantic over-
lap. Existing Transformer-based methods either employ
distinct queries for objects and predicates or utilize holis-
tic queries for relation triplets and hence often suffer from
limited capacity in learning low-frequency relationships. In
this paper, we present a new Transformer-based method,
called DSGG, that views scene graph detection as a direct
graph prediction problem based on a unique set of graph-
aware queries. In particular, each graph-aware query en-
codes a compact representation of both the node and all
of its relations in the graph, acquired through the utiliza-
tion of a relaxed sub-graph matching during the training
process. Moreover, to address the problem of relational se-
mantic overlap, we utilize a strategy for relation distillation,
aiming to efficiently learn multiple instances of semantic
relationships. Extensive experiments on the VG and the
PSG datasets show that our model achieves state-of-the-
art results, showing a significant improvement of 3.5% and
6.7% in mR@50 and mR@100 for the scene-graph gener-
ation task and achieves an even more substantial improve-
ment of 8.5% and 10.3% in mR@50 and mR@100 for the
panoptic scene graph generation task. Code is available at
https://github.com/zeeshanhayder/DSGG.

1. Introduction
Scene Graph Generation (SGG) [27] seeks to detect and gen-
erate a graph-structured summary of all the objects present in
the scene, with edges describing their visual interactions or
pairwise relationships. This topological representation of an
image is helpful for visual understanding and image reason-
ing tasks such as image caption generation, visual question
answering, cross-model retrieval, and human-object interac-
tion recognition. This task is analogous to (or a sub-task of)
the panoptic scene graph generation (PSG) [32] task, where
the subjects and objects can also belong to the stuff classes

Figure 1. Illustration of different queries used in SGG networks. a)
Multi-query transformer networks learn entities and predicates sep-
arately. b) Triplet query-based transformer networks use a separate
query for each triplet. c) Our proposed graph-aware queries learn a
compact representation of objects and all of its relations jointly.

and the semantic segmentation of the entities are used to
evaluate the scene graphs.

Specifically, given an image, the SGG task focuses on
predicting all the objects along with their class labels, bound-
ing boxes, pixel-accurate segmentation, and their relations
to all other objects. The graph-based scene generation meth-
ods [28, 34] are often limited by the high complexity of the
underlying object detectors [25] and by the representation
of the scene context. Unbiased SGG methods [29] attempt
to learn the semantic relationships without considering the
label bias in the data and then use simple post-processing
to correct the label distribution. Nevertheless, these tech-
niques have challenges with images that have multiple se-
mantic relations between the same pair of objects and are
vulnerable to long-tail problems with relation categories.
Transformer-based methods [9, 12–14, 17, 29, 32, 34, 37]
attempt to provide a single-stage solution for scene graph
generation. Traditional transformer-based approaches utilize
a two-stream network with either a shared query or sepa-
rate query for estimating the object relations [9, 13, 29, 34].
Recent approaches, such as [12, 14, 17, 18, 30, 32, 33, 36],
adopt a holistic strategy by directly predicting a list of <sub-
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ject, predicate, object> triplets, with each query in the net-
work representing a singular triplet. Recent transformer-
based scene graph generation approaches, [19, 26], depend
solely on object-based matching to learn queries. However,
their constrained capacity results in limitations on effectively
learning dense and low-frequency relations.

HiLo [37] introduced a two-stream network based on
triplet queries that use an ad-hoc approach to add pseudo-
relations to address the relation class imbalance. Neverthe-
less, it fails to comprehensively capture all relations in the
image and remains vulnerable to the issue of relational se-
mantic overlap, even when employing dedicated network
branches for low-to-high and high-to-low frequency rela-
tions. Another limitation is the model’s capacity to capture
the substantial diversity within each relation category and
the similarities in relations that exist across multiple objects.

In this paper, we address this gap by introducing a univer-
sal model that learns all relations among the image objects.
Specifically, we introduce a graph-aware query, depicted
in Figure 1, which serves as a compositional query. This
query learns the representation of each object along with
its multiple relations to all other objects in the image. Es-
sentially, each node in the graph has a unique graph-aware
query associated to it. This is in contrast to the existing
transformer-based architectures—whether they use single or
triplet queries—that have difficulty scaling up to generate
dense scene graphs because of the model’s rising complexity
with the traditional queries needed for every possible triplet.
Using these graph-aware queries has the advantage that the
models learn to predict the right multiple relation labels (or
no relation), essentially eliminating the relational semantic
overlap problem, regardless of whether multiple relations ex-
ist between two objects. An additional benefit is that overall
number of trainable network parameters is reduced because
nodes and relations do not require two-stream transformer.

Moreover, learning these graph-aware queries in an end-
to-end context is challenging. In this paper, we propose to
expand the set prediction problem [3] to graph prediction
based on graph-aware queries, which are essential for learn-
ing the scene graph’s structure. To match every node and all
of its edges in the learned graph with the ground truth node
representation, a relaxed sub-graph matching technique is
employed. In the presence of low-frequency relations, the
sub-graph matching places greater emphasis on learning the
overall graph structure than on the specific high-frequency
relations present in the image, thus eliminating the long-
tail relation distribution problem. In addition, the DSGG
approach adapts a re-scoring mechanism and introduces re-
lation distillation for effective pairwise relation prediction.
As the model becomes more adept at filtering out negative
relations, the label noise decreases by learning of the dense
image relations across all objects in the image.

In summary, we propose DSGG, an end-to-end unified

technique that investigates scene graph detection as a direct
graph prediction problem and estimates multi-label relation
probability for each pair of nodes in the graph. The main
contributions of our work are fourfold:
• We introduce graph-aware queries for the transformer-

based network that learns a compact representation of
both the node and all of its relations in the graph.

• A novel sub-graph matching is introduced to estimate the
cost between ground truth and the estimated scene graph.

• A relation distillation is introduced and the re-scoring mod-
ule is adapted to effectively filter and rank the predicates
based on entities semantics.

• With state-of-the-art performance on the Visual Genome
and PSG datasets, our method considerably improves the
visual semantic relations for both the scene graph detection
and panoptic scene-graph generation tasks.

2. Related Work

2.1. Scene graph generation

Most prior works on SGG are primarily focused on the
Visual Genome (VG) dataset [31] and use the benchmark
suite [27]. These methods can be broadly categorized into
bottom-up, top-down, and hybrid approaches.

Bottom-up Graph-based SGG approaches create the
scene graph using a multi-stage process and mostly rely on
an object detector. Traditional methods [20, 24, 28, 31, 34]
organize object proposals generated by a detector into graph
nodes. These nodes are further processed to learn the edge
context and predict pairwise relationships. The high com-
plexity of the traditional object detectors [25] and redundant
object proposals make these approaches relatively complex
and inefficient. Modern graph-based approaches [18, 33]
attempt to use a relaxed message-passing algorithm either in
a full graph or a bipartite graph to infer the relation-aware
context [18]. Furthermore, [33] suggests aggregating the
global contextual information of an image while taking the
predicate type between objects into consideration.

Bottom-up Query-based SGG approaches are based on de-
tection transformer [6, 12, 14, 17], and are usually based on
a shared encoder and train a separate decoder for object and
relation heads. Specifically, the relation head learns a fixed
set of queries. These methods approach the object and the
relation feature learning as independent branches [6] and are
limited by the explicit modeling of the pairwise relationships.
Furthermore, [1, 19, 26] are dependent on predicted objects
before relation classification among them. Specifically, [26]
learns an extra [rln]-token in addition to [obj]-tokens, and
[19] learns K distinct queries for K triplets for each object.

Top-down SGG approaches [7, 8, 13, 30] relies on predict-
ing triplet queries by detecting the relation proposals directly
using a pre-trained object detector. In particular, [7] focuses
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on low-frequency relations. [13] generates the entity and
predicate proposals separately, resulting in a bipartite graph
neural network. A two-pass confidence gating technique is
used, propagating messages from entities to predicates and
back to entities, to learn the relations. [30] combines global
context information into objects via object pair fusion and an
entity-to-relation fusion module. However, due to the highly
coupled nature, these approaches have a limited potential to
scale to dense scene graph generation.

Hybrid SGG approaches, such as [9, 30, 36, 37] mainly
focus on two branch networks, that predict the object queries
as well as triplet queries in parallel. These methods often
require an ad-hoc approach to match the queries predicted
in both branches. [30] adopt a bottom-up object detection
network as an aid in a Siamese network for knowledge distil-
lation. [9] proposed the use of multiple modalities (including
language and image features) to learn both intermodal in-
teraction and intramodal refinement. [36] learns a common
embedding space between subject-object pairs and predi-
cates for relation detection.

2.2. Panoptic scene graph generation

The panoptic scene graph generation (PSG) task incorpo-
rates semantic segmentation for evaluation and includes stuff
classes to the objects of interest, extending the SGG task.
Note that, despite the similarity between the SGG and the
PSG tasks, few strategies [29, 31, 32, 34, 37] have been
demonstrated to be effective for both tasks. We classify
them into the following categories in general.

Traditional approaches extends the existing SGG meth-
ods with additional segmentation branch. [32] provides a
comprehensive benchmark of two-stage [16, 29, 31, 34] and
one-stage [32] baseline methods. The segmentation branch
is typically fine-tuned using a pre-trained MaskFormer [4].

Pseudo-label based approach as introduced in [37], uti-
lize high-low and low-high pseudo-labels to learn diverse
relation triplets. In contrast to the traditional segmentation
model [4], HiLo uses Mask2Former [5] segmentation model.
In this paper, we also initialized DSGG model with the
Mask2Former [5] segmentation branch for this task.

In summary, our proposed method is a bottom-up graph-
aware query-based model for scene graph generation that
takes a direct-graph prediction approach without using any
additional pseudo-relation labels for the training.

3. Method
3.1. Problem Setup

In this section, we first introduce the problem settings for
the generic scene graph generation task. Given an image
I ∈ RH×W×3, our objective is to construct a comprehen-
sive graph G that encapsulates the visual relationships and

contextual associations in the provided image. The graph’s
nodes are a collection of entities V in the image, and the
edges in the graph reflect the visual relationships E among
these nodes. The graph is thus symbolically represented
as G = (V, E). Let the total number of nodes in the graph
be M . In the scene graph generation task, the represen-
tation of each entity Vi = (ci, bi) involves its object cate-
gory ci, and a bounding box bi ∈ [0, 1]4. In contrast, the
panoptic scene graph generation task introduces an addi-
tional attribute, namely, a pixel-wise semantic segmenta-
tion mask mi ∈ RH×W , to characterize each entity, as
Vi = (ci, bi,mi). The unique object categories are denoted
as C ∈ {c1, c2, ..., cC}, where C represents the total number
of object categories in the dataset. Moreover, edge vector
Ei,j = (Vi, ri,j ,Vj) within the graph symbolize the rela-
tionships among the entities Vi and Vj , often denoted as
subject and object respectively. The set of relationships
among all the entities is called a predicate set, denoted as
R ∈ {r1, r2, ..., rP }, where P is the number of unique re-
lations. The list of all the edges in an image is often called
a relational triplet set T . This triplet set can be described
by an adjacency matrix as E ∈ RM×M×P . Note that all
these edges are directed and the graph G can have multiple
edges among the same pair of entities. The overall process
involves correctly predicting this set T . During inference,
the trained models are expected to predict this ground truth
triplet set using just top-K predicted triplets, denoted as T̂ .

3.2. Model Architecture

In this section, we present our proposed DSGG network for
scene graph generation, illustrated in Fig. 2. We formulate
the scene graph generation as a directed graph prediction
task, where we denote the ground truth graph as G and the
predicted graph as Ĝ.

Our DSGG network is a single-stage transformer-based
network consisting of a backbone network and an encoder-
decoder network module. In particular, the image undergoes
an initial forward pass through a backbone network, utiliz-
ing ResNet-50, Swin-B, or Swin-L. Subsequently, positional
encoding is added to the image features before they undergo
processing through a transformer encoder. We introduce
a graph-aware query Q, to extract the full graph structure
from the transformer’s output tokens. This query learns the
object features as well as all the outgoing edge features for
an object. The motivation and further details are in Sec. 3.3.
The transformer layers are used to learn these graph-aware
queries. Let N be the total number of graph-aware queries
in the network. Each query Qi represents only the directed
edges starting from a node to all other nodes (including to
itself), these can be used to learn the node-specific attributes
such as object class, bounding box as well as the segmenta-
tion mask directly, denoted as V̂i = (ĉi, b̂i, m̂i). However,
the information represented by each individual token is not
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Figure 2. An illustration of the DSGG architecture. The proposed method adopts a single-stage transformer architecture that employs
graph-aware queries to predict the scene graph. The input image is first processed by the backbone network and then passed through the
transformer to extract the compositional tokens. These tokens are used to learn the class confidence, bounding box, and segmentation.
Additionally, a dense relation embedding module is used to learn the pairwise relation between each object in the image. A prediction graph
is then generated and compared against the ground truth graph to find the optimal permutation of nodes. To rank the final relations, dense
relation distillation and re-scoring modules are used.

enough to learn the full relationship with other objects. We
generate the compositional tokens S ∈ RN×N×P on the fly
which are created in a pairwise manner. The details on the
compositional token embedding are in Sec. 3.3. The S are
further forwarded through a series of MLP layers to learn the
pairwise relation embeddings. These embeddings are further
forwarded through a sigmoid layer to generate a probability
map, representing the estimated dense edges of the graph Ê .
The estimated V̂ and Ê are further combined to generate the
final predicted graph Ĝ.

The objective function is to have a perfect matching
among all the nodes in the graph. However, this match-
ing can only be attained when all the node attributes (ci, bi,
and mi) match as well as their relation triplets. Specifically,
we aim to approximate the relation probability in Eq. (1) for
the predicted graph Ĝ,

p(V̂i, V̂j , Êij) = p(Êij |Qi,Qj) (1)

where p(Êij |Qi,Qj) denotes the probability of the predicate
given the graph-aware queries Qi and Qj .

The number of nodes in the predicted graph Ĝ and its
ground truth counterpart G may vary. Therefore, we adopted
a sub-graph matching approach to ascertain the correspon-
dence between nodes in the predicted graph and nodes in the
ground truth graph. Note that sub-graph matching is an NP-
hard problem so we approximated this with an upperbound.
The details on the relaxed sub-graph matching approach are
in the Sec. 3.4. The sub-graph matching provides an approx-
imate match between the nodes in Ĝ and G. These match
indices are further passed to the loss functions for estimating
the gradient for the optimizer, which is detailed in Sec. 3.5.

3.3. Dense Scene Graph Generation

The main motivation behind predicting a dense graph is that
it can capture a more structured representation of the objects
in the images. The learned contextual information may allow
the model to learn a globally consistent graph by considering
relationships between different objects thus making a more
informed prediction of the structured scene. This coherent
representation can help mitigate the long-tail relations issues
of the scene graph datasets.

To this end, we propose to learn a dense pairwise rela-
tion representation, which can generate visual relationship
triplets among any node in the graph with higher coverage in
an efficient manner. A straightforward method would be to
augment the number of queries in the transformer network
to align with the dense relations. However, this approach
introduces significant computational and memory complex-
ity, particularly for transformer-based networks known for
their resource-intensive nature. To tackle this challenge, we
introduce a set of graph-aware queries that learn a compact
representation of the object’s attributes and its relations with
all other objects in the image. This differs from existing
approaches that predict only a relatively small set of triplets
T̂ for each image, which fall short of capturing the full
spectrum of relationships among objects within the graph.

Graph-aware Queries: We first introduce our graph-aware
queries, which can be used to generate compositional tokens
efficiently for dense graph prediction. Specifically, the rep-
resentation of each predicted object is combined with the
representations of all other objects, aiming to approximate
the dense relational embedding between every pair of nodes
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in the graph as shown below,

p(Êij |Qi,Qj) = MLP (Qi

⊕
Qj) (2)

Note that
⊕

is a concatenation operator, thus learning a
directed graph. The MLP layers are trained to learn multi-
label relations Ê ∈ RN×N×P . A Sigmoid activation function
is used to learn the probability for each predicate label. This
is in contrast to triplet-based approaches, which employ a
Softmax activation and can only learn a single relation (Ê ∈
RM×P ) for each learned query. we learn the conditional
probability in Equ. 2 with a two-step approach.

Relation Distillation: First, we train a predicate filter to
dynamically reject pairwise relations. Note that, during train-
ing we do not use a predefined set of possible triplets based
on training dataset statistics. Instead, we learn it from the
data to capture the missing triplets that may occur in the
future. The structured graph learning approach has the po-
tential to leverage related triplets in the images. Specifically,
this predicate filter is trained using graph-aware queries. It
takes the Qi as input and computes a cross-attention with all
other Qj to approximate a binary adjacency matrix. How-
ever, we also replaced the Softmax operator in the attention
with a Sigmoid function to attend to multiple queries. This
relation filter F ∈ RN×N is learned as follows.

F = sigmoid(
Q · QT√

dq
) (3)

This filter learns if there exists at least a single relation
for each entity pair rather than finding the exact relation.
Moreover, along with the relation filter, we learn an MLP
based on pairwise features to dynamically distill relations.

p(Êij |Si,j) = F · p(Êij |Qi,Qj) (4)

Relation Re-scoring Secondly, to reward entity queries with
a higher object confidence, we apply a relation re-scoring
strategy. It’s important to note that our proposed approach
is not constrained by the requirement that the number of
predicates matches the number of relations in the transformer
queries. Also, it is possible that a high-scoring object can
have no relations. [35] adapted a lambda scaling approach
to suppress the overconfident objects. Inspired by [35], we
adopt a similar re-scoring mechanism and extend it to rank all
the pairwise relations. However, since all the confidences are
learned in an end-to-end manner, the DSGG doesn’t require
lambda scaling explicitly. Specifically, the final pairwise
relation probability is calculated as follows,

p(Êij |Si,j) = p(V̂i|Qi) · p(V̂j |Qj) · p(Êij |Qi,Qj) (5)

where p(V̂i) is learned using the corresponding embeddings,
encompassing (ci, bi, and mi). We use the same re-scoring
module as in Equ. 5 for both the scene-graph generation and
the panoptic scene-graph generation tasks.

Logits Adjustment: We employed [23] as a post-processing
step to mitigate bias in the features resulting from relational

noise. Specifically, we set the logits adjustment weight to
0.15. Moreover, we implemented an NMS-based strategy
to eliminate duplicate triplets, relying on bounding boxes
for the SGG task and segmentation masks for the PSG task.
Finally, only the top 100 triplets are used to evaluate our
method.

3.4. Sub-graph Matching

Given the generated graph, we now introduce our graph
matching procedure for identifying a correspondence be-
tween the prediction Ĝ and the ground truth graph G, with
N and M nodes respectively. Without loss of generality, we
suppose that both graphs have the same order of N . Other-
wise, they could be expanded with new dummy nodes that
have no relation to any other node in the graph. Specifically,
we add N −M dummy nodes to make both graphs have the
same number of nodes. Similar to the nodes and edges of G
defined in Sec. 3.1, we denote the nodes and edges in the pre-
dicted graph Ĝ as {V̂i}i∈V̂Ĝ

and {r̂i,j}(i,j)∈EĜ
, respectively.

A correspondence σi,a between the ith node of G and the
ath node of Ĝ is a bijective function that assigns one node of
G to only one node of Ĝ. We represent the optimal mapping
from graph G to graph Ĝ as σ̂. Then, a generic formulation
of the graph matching problem consists of finding the opti-
mal correspondence σ̂ given by the solution of a quadratic
assignment (QA) problem [2]:

σ̂ = argmin
∀σ:G→Ĝ

{∑
∀i

Ce(Vi, V̂σ(i)) +
∑
∀(i,j)

Cr(ri,j , r̂σ(i,j))

}
,

(6)
where Ce(Vi, V̂σ(i)) is a pair-wise entity matching cost be-
tween ground truth node i and a prediction with index
σ(i). Similarly, Cr(ri,j , r̂σ(i,j)) is a pair-wise relation
matching cost between ground truth relation ri,j and a
prediction with index σ(i, j). In our problem, the match-
ing cost takes into account the class prediction, the sim-
ilarity of predicted and ground truth boxes, and the sim-
ilarity of predicted and ground truth relations. Specifi-
cally, we define Ce(Vi, V̂σ(i)) as 1ci ̸=∅(1 − p̂σ(i)(ci)) +

1ci ̸=∅IoU(bi, b̂σ(i)), where p̂σ(i) is the predicted entity
class probability. Similarly, we define Cr(ri,j , r̂σ(i,j)) as
1ci,cj ̸=∅(1 − p̂σ(i,j))

⊤ri,j + 1ci,cj=∅(p̂σ(i,j))
⊤(1 − ri,j),

where p̂σ(i,j) is predicted relation class probability vector.
As the generic QA problem is NP-hard [2], we introduce

an approximation scheme to reduce the computation cost. In
particular, we upper-bound the quadratic term as below:∑

∀(i,j)

Cr ≤
{∑

∀i

∑
∀j

1ci,cj ̸=∅(1− p̂σ(i),j)
⊤ri,j

+
∑
∀i

∑
∀j

1ci,cj=∅(p̂σ(i),j)
⊤(1− ri,j)

}
,

(7)

This reduces the QA problem to a linear form and its optimal
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assignment can be computed efficiently with the Hungarian
algorithm, following prior work (e.g. [10]). We note that this
approximation also allows us to train this dense relation layer
jointly with an end-to-end transformer model, as detailed in
the following subsection.

3.5. End-to-end Graph Learning

For the scene graph generation task, we employ DETR with
query denoising [11] and train N graph-aware queries. Con-
versely, in the panoptic scene graph generation task, we
adhere to the settings outlined in [5, 32] and also train N
graph-aware queries. We adopt the sub-graph matching, as
discussed in Sec. 3.4, to find the best node assignment in the
predicted graph. During training, overall objective is based
on a multi-task loss, which contains the bounding box L1
loss Lbox, the GIoU loss Lgiou, the entity classification loss
Lent, and the pairwise relation loss Lrel. This multi-task
loss L is formulated as:

L = λboxLbox + λgiouLgiou + λentLent + λrelLrel, (8)

where Lrel refers to a focal loss that is applied to all pairwise
edges in the extended graph. The hyper-parameters used to
weight each loss are λbox, λgiou, λent, and λrel. We also
trained segmentation focal and dice losses, Ldice and Lfocal,
with λdice = λfocal = 1 for panoptic scene graph genera-
tion. In addition to this, we improve the relation accuracy by
leveraging logit adjustment at the time of inference. Note
that the DSGG model is trained in an end-to-end manner for
both scene graph and panoptic scene graph generation tasks.

4. Experiments
In this section, we demonstrate the effectiveness of our
method on scene graph generation (SGG) and panoptic scene
graph generation (PSG) tasks.

4.1. Datasets

To evaluate the effectiveness of our approach, we conduct ex-
periments on the widely recognized and challenging datasets,
namely Visual Genome [29] and PSG [32] dataset. Both
these scene graph datasets contain a list of <subject, pred-
icate, object> triplets that are often noisy and duplicated.
Additionally, there are several concurrent relationships for
objects, or sets of objects, pointing to a relational semantic
overlap problem. The following are each dataset’s statistics.

Visual Genome (VG) [29] dataset has 108,077 images
and their associated scene graph annotations featuring 50
predicate relationships and 150 object categories. We fol-
lowed [31] for the training, validation, and test splits.

Panoptic Scene Graph (PSG) [32] dataset has 48,749
images, 80 thing classes, 53 stuff categories and 56 predi-
cate relationships. The dataset contains 2,177 test images,
with 28 rare predicates and 28 non-rare relation categories.

There are multiple relationships among the same objects
in 927 images in the test split. We followed [32] for the
training and the test splits.

4.2. Evaluation Metrics

Following [29, 36], we report recall (R), mean recall (mR)
and overall mean M@K accuracy (%) on the test set of
Visual Genome and Panoptic scene graph generation datasets.
We also report predicate classification (PredCIs), scene graph
classification (SGCIs), and scene graph detection (SGDet)
metrics for the Visual Genome dataset.

4.3. Implementation Details

The DSGG models are trained with 100 graph-aware queries
only. Specifically, we use the ResNet-50 [11], Swin-B [21]
and Swin-L [21] as the backbone networks. For the SGG
task, we trained the DSGG model for 60 epochs only, as
in [27]. Note that our models are trained from scratch with-
out a pre-trained object detector on the VG dataset. For
the PSG task, we followed [32] and, in order to provide
a fair comparison to the baselines, we only fine-tuned our
model initialized with Mask2Former model [5] (pre-trained
on the COCO [15] dataset) for 12-epochs. In both settings,
we jointly train the shared transformer’s encoder and de-
coder for learning compositional query tokens. These 256-
dimensional tokens are then forwarded to class-embedding
and box-embedding for learning the labels and bounding
boxes for the SGG task. Additionally, we use the segmen-
tation embedding to learn the object’s pixel-wise semantic
segmentation for the PSG task only. The number of encoder
and decoder layers is kept as default and we adopted the
same data augmentation settings as in the baselines [27, 32].
The models are trained end-to-end with the sub-graph match-
ing as the default cost function for both SGG and PSG tasks.
AdamW [22] is used as an optimizer with a weight decay
of 10−4. We set the initial learning rate of the backbone,
transformer, and scene-graph generation to 10−5, 10−4, and
10−4 respectively. Four A100 GPUs are used for both train-
ing and evaluating the models; however, for the PSG and
SGG tasks, we used batches of 1 and 4 images, respectively.

4.4. Experimental Evaluation

Scene Graph Generation: Table 1 shows scene graph detec-
tion results on the test split of the Visual Genome dataset [29].
Our method achieves state-of-the-art recall without the need
for any complex post-processing of scene graphs. Note that
in this setting, the relation prediction is restricted to unbiased
scene graph generation. However, following [30], we also
applied logit adjustment (LA) as a post-processing step to fix
the long-tailed issue with relations categories in the dataset.
Note that this approach outperforms all the baselines, by
a considerable margin in the case of mean recall and the
mean@K metric. Specifically, we compare our method with
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Predicate Classification (PredCIs) Scene Graph Classification (SGCIs) Scene Graph Detection (SGDet)
Method R@50/100 mR@50/100 M@50/100 R@50/100 mR@50/100 M@50/100 R@50/100 mR@50/100 M@50/100

Motifs [34] 65.3 / 67.2 14.9 / 16.3 40.1 / 41.8 38.9 / 39.8 8.3 / 8.8 23.6 / 24.3 32.1 / 36.8 6.6 / 7.9 19.4 / 22.4
VCTree [29] 65.5 / 67.4 16.7 / 17.9 41.1 / 42.7 40.3 / 41.6 7.9 / 8.3 24.1 / 25.0 31.9 / 36.0 6.4 / 7.3 19.2 / 21.7
BGNN [13] 59.2 / 61.3 30.4 / 32.9 44.8 / 47.1 37.4 / 38.5 14.3 / 16.5 25.9 / 27.5 31.0 / 35.8 10.7 / 12.6 20.9 / 24.2
SGTR [14] - - - - - - 20.6 / 25.0 15.8 / 20.1 18.2 / 22.6

SS-RCNN [30] - - - - - - 23.7 / 27.3 18.6 / 22.5 21.2 / 24.9
SHA-GCL [9] 35.1 / 37.2 41.6 / 44.1 38.4 / 40.7 22.8 / 23.9 23.0 / 24.3 22.9 / 24.1 14.9 / 18.2 17.9 / 20.9 16.4 / 19.6

NICE [12] 55.1 / 57.2 29.9 / 32.3 42.5 / 44.8 33.1 / 34.0 16.6 / 17.9 24.9 / 26.0 27.8 / 31.8 12.2 / 14.4 20.0 / 23.1
HL-Net [17] 67.0 / 68.9 - / 22.8 - / 45.9 42.6 / 43.5 - / 13.5 28.5 33.7 / 38.1 - / 9.2 - / 23.7
RU-Net [18] 67.7 / 69.6 - / 24.2 - / 46.9 42.4 / 43.3 - / 14.6 - / 29.0 32.9 / 37.5 - / 10.8 - / 24.2

Relationformer [26] - - - - - - 28.4 / 31.3 9.3 / 10.7 18.9 / 21.0
RepSGG [19] 27.8 / 28.8 39.7 / 43.7 33.8 / 36.3 17.9 / 20.3 22.3 / 27.7 20.1 / 24.0 12.1 / 14.6 15.3 / 18.9 13.7 / 16.8
HetSGG [33] 57.8 / 59.1 31.6 / 33.5 44.7 / 46.3 37.6 / 38.7 17.2 / 18.7 27.4 / 28.7 30.0 / 34.6 12.2 / 14.4 21.1 / 24.5

PE-Net [36] 59.0 / 61.4 38.8 / 40.7 48.9 / 51.1 36.1 / 37.3 22.2 / 23.5 29.2 / 30.4 26.5 / 30.9 16.7 / 18.8 21.6 / 24.9

DSGG (ours) † 65.3 / 75.0 31.2 / 41.6 48.3 / 58.3 38.8 / 41.4 19.9 / 25.0 29.4 / 33.2 32.9 / 38.5 13.0 / 17.3 23.0 / 28.0
DSGG (ours) 53.9 / 65.1 39.4 / 49.9 46.7 / 57.5 33.1 38.0 23.7 / 29.7 28.4 / 33.9 26.5 / 32.9 20.2 / 25.5 23.4 / 29.2

Table 1. Evaluation on the Visual Genome dataset [29]. The best and second best methods under each setting are marked according to
formats. † shows DSGG results without logit adjustment. Comparisons to additional methods are included in the supplementary material.

Motifs [34], Unbiased [29], BGNN [13], SGTR [14], Struc-
tured Sparse RCNN [30], SHA-GCL [9], NICE [12], HL-
Net [17], RU-Net [18], Relationformer [26], RepSGG [19],
HetSGG [33], and PE-Net [36]. Note also that our approach
with the LA post-processing is competitive in terms of recall.

Panoptic Scene Graph Detection

Method Backbone R@20 mR@20 R@50 mR@50 R@100 mR@100
IMP [31] R50 16.5 6.5 18.2 7.1 18.6 7.2

MOTIF [34] R50 20.0 9.1 21.7 9.6 22.0 9.7
VCTree [29] R50 20.6 9.7 22.1 10.2 22.5 10.2
GPSNet [16] R50 17.8 7.0 19.6 7.5 20.1 7.7

PSGTR [32] R50 28.4 16.6 34.4 20.8 36.3 22.1
PSGFormer [32] R50 18.0 14.8 19.6 17.0 20.1 17.6

HiLo [37] † R50 34.1 23.7 40.7 30.3 43.0 33.1
DSGG (ours) R50 32.7 30.8 42.8 38.8 50.0 43.4

HiLo [37] † Swin-B 38.5 28.3 46.2 35.3 49.6 39.1
DSGG (ours) Swin-B 35.5 32.9 46.5 41.3 54.2 46.3

HiLo [37] † Swin-L 40.6 29.7 48.7 37.6 51.4 40.9
DSGG (ours) Swin-L 36.2 34.0 47.0 41.7 54.3 47.8

DSGG (ours) † R50 32.2 30.9 42.5 40.1 49.7 44.1
DSGG (ours) † Swin-B 35.8 33.9 46.3 43.2 54.5 48.7
DSGG (ours) † Swin-L 36.0 34.1 47.0 42.1 54.7 48.0

Table 2. Evaluation on the PSG dataset [32]. The best and
second best methods under each setting are marked according to
formats. † represents the models trained using additional relation
labels obtained through a baseline-trained model.

Panoptic Scene Graph Generation: We followed [32, 37]
for the evaluation of recall and mean recall (%) using
the panoptic segmentation as the default criteria. Table 2
shows performance comparision of DSGG with several base-
lines [16, 29, 31, 32, 34, 37]. Our method achieves a con-
sistent improvement over all the metrics. An analysis of
the top-20 relations, the method proposed by [37] demon-
strates slightly improved performance, yet the recall met-
ric is heavily influenced by high-frequency relations. Note
that, their approach yields considerably lower results for the
mean-recall metric, which assigns equal weight to all rela-
tion classes, and is a better overall metric for scene-graph
comparison. The DSGG attains superior results for both

metrics across the top 50 and 100 relations on PSG dataset.

4.5. Ablation Studies

In this section, we provide a comprehensive analysis of our
model, emphasizing various aspects. Initially, we conducted
ablation experiments to evaluate the contributions of indi-
vidual components in the DSGG model. Furthermore, we
perform an ablation study that examines performance us-
ing top-scene graph predictions and explores the zero-shot
capabilities inherent in our model.

Effectiveness of different components of the model: In
this ablation study, we explore how the different compo-
nents of the model influence the final performance on the
VG dataset. In particular, our attention is directed towards
understanding the effectiveness of the relation distillation
and re-scoring mechanism, and the role of logit adjustment
components. Table 3 demonstrates the outcomes for various
combinations of these components. Note that our graph-
aware queries learn relation triplets more effectively and
thus contribute to a significant improvement in the overall
performance. The recall is improved by the relation rescor-
ing and distillation modules. However, logit adjustment
yields better mean recall and mean performance overall.

Effectiveness of the model on top predictions: Table 4
shows the influence of the number of graph-aware queries
in the transformer on the Visual Genome dataset. During
the testing phase, several scene-graph generation approaches

Relation Relation Logits Recall (Main) Mean Recall Mean @ K
Rescoring Distillation Adjustment R@50/100 mR@50/100 M@50/100

6.9/11.2 11.9/15.6 9.4/13.4
✓ 25.9/32.6 12.5/15.7 19.2/24.2
✓ ✓ 32.9/38.5 13.0/17.3 23.0/28.0
✓ ✓ ✓ 26.5/32.9 20.2/25.5 23.4/29.2

Table 3. Impact assessment of various components of the model on
the scene graph detection task using the Visual Genome test set.
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Visual Genome Mean Recall Recall Mean @ K
SGDet mR@20 R@20 M@20

Unbiased [29] 6.9 19.0 13.0
SS-RCNN [30] 13.7 18.2 15.8
SHA-GCL [9] 14.2 - -

HL-Net [17] - 26.0 -
RU-Net [18] - 25.7 -
PE-Net [36] 9.2 23.4 16.3

DSGG (ours) † 8.3 23.4 15.9
DSGG (ours) 14.2 18.7 16.4

Visual Genome Zero Shot Recall
SGDet zR@50 zR@100

Motifs [34] 0.1 0.1
Motifs + TDE [29] 2.3 2.9

VCTree [29] 0.3 0.7
VCTree + TDE [29] 2.6 3.2

SS-RCNN [30] 3.1 4.5
PE-Net [36] 2.3 3.6

DSGG (ours) † 2.5 3.9
DSGG (ours) 3.5 5.2

Table 4. Left: Evaluation of top-20 relation triplets on the Visual
Genome test set. Right: Evaluation of Zero-shot Recall perfor-
mance on the Visual Genome test set. † shows DSGG results
without logit adjustment.

struggle with localizing objects and predicates with a smaller
number of queries. Note that, our model trained with just 20
queries achieves the best results on both metrics.

Effectiveness of the model on zero-shot learning: We
also study the generalization capability of DSGG to un-
seen relationships. We, therefore, evaluated the zero-shot
performance of our method on the Visual Genome test set.
Table 4 shows a performance comparison with several base-
line approaches. Note that, our model achieves consistently
state-of-the-art results on zero-shot recall for all metrics.

4.6. Analysis

This section outlines the analysis of the proposed DSGG
model concerning challenges related to long-tail distribution
and relational semantic overlap. All the experiments are
carried out on the PSG dataset.

Relational Semantic Overlap: The issue of relational se-
mantic overlap arises when there are several relationships
between the same pair of entities. For instance, a typical ex-
ample is an image where a person is simultaneously holding
a horse and looking at it. In this specific section, we focus on
assessing the effectiveness of the proposed DSGG method
and the baseline approaches when dealing with images that
have entities exhibiting relational semantic overlap. The
PSG test dataset consists of 927 images that depict multiple
relationships between the same entities. Table 5 shows a
performance comparison of the proposed DSGG method
and the current state-of-the-art HiLo [37] approach, it is evi-

Relational Semantic Overlap

Method Backbone R@20 mR@20 R@50 mR@50 R@100 mR@100
HiLo [37] R50 43.6 30.8 49.7 36.2 51.1 38.8

DSGG (ours) R50 48.6 37.6 58.2 48.6 63.6 50.2
∆ +5.0 +6.8 +8.5 +12.4 +12.5 +11.4

HiLo [37] Swin-B 51.3 36.4 57.9 42.2 59.9 45.0
DSGG (ours) Swin-B 52.7 41.3 60.9 49.6 66.7 54.7

∆ +1.4 +4.9 +3.0 +7.4 +6.8 +9.7

HiLo [37] Swin-L 53.1 36.3 60.7 46.7 62.6 49.0
DSGG (ours) Swin-L 53.4 42.6 62.1 50.3 68.0 55.2

∆ +0.3 +6.3 +1.4 +3.6 +5.4 +6.2

Table 5. DSGG and [37] performance comparison on the PSG
dataset’s relational semantic overlap subset. This subset consists of
images that show various relationships between the same objects.
Our approach consistently outperforms HiLo [37].

Low-frequency Relations (28)

Method Backbone mR@20 mR@50 mR@100
HiLo [37] R50 10.4 17.0 20.3

DSGG (ours) R50 20.9 (+10.5) 31.0 (+14.0) 33.7 (+13.4)

HiLo [37] Swin-B 13.1 20.3 24.6
DSGG (ours) Swin-B 23.0 (+9.9) 33.9 (+13.6) 38.1 (+13.5)

HiLo [37] Swin-L 14.2 22.6 26.3
DSGG (ours) Swin-L 23.6 (+9.4) 30.1 (+7.5) 36.0 (+9.7)

Table 6. Performance comparison on the rare relation categories
within the PSG dataset. DSGG consistently outperforms HiLo [37],
demonstrating superior performance in rare relation categories.

dent that the proposed DSGG method excels at effectively
addressing the challenge of relational semantic overlap.

Low-frequency Relations: A relation category is deemed
rare in the PSG dataset if it encompasses fewer than 500
instances. Table 6 shows a performance comparison of
the proposed DSGG method and the current state-of-the-
art HiLo [37] approach. The proposed DSGG method is
robust to the rare relation categories and consistently ex-
cels at effectively predicting low-frequency relations in the
presence of high-frequency predicate categories.

Model Parameters: Another important factor is that our
model uses considerably fewer parameters when compared
to [37], which incorporates two decoder streams: High-Low
and Low-High. In particular, the DSGG model has a to-
tal parameter count of 44.2M, 107.1M, and 215.6M for the
resnet-50, swin-b, and swin-l backbone networks, respec-
tively. In contrast, the model proposed by [37] features
58.8M, 121.7M, and 230.3M parameters for the same back-
bone networks, respectively. The qualitative comparison of
the Visual Genome and the PSG datasets is provided in the
supplementary material.

5. Conclusion

In this paper, we introduce an innovative direct graph de-
tection method for scene graph generation that simultane-
ously predicts objects and their relationships in an end-to-end
fashion. Our approach employs novel graph-aware queries
learned from dense scene graphs through relaxed sub-graph
matching. Compositional tokens are utilized for learning
embeddings for class, bounding-box, segmentation, and pair-
wise relations. Additionally, we incorporate relation distilla-
tion, re-scoring, and post-processing with logit adjustment
for a unified end-to-end solution. Extensive experiments
on scene graph generation (SGG) and panoptic scene graph
generation (PSG) benchmark datasets demonstrate the supe-
rior performance of our method, surpassing state-of-the-art
results significantly. Ablation studies assess the contribution
of each model component, and we provide an analysis of
our model’s effectiveness in addressing challenges related to
relational semantic overlap and long-tail issues.
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