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Abstract

Few-shot semantic segmentation (FSS) endeavors to seg-
ment unseen classes with only a few labeled samples. Cur-
rent FSS methods are commonly built on the assumption
that their training and application scenarios share simi-
lar domains, and their performances degrade significantly
while applied to a distinct domain. To this end, we propose
to leverage the cutting-edge foundation model, the Seg-
ment Anything Model (SAM), for generalization enhance-
ment. The SAM however performs unsatisfactorily on do-
mains that are distinct from its training data, which primar-
ily comprise natural scene images, and it does not support
automatic segmentation of specific semantics due to its in-
teractive prompting mechanism. In our work, we introduce
APSeg, a novel auto-prompt network for cross-domain few-
shot semantic segmentation (CD-FSS), which is designed
to be auto-prompted for guiding cross-domain segmenta-
tion. Specifically, we propose a Dual Prototype Anchor
Transformation (DPAT) module that fuses pseudo query
prototypes extracted based on cycle-consistency with sup-
port prototypes, allowing features to be transformed into a
more stable domain-agnostic space. Additionally, a Meta
Prompt (MPG) module is introduced to automatically gen-
erate prompt embeddings, eliminating the need for man-
ual visual prompts. We build an efficient model which can
be applied directly to target domains without fine-tuning.
Extensive experiments on four cross-domain datasets show
that our model outperforms the state-of-the-art CD-FSS
method by 5.24% and 3.10% in average accuracy on 1-shot
and 5-shot settings, respectively.
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Figure 1. (a) In CD-FSS tasks, training (source) and testing (tar-
get) datasets come from different domains, and categories in the
testing dataset are unseen during the training phase. (b) The frame-
work of PerSAM [53], an existing one-shot segmentation method
based on SAM. (C) The framework of our proposed APSeg.

Current deep neural networks [7, 8, 25, 45] depend heav-
ily on extensive annotated data to attain satisfactory per-
formance. Data annotation is a time-consuming task that
requires significant human resources, especially for dense
pixel-wise annotation for segmentation tasks [8, 20, 23].
The few-shot semantic segmentation (FSS) [33] is therefore
introduced to close this gap, aiming to produce pixel-level
predictions for a novel category with only a few of labeled
samples. Although existing FSS methods [20, 26, 30, 38]
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have achieved significant progress, they are commonly built
on the assumption that their training and test images are
from the same domain. When they are applied to a dif-
ferent domain, their performance decreases dramatically
[21, 37, 42, 43]. The cross-domain generalizability is thus
significant and necessary. FSS models typically require a
large amount of base data for training. However, images for
some tasks, such as cancer diagnosis and remote-sensing
analysis, are scarce and challenging to obtain, making train-
ing a powerful model directly on their own data nearly im-
possible. In our work, we aim to transfer knowledge from
easily accessible natural domains to data-scarce domains,
as shown in Fig. 1(a). We believe that the transfer ability of
general models trained on large-scale natural scene datasets
will benefit domains that own only a handful of data.

To accomplish the cross-domain few-shot semantic seg-
mentation (CD-FSS) task, PATNet [21] utilizes support pro-
totypes for computing a transformation matrix, facilitat-
ing the conversion of domain-specific features into domain-
agnostic ones. In addition, PATNet has a further fine-tuning
process using the target domain data during the testing
phase. Built on [21], RestNet [16] introduces a unified at-
tention module to enhance query and support features prior
to transformation. Residual connections are integrated to
fuse features before and after the transformation, preserv-
ing important information from the original space. Further-
more, RestNet achieves better segmentation results by pre-
dicting twice. These works however are inefficient in ap-
plication due to an additional finetuning process or double
predictions. In addition, their backbone pretrained on Ima-
geNet [32] limits their performance.

To this end, we attempt to take advantage of recent
achievements on the foundation model, the Segment Any-
thing Model (SAM) [19] to assist CD-FSS. With more than
one billion masks under its training, SAM exhibits strong
feature extraction and generalization abilities. However,
recent studies [6, 9, 27, 39] have reported that applying
SAM directly to new domains often yields subpar perfor-
mance on zero-shot segmentation tasks, particularly when
the data distribution significantly differs from the natural
domain data used in SAM training. In addition, its inter-
active framework necessitates manual visual prompts, such
as points or boxes, for precise segmentation, which restricts
its capability for full automation. Furthermore, some recent
works [6, 22, 48] demonstrate SAM is sensitive to manual
visual prompts. Even slight deviations in provided prompts
can remarkedly affect segmentation accuracy. As shown in
Fig. 1(b), PerSAM presents unsatisfactory performance due
to its inability to extract high-quality visual prompts.

In our work, we propose an auto-prompt network for
cross-domain few-shot semantic segmentation (APSeg),
which builds a novel end-to-end framework that efficiently
adapts SAM to CD-FSS tasks for accurate segmentation.

As shown in Fig. 1(c), the core of our framework is fea-
ture transformation and meta prompt generation. In par-
ticular, for feature transformation, we propose a Dual Pro-
totype Anchor Transformation (DPAT) module to extract
pseudo query prototypes based on cycle-consistency be-
tween support and query features. By fusing the pseudo
query prototypes with the support prototypes, the computa-
tion of the transformation matrix can incorporate informa-
tion from both support and query samples, which facilitates
transforming input features into a more resilient domain-
agnostic feature space. Combined with DPAT, the potential
of SAM in cross-domain scenarios can be unleashed. In
addition, for automatic prompt-embedding generation, we
introduce a Meta Prompt Generator (MPG) module via a
meta-learning procedure. Rather than relying on manual vi-
sual prompts such as point and box prompts, MPG leverages
support features to guide the generation of meta prompt em-
beddings associated with target objects to substitute the out-
put of the SAM’s prompt encoder. With MPG, our method
is robust and general for automatic segmentation. Our main
contributions are summarized as follows:
• We propose a novel model that integrates a dual prototype

anchor transformation (DPAT) module and a meta prompt
generator (MPG) module for efficiently adapting SAM to
CD-FSS tasks.

• The DPAT module is proposed for cross-domain feature
transformation, which integrates support prototypes and
pseudo query prototypes and transforms input features
into a stable domain-agnostic space.

• The MPG module is introduced to generate prompt em-
beddings through meta-learning to establish a fully auto-
matic framework for segmentation.

• Extensive experiments on four cross-domain datasets
demonstrate that our model outperforms the state-of-the-
art CD-FSS method by 5.24% and 3.10% in average ac-
curacy on 1-shot and 5-shot settings, respectively. Es-
pecially, we attain 17.49% (1-shot) and 14.30% (5-shot)
improvements on the Chest X-ray dataset.
In our method, the parameters of SAM’s image encoder

and mask decoder are frozen, and only a few parameters are
trainable. Notably, our trained model can directly achieve
promising results when applied to target domains without
fine-tuning or multiple rounds of inference.

2. Related Work

2.1. Few-shot Segmentation

The goal of few-shot segmentation (FSS) is to segment
new classes with a few annotated examples. Current FSS
methods are commonly based on meta-learning, which can
be largely grouped into two types: prototype-based methods
[4, 41, 47, 54] and matching-based methods [20, 30, 44, 49].
Motivated by PrototypicalNet [36] for few-shot learning,
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Figure 2. The overall architecture of our proposed APSeg in a 1-way 1-shot example. After obtaining the multi-layer features of support and
query images, DPAT is employed to transform the domain-specific features into domain-agnostic ones by producing linear transformation
matrices. Then the transformed features are passed into MPG to generate prompt embeddings. At last, the mask decoder takes the prompt
embeddings and the transformed high-level query feature as input to make a prediction for the query image. In the testing phase, the trained
model is directly applied to complete meta-testing in the target domain.

the prevalent FSS models utilize prototypes for specific-
class representation. Recent works [23, 50] point out that
a single prototype has a limitation to cover all regions
of an object, especially for pixel-wise dense segmentation
tasks. To alleviate this problem, methods of [23, 50] use
expectation-maximization and cluster algorithms to gener-
ate multiple prototypes for different parts of the objects.
Compared with prototype-based methods, matching-based
ones [28, 38, 52] are designed to extract dense correspon-
dences between query images and support annotations, har-
nessing pixel-level features to augment the support context
with more intricate details. These methods however only
focus on segmenting new categories from the same domain
and fail to generalize unseen domains.

2.2. Cross-domain Few-shot Segmentation

In contrast to the traditional FSS setting, CD-FSS neces-
sitates that models refrain from accessing target data dur-
ing the training process. Furthermore, the data distribution
and labeling space in the test phase differ from those in the
training phase. This is a more realistic setting. PATNet [21]
proposes a feature transformation module, which aims to
convert domain-specific features into domain-agnostic fea-
tures. In addition, the target domain data are desired to be
utilized to fine-tune the model during the testing phase. No-
tably, PATNet outperforms current FSS methods on its es-
tablished benchmark. RestNet [16] utilizes a lightweight at-
tention module to enhance pre-transformation features and
merge post-transformation features through residual con-
nections to maintain the key information in the original
domain. Meanwhile, a mask prediction strategy is intro-
duced to mitigate the issue of overfitting to support sam-
ples in FSS and facilitates the model in a gradual acquisi-

tion of cross-domain segmentation capabilities. However,
existing methods still utilize classical classification models
[15, 35] as feature extractors with limited feature extraction
capabilities compared to existing visual foundation models
[19, 29, 31]. The performance of cross-domain segmenta-
tion is limited. Moreover, either additional training or mul-
tiple inferences is required when predicting masks, which
makes the inference process complex and inefficient.

2.3. Segment Anything Model

The Segment Anything Model (SAM) [19], pretrained
on massive amounts of labeled data, first introduced a foun-
dation model for image segmentation. SAM relies on ex-
plicit points and bounding boxes at precise locations for ac-
curate segmentation [10, 39]. Therefore, extensive manual
guidance or a specialist detector is often required, leading to
a complex multi-stage pipeline [40]. SAM cannot achieve
automatic segmentation for specific semantics. To address
this, PerSAM [53] proposes automatic sampling of visual
prompts and some other methods suggest directly generat-
ing prompt embeddings [6, 48]. Inspired by these works, we
propose an automatic prompting method in a meta-learning
manner to adapt SAM to CD-FSS.

3. Method
3.1. Problem Definition

For CD-FSS, a source domain (Xs, Ys) and a target
domain (Xt, Yt) exist, where the input distribution of the
source domain and target domain are different and their la-
bel space has no intersection as well, i.e. Xs ̸= Xt and
Ys ∩ Yt = ∅. Here X denotes input distribution and Y de-
notes the label space. In our work, we train and test our
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Figure 3. A visual example of a support-query pair to perform
cycle-consistent selection (CCS).

model in a meta-learning episodic manner following [21],
and our model is only trained on the source domain and has
no access to the target data. Each episode data consists of a
support set S and a query set Q with a specific category. The
support set S = (Isi ,M

s
i)

K
i=1 contains K image-mask pairs,

where Isi denotes the i-th support image and Ms
i denotes

the corresponding binary mask. Similarly, the query set is
defined as Q = (Iqi ,M

q
i )

K
i=1. To train our model, support

sets and images from query sets are used as model inputs to
predict the query masks. To assess the trained model’s per-
formance, we test it on a support set and a query set from
the target domain.

3.2. Method Overview

Our target is to train a general model on natural domains
with rich annotations and transfer the knowledge to target
domains with limited labeled data. As illustrated in Fig. 2,
our proposed APSeg consists of two key modules: the Dual
Prototype Anchor Transformation (DPAT) module and the
Meta Prompt Generator (MPG). Specifically, given the sup-
port image Is and query image Iq, the SAM image encoder
is used to extract multi-level features from different layers.
DPAT module is then employed to map support and query
features to a new domain-agnostic space, facilitating the
rapid adaptation of subsequent modules for previously un-
seen domains. Next, we introduce the MPG module whose
task is to generate sparse and dense prompt embeddings
through the meta-learning procedure for the SAM’s mask
decoder by utilizing the transformed features. At last, the
generated prompt embeddings and the transformed high-
level query features are passed into the mask decoder for
target mask prediction.

3.3. Dual Prototype Anchor Transformation

To map support and query features into a new domain-
agnostic space, we introduce a Dual Prototype Anchor
Transformation (DPAT) module, as shown in Fig. 4. Pre-
vious method [21] solely relies on a set of support proto-

Dual Prototype Anchor Transformation

MAP

CCS

1 1 1 …… 1 1 1 

Anchor Layer

... ... 

A

Figure 4. The specific implementation of the Dual Prototype An-
chor Transformation module. Pseudo foreground and background
prototypes of query are extracted through cycle-consistent selec-
tion (CCS). The extracted pseudo prototypes are then fused with
support prototypes to calculate the transformation matrix W with
an anchor layer.

types and anchor layers to compute a transformation ma-
trix. However, support prototypes cannot well represent
complete information of a category due to intra-class vari-
ance. Therefore, we propose to enhance the support pro-
totype set with query prototypes for better feature trans-
formation. Specifically, our proposed DPAT consists of
two procedures: dual prototype enhancement and cross-
domain feature transformation. Inspired by [52], we pro-
pose cycle-consistent selection (CCS) to extract both the
query foreground and background prototypes in the absence
of query masks, which is used to enhance the support proto-
types. Based on these enhanced prototypes which represent
a category and its surroundings, an effective transformation
matrix can be computed with a learnable domain-agnostic
module. The transformation matrix is then applied to query
features for cross-domain feature transformation.

Dual Prototype Enhancement Representative proto-
types are significant for our cross-domain transformation.
To this end, we build a cycling-examine procedure that rea-
sons on both the query foregrounds and backgrounds to aug-
ment support prototypes. The process is shown in Fig. 3.
We conduct forward matching to attain query features that
have the highest similarity with the support foregrounds.
We then use these identified forward-matched query fea-
tures to re-locate corresponding support features reversely.
If the located support features through reverse matching fall
within support foregrounds, the identified query features
will be averaged and used to derive the foreground proto-
types. The background prototypes are obtained with the
same process. Finally, support prototypes and query pro-
totypes are fused by addition.

Specifically, given a support image Is and a query image
Iq, we initially employ a shared-weight image encoder to
extract their multi-layer feature maps {fsl }

3
l=1 and {fql }

3

l=1

respectively, where fsl , fql ∈ Rcl×h×w. cl, h, w are the chan-
nel dimension, height, and width of the feature map. DPAT
takes support features{fsl }

3
l=1, query features{fql }

3

l=1
and
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support mask Ms as input. To simplify the notations, fs and
fq are used to represent any one of {fsl }

3
l=1 and {fql }

3

l=1
. We

then employ masked average pooling (MAP) on the support
feature to obtain the foreground and background prototype,
denoted as ps

fg and ps
bg. By concatenating ps

fg and ps
bg, we

get the support prototype matrix Ps =
[
ps
fg,p

s
bg

]
. Consid-

ering that the query mask cannot be accessed during train-
ing, we extract pseudo query prototypes through CCS. First,
the support foreground feature is obtained by multiplying
the support mask Ms with the support feature fs. Ne, the
similarity between the support foreground feature and the
query feature is calculated. For each element of the support
foreground feature, we search for the element in the query
feature map with the highest similarity score, and acquire
the matched position set is→q from support to query as fol-
lows,

is→q = argmax
i∈{0,1,...,h×w−1}

(sim(fs ⊙Ms, fqi )) (1)

where sim(·, ·) is a cosine function. Based on is→q, the
matched query feature fqis→q can be extracted. Similarly, the
matched positions js←q from query to support can obtained
as below,

fqis→q = {fq[i] : i ∈ is→q} (2)

js←q = argmax
j∈{0,1,...,h×w−1}

(sim(fqis→q , fsj)) (3)

where js←q is the positions on support that have the most
similar features with the corresponding reference query fea-
tures fqis→q . If the position in the matched position set
js←q does not fall in the support mask Ms, we filter out
the position from is→q and obtain the final matched posi-
tion set i

′s→q. According to the set i
′s→q, the correspond-

ing features are extracted from fq and averaged to obtain
the pseudo foreground query prototype pq

fg. The pseudo
background query prototype pq

bg can be obtained through
a similar process, resulting in the query prototype matrix
Pq =

[
pq
fg,p

q
bg

]
. Finally, a mixed prototype matrix can be

obtained by Pm = Ps + Pq.

Cross-domain Feature Transformation Features of the
same class yield similar results when they are transformed
in the same way. Support features and query features are
transformed into a domain-agnostic space using the same
transformation matrix W to avoid the detrimental impact
caused by domain shift. Given the weight matrix of an an-
chor layer A, the definition of a transformation matrix is as
follows:

WPm = A (4)

where Pm =
[

pm
fg

∥pm
fg∥

,
pm

bg

∥pm
bg∥

]
, A =

[
afg

∥afg∥ ,
abg

∥abg∥

]
and a is

the anchor vector which is independent of the input. Differ-
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Figure 5. The specific implementation of the Dual Prototype An-
chor Transformation module. PE indicates a positional encoding.

ent from previous work [21], we leverage the mixed proto-
type matrix that incorporates both support and query feature
information during the computation process. Since the pro-
totype Pm is a non-square matrix, the generalized inverse
[1] of Pm is calculated with Pm+ = {PmTPm}−1PmT.
Therefore, the transformation matrix is calculated as W =
APm+. In our work, We have two different anchor layers
for mid-level features {fs1, fs2, f

q
1 , f

q
2} and high-level features

{fs3, f
q
3}. Finally, we can efficiently map support and query

features to a stable, domain-agnostic space by multiplying
them with W.

Objects and things of even the same class can differ in
shape and appearance. Due to limited samples of supports,
it is intrinsically challenging to represent all the variance
within objects and things of a class. Through the double-
check procedure for both foreground and background re-
gions, our proposed DPAT can effectively mitigate the chal-
lenges aroused by intra-class variances and generate a more
stable transformation matrix for cross-domain feature trans-
formation.

3.4. Meta Prompt Generator

To construct an end-to-end fully automated SAM-based
segmentation framework for CD-FSS, we utilize the fea-
tures of support-query pairs to directly generate prompt em-
beddings. In particular, a meta prompt generator (MPG)
module is designed to obtain both sparse and dense embed-
dings simultaneously. Different from [4] that uses single
support embeddings without alignments, our new pipeline
extends to leverage multiple support embeddings and inte-
grates feature alignment. Our design comprehensively takes
account of intra-class variance and the multiple prompts
coming along with the support embeddings enhance the
segmentation. For clarity, we refer to the process of gen-
erating sparse embeddings and dense embeddings as sparse
path and dense path respectively. In this way, our method
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eliminates the need for external manual visual prompts,
such as points or boxes.

Sparse path. In this process, the query features and sev-
eral support embeddings augmented from the support pro-
totypes are utilized to generate sparse embeddings through
a transformer decoder [5], which then replace the origi-
nal sparse embeddings in SAM. First, we concatenate the
transformed mid-level query features f̂s1 ∈ Rc1×h×w and
f̂s2 ∈ Rc2×h×w along the channel dimension, and then per-
form dimension reduction through a convolution layer to
obtain f̂s ∈ Rcr×h×w. In the same way, we can also get
f̂q ∈ Rcr×h×w,

f̂s = Fconv (̂f
s
1 ⊕ f̂s2)

f̂q = Fconv (̂f
q
1 ⊕ f̂q2 )

(5)

where Fconv means performing a 1 × 1 convolution fol-
lowed by a ReLU activation function and ⊕ denotes the
concatenation operation in channel dimension.

Next, we take f̂s and Ms as input and apply MAP to ob-
tain the foreground class prototypes p̂s ∈ Rcr . Then, a
linear layer maps the p̂s to multiple augmented support em-
beddings Eaug ∈ Rk×cr ,

Eaug = Flinear(P̂
s) (6)

where k denotes the number of the augmented support em-
beddings. Here we generate several embeddings instead
of only a single embedding for simulating multiple point
prompts.

To supplement positional information, learnable position
encodings are applied to Eaug and fixed sine-cosine posi-
tional encodings are applied to f̂q. We then input them into
the transformer decoder and its output is further processed
by a two-layer MLP to increase the channel dimensions,
which yields Êaug ∈ Rk×co .

Êaug = Fmlp(Ftrans(E
aug, f̂q)) (7)

To align the generated sparse embeddings with those
produced by SAM’s prompt encoder, the sine function is
employed to generate the final sparse embeddings Espa ∈
Rk×co following [6].

Espa = Êaug + Fsine(Ê
aug) (8)

Dense path. In this process, the dense embed-
dings are modulated by query features and support proto-
types. f̂s3, f̂q3 and Ms are first passed to prior mask genera-
tion (PMG) module [38] to generate a prior mask Mpr ∈
R1×h×w. After concatenating p̂s, f̂q and Mpr, we per-
form a 1× 1 convolution for dimension reduction to obtain
f̂pr ∈ Rcr×h×w. The output is then passed into the feature
enhancement (FEM) module [38] to get f̂ fem. f̂ fem is fur-
ther processed by a 1 × 1 convolution layer to increase the
channel dimensions to obtain Eden ∈ Rco×h×w.

3.5. Training Loss

In the training of APSeg, we employ a Dice loss func-
tion, computed between the predicted mask M̂ and the cor-
responding ground truth query mask Mq. The loss function,
denoted as L, is expressed as:

L =
1

n

n∑
i=1

DICE
(
I(M̂),Mq

)
(9)

Here, n represents the total number of training episodes
in each batch, and DICE signifies the Dice loss function.
The function I serves as an interpolation function, ensuring
that M̂ shares the same spatial size as Mq.

4. Experiment
Datasets. Following the previous approach [21], we use
PASCAL VOC 2012 [13] with SBD [14] augmentation
as training dataset and then evaluate the trained model on
Chest X-ray [3, 17], ISIC [11], FSS-1000 [24] and Deep-
globe [12] respectively.
Metric and Evaluation. We use the mean intersection-
over-union (mIoU) as the evaluation metric, which is the
same as the previous method. We take the mean-IoU of 5
runs [28] with different random seeds for each test. For all
datasets except FSS-1000, each run has 1200 tasks. Every
run of FSS-1000 has 2400 tasks.
Implementation Details. In our experiments, we employ
the base version of the SAM and keep it frozen during
training. To be consistent with the original input to SAM,
we set spatial sizes of both support and query images to
1024 × 1024. For the SAM image encoder, we utilize fea-
ture maps derived from the mid-level features output by the
5th and 8th transformer blocks, in addition to the high-level
features obtained from the final output of the image encoder.
Concerning the DPAT module, we create two anchor layers
dedicated to mid-level and high-level features, each config-
ured with channel numbers set to 768 and 256, respectively.
For the MPG module, the number of feature channels after
dimension reduction is set to 64. Additionally, the number
of sparse embeddings and dense embeddings channels out-
put by MPG is set to 256. We implement the model in Py-
Torch and utilize the Adam [18] optimizer with a learning
rate of 1e−3.

4.1. Comparison with State-of-the-Arts

We compare our method against existing CNN-based
and SAM-based approaches for CD-FSS. As shown in
Tab. 1, the results demonstrate the superiority of the pro-
posed method in this challenging task. Specifically, our ap-
proach exhibits improvements of 5.40% and 3.10% com-
pared to the PATNet [21], under 1-shot and 5-shot settings,
respectively. Moreover, APSeg surpasses the SAM-based
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Methods Backbone Chest X-ray ISIC FSS-1000 Deepglobe Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Few-shot Semantic Segmentation Methods
AMP [34] VGG-16 51.23 53.04 28.42 30.41 57.18 59.24 37.61 40.61 43.61 45.83

PGNet [50] Res-50 33.95 27.96 21.86 21.25 62.42 62.74 10.73 12.36 32.24 31.08
PANet [41] Res-50 57.75 69.31 25.29 33.99 69.15 71.68 36.55 45.43 47.19 55.10
CaNet [51] Res-50 28.35 28.62 25.16 28.22 70.67 72.03 22.32 23.07 36.63 37.99

RPMMs [46] Res-50 30.11 30.82 18.02 20.04 65.12 67.06 12.99 13.47 31.56 32.85
PFENet [38] Res-50 27.22 27.57 23.50 23.83 70.87 70.52 16.88 18.01 34.62 34.98

RePRI [2] Res-50 65.08 65.48 23.27 26.23 70.96 74.23 25.03 27.41 46.09 48.34
HSNet [28] Res-50 51.88 54.36 31.20 35.10 77.53 80.99 29.65 35.08 47.57 51.38

PerSAM [53] ViT-base 29.95 30.05 23.27 25.33 60.92 66.53 36.08 40.65 37.56 40.64
Cross-domain Few-shot Semantic Segmentation Methods

PATNet [21] Res-50 66.61 70.20 41.16 53.58 78.59 81.23 37.89 42.97 56.06 61.99
PATNet‡ [21] ViT-base 76.43 - 44.25 - 72.03 - 22.37 - 53.77 -
RestNet [16] Res-50 70.43 73.69 42.25 51.10 81.53 84.89 - - - -
APSeg(ours) ViT-base 84.10 84.50 45.43 53.98 79.71 81.90 35.94 39.98 61.30 65.09

Table 1. Comparison with previous FSS and CD-FSS methods under 1-way 1-shot and 1-way 5-shot settings. All the methods are trained
on the source dataset and tested on the CD-FSS benchmark. The method marked with ‡ is implemented by ourselves.

method PerSAM [53] by 23.74% and 24.45%, affirming the
effectiveness of our approach. Notably, our method show-
cases significantly superior performance compared to the
current method when confronted with large domain gaps
between the testing and training datasets. Specifically, com-
pared with PATNet, our method achieves improvements of
17.49% and 14.30% on the chest X-ray dataset under the
1-shot and 5-shot settings, respectively. Similarly, on the
ISIC dataset, improvements of 4.27% are observed for the
1-shot setting. Furthermore, our automatic prompting ap-
proach significantly surpasses the manual prompting strat-
egy proposed by [53] in cross-domain performance. For a
fair comparison, we also implement PATNet based on the
SAM’s image encoder. The model is trained with the same

input image size and test-time fine-tuning is not employed.
The results demonstrate that APSeg still maintains a signif-
icant superiority. Qualitative results, illustrated in Fig. 6,
validate that our proposed method attains substantial im-
provements in generalization performance in the presence
of large domain gap while maintaining considerable accu-
racy with minor domain shift. More visualization results are
provided in the supplementary materials.

4.2. Ablation study

Components analysis. We assess the effectiveness of our
proposed DPAT module and MPG module by using the 1-
shot mIoU averaged on 4 datasets. To establish a baseline
model, we first remove the DPAT module and the sparse
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path in the MPG module and then replace the final layer
of the dense path with a 1 × 1 convolution layer for pre-
dicting segmentation masks. Tab. 2 illustrates the impact
of each component on model performance. Overall, the
incorporation of the two components suggested in this pa-
per enhances the baseline by 18.44%. In the second row,
MPG leverages the segmentation capabilities of SAM by
autonomously generating semantic-aware prompt embed-
dings, eliminating the need for manual prompts and im-
proving the baseline by 2.80%. Upon combining MPG
and DPAT, DPAT unleashes the segmentation capabilities of
SAM in cross-domain scenarios. It achieves this by trans-
forming input features into a more stable domain-agnostic
feature space, resulting in a significant performance im-
provement of 15.46% compared to the second row. More
analysis and discussion about DPAT are shown in supple-
mentary materials.

Method Chest X-ray ISIC FSS-1000 Deepglobe Average

Baseline 28.80 44.55 77.90 20.19 42.86
Baseline + MPG 32.62 36.67 79.77 34.31 45.84

Baseline + MPG + DPAT 84.10 45.43 79.71 35.94 61.30

Table 2. Ablation study on key components of APSeg on CD-FSS.
Results are averaged over four datasets for 1-shot.

Sparse Dense 1-shot mIoU

✓ 41.52
✓ 44.09

✓ ✓ 45.43

Table 3. Ablation study on the choice of different types of prompt
embeddings in MPG on ISIC.

Meta Prompt Generator. Tab. 3 shows the impact of
the main components in the MPG, namely sparse embed-
dings and dense embeddings. We show the results for three
combination scenarios: using only sparse embeddings, only
dense embeddings, and both. Our observation reveals that
better performance can be attained when combining sparse
and dense embeddings. This emphasizes the significance
of leveraging both types of embeddings to harness the seg-
mentation capabilities of SAM in cross-domain scenarios.
The number of feature channels. After cross-domain fea-
ture transformation, we fuse the transformed mid-level fea-
tures and perform dimension reduction, which can reduce
the number of learnable parameters and avoid the trained
model overfitting the training dataset. Observation in Tab. 4
shows that reducing the number of channels to 64 allows our
method to achieve better CD-FSS performance with only a
small number of additional learnable parameters.
The number of sparse embeddings. Our proposed MPG
introduces an automatic generation mechanism for prompt
embeddings, replacing SAM’s original method of obtain-
ing them through manual prompts fed into the prompt en-
coder. Employing more manual visual prompts has been

dim 1-shot mIoU # Learnable Params

64 61.30 0.7 M
128 60.03 2.3 M
256 58.65 8.4 M

Table 4. Ablation study on different output feature channels. Re-
sults are averaged over four datasets for 1-shot.

shown to enhance SAM’s interactive segmentation perfor-
mance. Therefore, Tab. 5 shows the association between the
number of sparse embeddings generated by MPG and the
performance of cross-domain few-shot segmentation with
APSeg. Notably, generating 4 sparse embeddings results in
a 0.55% improvement in 1-shot scenarios. However, as in-
dicated in the third row, continuing to generate more prompt
embeddings may lead to a decline in performance.

num 1-shot mIoU

1 60.75
4 61.30
8 60.65

Table 5. Ablation study on the different number of sparse embed-
dings. Results are averaged over four datasets for 1-shot.

5. Conclusion

In this paper, we introduce APSeg, an auto-prompt
method for guiding SAM to complete CD-FSS tasks. To
achieve fully automatic segmentation based on SAM and re-
lease the segmentation capability of SAM in cross-domain
scenarios, we propose the Meta Prompt Generator (MPG)
module and Dual Prototype Anchor Transformation (DPAT)
module to achieve this goal. By fusing the extracted
pseudo query prototypes with support prototypes, DPAT
enables domain-specific input features to be more stably
converted into domain-agnostic features, significantly im-
proving cross-domain generalization capabilities. In addi-
tion, MPG generates semantic-aware prompt embeddings
with meta-learning, promoting the construction of a fully
automatic CD-FSS framework based on SAM. Combining
DPAT and MPG, extensive experimental results show that
our APSeg achieves a new state-of-the-art in CD-FSS.
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