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Abstract

Referring video segmentation relies on natural language
expressions to identify and segment objects, often empha-
sizing motion clues. Previous works treat a sentence as
a whole and directly perform identification at the video-
level, mixing up static image-level cues with temporal
motion cues. However, image-level features cannot well
comprehend motion cues in sentences, and static cues
are not crucial for temporal perception. In fact, static
cues can sometimes interfere with temporal perception by
overshadowing motion cues. In this work, we propose to de-
couple video-level referring expression understanding into
static and motion perception, with a specific emphasis on
enhancing temporal comprehension. Firstly, we introduce
an expression-decoupling module to make static cues and
motion cues perform their distinct role, alleviating the issue
of sentence embeddings overlooking motion cues. Secondly,
we propose a hierarchical motion perception module to
capture temporal information effectively across varying
timescales. Furthermore, we employ contrastive learning
to distinguish the motions of visually similar objects. These
contributions yield state-of-the-art performance across five
datasets, including a remarkable 9.2% J & F improvement
on the challenging MeViS dataset. Code is available at
https://github.com/heshuting555/DsHmp.

1. Introduction

Referring video segmentation [8, 14, 23, 47] is a continually
evolving area that lies at the crossroads of computer vision
and natural language processing. This emerging realm of
study is concentrated on segmenting and tracking specific
objects of interest within video content, guided by natural
language expressions. While it shares a historical connec-
tion with video object segmentation, it distinguishes itself
by leveraging natural language expressions as guidance,
which can offer motion-related cues like “walking” and
“jumping”. Notably, recent datasets like MeViS [8] have
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Figure 1. Previous works treat a sentence as a whole and perform
referring understanding at the video-level. However, image-level
features struggle to understand motion cues, and static cues can
sometimes disrupt temporal perception by overshadowing motion
cues. We introduce a decoupling of static and motion perception,
with a particular focus on enhancing temporal understanding.

emphasized the role of motion expressions in this evolv-
ing field, underscoring the significance of comprehending
multi-modal motion information in this context.

Current approaches [8, 15, 29, 43, 49, 55, 56] in referring
video segmentation typically oversimplify the complex na-
ture of language by reducing it to a single sentence embed-
ding. For example, ReferFormer [56] and LMPM [8&] both
employ the strategy of duplicating a single sentence embed-
ding for multiple query embeddings within a Transformer
architecture. This approach tends to overshadow the distinct
importance and unique static or motion cues offered by the
sentence. For instance, consider the sentences: “The little
girl in red standing near the chair and drinking” and “The
little girl in red moving near the chair and drinking”. These
two sentences share 10 out of 11 words, leading to highly
similar sentence embeddings, despite potentially referring
to different targets. To address this issue, we propose
to decouple image-level segmentation and temporal-level
motion understanding. As shown in Fig. 1, we let the
given sentence focus on two distinct components: static and
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motion. The static cues are leveraged to identify potential
candidates based on the static visual features present in
each individual frame, where motion cues are not necessary.
Then, the motion cues are used to pinpoint the target
objects among the identified candidates by aligning them
with temporal features observed throughout the video. In
this way, static cues and motion cues perform their distinct
and complementary roles, enhancing the comprehensive
understanding of the referring expressions and videos.

A significant challenge in referring video segmentation
is the precise capture and alignment of motions across the
temporal domain. The motion cues provided by expressions
may span a variable number of frames. For example,
there are brief actions that occur over a few frames, like
“flying away”, as well as long-term actions that persist
throughout the entire video, such as “walking from leftmost
to rightmost”. The unpredictability of the number of
frames in which these actions occur greatly intensifies the
challenge and complexity of capturing and comprehending
motion. Recently, LMPM [8] has introduced a method to
capture motions using object tokens, offering computational
efficiency and increasing the number of frames considered
in temporal learning. However, LMPM tends to treat all
frames uniformly and overlooks the distinctions between
fleeting motions and long-term motions. In this work, we
propose a hierarchical motion perception module to grad-
ually comprehend temporal information based on object
tokens, starting from short-term actions and progressing
toward long-term actions. This module mimics the way
humans understand videos by processing short clips and
building an understanding of long-term concepts based on
the recollection of short-term clips.

Furthermore, another challenge arises in differentiating
between objects that exhibit nearly identical static appear-
ances, such as two sheep that look very similar but have
distinct motions. In such cases, the visual features extracted
by the image encoder are highly alike, necessitating a
significant reliance on the nuanced temporal differences to
distinguish similar-looking objects. To address this chal-
lenge and enhance object discrimination using motion cues,
we employ an object-wise contrastive learning. For a robust
learning process, a memory bank is built to generate feature
centroids for different objects, which greatly enhance the
quality and quantity of positive and negative samples. We
prioritize negative samples from the same category, like the
three giraffes in Fig. 1, as they are more likely to share
a similar appearance and serve as challenging samples for
distinguishing objects with distinct motions. This training
objective effectively helps to emphasize the disparities in
motion features for the similar-looking objects.

In summary, our main contributions are as follows:

* We propose to decouple referring video segmentation into
static perception and motion perception. Static perception

focuses on grounding candidate objects on image-level
based on static cues, while motion perception aims at
understanding temporal context and identifying the target
objects on temporal-level using motion cues.

* We propose a Hierarchical Motion Perception that effec-
tively processes temporal motions, enabling the capture
of motion patterns spanning various frame intervals.

* We leverage contrastive learning to acquire discriminative
motion representations and enhance the model’s ability to
distinguish visually similar objects using motion cues.

* We achieve new state-of-the-art performance on five re-
ferring video segmentation datasets, with a particularly
significant 9.2% J&F improvement on the challenging
MeViS dataset, showing the effectiveness of our method.

2. Related Work

Referring Image Segmentation. Referring image segmen-
tation aims to segment the target object within the image ac-
cording to the given sentence [6, 13, 18, 27, 31, 32, 34, 42].
Its prevailing methods fall into two main categories: one-
stage methods that perform end-to-end prediction and two-
stage methods that involve instance segmentation followed
by language-instance matching. For example, Hu et al. [18]
fuse visual and linguistic features and then conduct pixel-
wise classification for mask prediction, representing a one-
stage method. In contrast, Yu et al. [63] use a instance
segmentation model to detect all instances in the image and
subsequently select the one that best aligns with the sen-
tence, characterizing a two-stage approach. More recently,
the success of Transformer [28, 51] has inspired a wave of
research in referring image segmentation. Ding et al. [7]
first introduce Transformer into this domain and propose the
Vision-Language Transformer (VLT). Subsequently, many
Transformer-based methods have emerged [19, 24, 33, 35,
45, 48, 53, 57, 58, 60, 64, 66].

Referring Video Segmentation. Referring video
segmentation aims to segment the target object within a
given video according to a natural language expression [4,
11, 15, 26, 29, 30, 36, 43, 49, 52, 54, 55, 61, 65]. This
field is continually evolving with the introduction of
A2D-Sentences [14], Ref-DAVIS17 [23], Ref-YouTube-
VOS [47], and MeViS [8]. Many previous methods
in referring video segmentation have primarily adapted
referring image segmentation approaches to perform frame-
by-frame target object segmentation, often overlooking the
temporal dimension. For example, Khoreva er al. [23] ues
the referring image segmentation method MAttNet [63] for
frame-level segmentation and then applied post-processing
techniques to ensure temporal consistency. URVOS [47]
and RefVOS [1] utilize cross-modal attention for per-
frame segmentation but do not leverage the temporal
dimension. Despite their performance, these methods
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Figure 2. Overview of the proposed approach, named as DsHmp. We decouple the referring video segmentation to image-level static
perception and temporal-level motion perception. We first employ Mask2Former to segment the possible objects according to static cues
F. Then based on the object tokens O generated by Mask2Former, a hierarchical motion perception is employed to gradually comprehend
temporal motions from short-term to long-term. Next, we employ a Motion Decoder to identify the target object according to motion cues
F, and produce video tokens V', which are used for mask predictions. Contrastive learning is applied on video tokens to help the model

differentiate visually similar objects with distinct motion patterns.

largely overlook the motion information inherent to videos.
Some other works, like ReferFormer [56] and MTTR [2],
employ the DETR-like structure in the RVOS field which
simplifies the referring pipeline and achieves impressive
performance. More recently, based on complex video
object segmentation dataset MOSE [9], MeViS [8] dataset
has been constructed to emphasize the significance of
motion expressions and highlight the inadequacies of
existing methods in comprehending the motion information
present in languages and videos. In our work, the primary
focus is on enhancing the understanding of motion cues in
both visual and linguistic features.

3. Approach

The overview of the proposed approach, named DsHmp,
is shown in Fig. 2. We first extract word feature Fy and
sentence embedding F's., and decouple the given sentence
to static cues F; and motion cues F},,. With the static cues
Fs as queries, we employ a Mask2Former [5] to extract
object tokens O of potential candidate objects and mask
feature Finask at image-level. Then the proposed Hierarchi-
cal Motion Perception (HMP) is conducted on the object
tokens to progressively and hierarchically collect temporal
information, generating motion-aware object tokens Ohmep
with the guidance of motion cues F,,,. Next, we employ the
motion cues F}, to identify the target object with a Motion
Decoder and produce video tokens ). Finally, the predicted
masks are obtained by multiplying the video tokens V and
mask features Fi,,sx, and these with class scores higher than

a threshold are selected as output. Contrastive learning is
applied on the video tokens to enhance the model’s ability
to distinguish objects using motion cues. To facilitate
contrastive learning, a memory bank M is established to
store video tokens from various objects, ensuring a supply
of high-quality negative samples.

3.1. Decoupling Motion and Static Perception

Existing approaches [8, 15, 29, 43, 49, 55, 56] in referring
video segmentation often oversimplify the complex nature
of language by reducing it to a single sentence embedding.
Meanwhile, commonly used visual backbones, such as
Mask2Former [5] and Video-Swin [38], primarily function
as image-level or short-video-level (e.g., 5 frames) segmen-
tation models. They face a challenge in comprehending
motion cues within a single sentence embedding.

To address these challenges and effectively leverage the
cues provided by expressions, we propose to decouple
the static perception and motion perception. Concerning
language, we introduce a decoupling of the given expres-
sion into static and motion cues, which serve as cues for
static perception and motion perception, respectively. In
terms of visual processing, we employ Mask2Former [5]
to concentrate on extracting potential objects relevant to
image-level static cues. Subsequently, the Hierarchical
Motion Perception (see Sec. 3.2) and Motion Decoder are
responsible for capturing motion based on motion cues.
This decoupling allows both sub-tasks, i.e., static percep-
tion and motion perception, to learn more comprehensively.
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Figure 3. Architecture of the proposed Hierarchical Motion Perception (HMP). Hierarchical Motion Perception module effectively
processes short-term and long-term motions, enabling the capture of motion patterns spanning various frame intervals.

As shown in Fig. 2, given the sentence “Bird standing on
hand, then flying away,” we employ an external tool [46] to
identify nouns, adjectives, and prepositions in the sentence,
yielding static cues such as “bird, on, hand” Meanwhile,
we extract verbs and adverbs, obtaining motion cues like
“standing, flying away.” Consequently, we extract static
words feature as F; € R¥=*C and motion words feature
as F,, € REnXC where K /K,, represents the length
of static/motion cues and C' is number of channels. It is
worth noting that we add the sentence embedding Flg. in
both the motion and static features to provide a contextual
understanding of the given expression.

Furthermore, unlike the previous methods [8, 56], which
directly use language features as object query, we use cross-
attention to inject static cues into the learnable static query:

T
Q. = Q, + softmax (Qf(; ) Fi, (1)

where Q, € RM+*C is the N, initialized learnable static
queries. After the cross-attention, 9, not only acquires
a grasp of the objects data distributions but also captures
specific static cues of the target. It enables the image-level
segmentation of candidate objects via Mask2Former.

The motion cues F,, are incorporated into the learnable
motion query for Motion Decoder:

T
Q,n = O, + softmax (%“}?”) F,, 2)

where Q,, € RNmXC ig the N,, initialized learnable
motion queries. Following the cross-attention, O gains
specific motion cues related to the target. This facilitates the
identification of target objects through the Motion Decoder.
In this way, static cues and motion cues play distinct
and complementary roles, enhancing the comprehensive
understanding of the referring expressions and videos.

3.2. Hierarchical Motion Perception

A significant challenge in referring video segmentation is
precisely capturing and aligning motions across different
timeframes. Expressions can provide motion cues that
vary in the number of frames they span, e.g., fleeting or
long-term motions. Inspired by LMPM [8] that captures

motions via object tokens, we propose a Hierarchical Mo-
tion Perception (HMP) module based on object tokens.
This module progressively analyzes short-term and long-
term motions, mirroring human video comprehension by
forming an understanding of long-term concepts through
the recollection of short-term clips.

Fig. 3 illustrates the architecture of the proposed HMP
module. It takes in the object tokens {Of|t € [1,T],0" €
RNs*CY " which are the N, candidate objects’ tokens
generated by the Mask2Former for each of the T frames,
and it outputs the motion-aware tokens OMmp  In the HMP
module, the Hungarian matching algorithm [25] is first
employed to match O of adjacent frames, as is done in [20]:

O! = Hungarian(O'~!, 0Y),

Ot=0' t=1
where O is the matched object tokens and can be consid-
ered as the tracking result with noise. As such, we can
obtain N object trajectories, i.e., {O;i € [1,N,],0; €
RT*C}, where O; is a single object trajectory. As shown
in the middle part of Fig. 3, the proposed Hierarchical
Motion Perception (HMP) module is composed of L HMP
blocks that are cascaded together. Each block consists of
three main components: temporal self-attention, hierarchi-
cal cross-attention, and FFN layer. Temporal self-attention
is utilized to grasp long-term motion, while hierarchical
cross-attention is used to progressively and hierarchically
gather temporal information from the short-term to the
long-term. To perform the hierarchical cross-attention,
we first highlight frames containing the target motions by
calculating the similarity between the motion feature F,,
and each object trajectory @f’_l from last hierarchical stage
using the following equation:

Ah—1p T
AP = softmax (Ol\/gm> ; 4)

where h € [1, N] denotes the stage number of hierarchical
operation and OY = O;. AP € RT»*Km represents the
attention map for the 7}, frames of object trajectory @Zh -1
and the K,,, motion cues, where T}, = wi_l The softmax

operation is performed on the 7}, axis. Next, we obtain the

tel2,T) 3)
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motion feature-enriched object feature (’N)l’-l by incorporating
the related motion cues, i.e.,

or=0""14+72Lp,, 5)

where AP = 37, A% ¢ RTh can be regarded as frame
weight by summing the effect of K, motion cues on each
of the T}, frames. This weight signifies the importance of
each individual frame’s token within the trajectory spanning
over T}, frames concerning the motion cues.

Subsequently, we engage in token merging to accumu-
late short-term motion information and create merged to-
kens for higher-level understanding within the hierarchical
framework. With the motion feature-enriched object feature
Ol and their corresponding importance weight A”, we
apply a frame merging operation to combine adjacent two
tokens into one token using the following equation:

O = YO, ALY, ©)

where @Zh € R#xC, (M) is a token merging operation
that blends two tokens of neighboring frames into a single
one using a weighted average based on /l? The merging
operation reduces redundant tokens and enhances those
associated with motion cues. The merged trajectory @h i

used as input for the next stage to generate (’)hJr1 S R - xC

with a larger temporal context view.

The operations from Eq. (4) to Eq. (6) are iteratively
performed for a total of NV}, times, as shown in Fig. 3. This
gradual merging of tokens and expansion of the temporal
scope forms a hierarchical motion perception, transitioning
from short-term to long-term motion understanding. The
output of the hierarchical cross-attention is O, and it is
obtained by:

07 =0+ 0, %)

where O ¢ R=% %€ and is expanded to match the
dimensions of O; for summation. O € RT*C is then fed
to the FFN to generate this block’s output, which serves as
the input for the next HMP block.

The final output of the Hierarchical Motion Perception
module, denoted as (5'”””, is used as the key and value
inputs to the Motion Decoder for the identification of target
objects, along with the query Om generated by Eq. (2). The
Motion Decoder produces video tokens for target objects,
denoted as V € RM=*C  With the motion-aware object
tokens O generated by Hierarchical Motion Perception,
Motion Decoder is able to more effectively understand the
motion information conveyed by the language.

3.3. Contrastive Learning

Although the proposed hierarchical motion perception sim-
plifies the motion identification for the Motion Decoder,

the presence of objects with highly similar appearances
can still pose challenges and lead to confusion in the
identification process. To address this challenge, we apply
contrastive learning on the output of Motion Decoder, video
token V. This approach enhances the model’s capacity to
differentiate similar-looking objects via motion cues.

e Vanilla Samples Selection. In contrastive learning, the
choice of positive and negative samples is crucial [16, 59].
We select the video token® with the lowest cost to the
ground truth as the anchor, while video tokens of other ob-
jects in the mini-batch serve as negative samples. However,
this straightforward approach faces two issues: 1) lack of
corresponding positive samples, and 2) insufficient negative
samples limited by mini-batch size, which significantly
impact the final outcome [22]. To address these issues, we
introduce a memory bank to store more video tokens.

e Memory Bank. Since there are vast numbers of video
tokens in our training process, directly storing all the
video tokens, like a traditional memory bank [3], severely
slows down the learning process. Therefore, we choose to
maintain a video token centroid for per target. We introduce
a memory bank M € RMe*XC to gather representative
video token centroid for each target, with each element
denoting the feature centroid of projected video token € R¢
from the contrastive head. N, is the number of target
objects in dataset. Specifically, given a video, we utilize
the projected feature of anchor video token f)j to update the
corresponding target object centroid feature of M:

| = BMp + (1= B)V;, ®)

where [V;] is an index mapping from V; to its corresponding
target index in the memory bank. The hyperparameter (3
controls the update speed. This way brings two advantages:
1) Storing the centroid feature of target objects instead of
each target object feature greatly saves memory consump-
tion. 2) The centroid feature is more representative and
robust to encompass the static and motion cues, contributing
to the construction of a well-structured feature space.

We apply an object-wise contrastive learning as follows:

exp(V; -m* /1)
exp(Vj - m* /1) +3,,— cnexp(Vs -m= /1)
®)

where 7 is a temperature hyperparameter. Positive sample

m™ is the feature centroid of the target object that f/
belongs to, i.e. M;y; 1. N is the collection of NV, negative
samples which come from different objects in M. We pri-
oritize negatives belonging to the same category in the same
video, as they are more likely to have a similar appearance
and serve as the challenging samples in contrastive learning
of distinct motions. L., is computed after IV; iterations to
ensure a stable training process.

Leon = — log

“For MeViS [8] dataset with multiple target objects, we average the
matched video tokens to represent their collective characteristics.
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3.4. Training Objective

Following [8, 17], we employ the match loss L; between
per-frame outputs and frame-wise ground truth, along
with Lv as the video-level loss with video-level ground
truth. The total training objective to optimize the model is:
Lirain = L5 + Ly + AconLeon, Where Aeop is used for
balancing the contrastive loss L., .

4. Experiments
4.1. Datasets and Evaluation Metrics

Dataset. The proposed approach, named as DsHmp, is
evaluated on five video datasets: MeViS [8], Ref-YouTube-
VOS [47], Ref-DAVIS17 [23], A2D-Sentences [14], and
JHMDB-Sentences [21]. MeViS is a newly established
dataset that is targeted at motion information analysis and
consists of 2,006 videos and 28K annotations. The Ref-
YouTube-VOS stands out as the most extensive R-VOS
dataset, comprising 3,978 videos and approximately 13K
annotations. Ref-DAVIS17 builds upon DAVIS17 [44],
enriched with linguistic annotations for diverse objects,
and offers 90 videos. A2D-Sentences, designed for actor
and action segmentation, encompasses over 3.7K videos
paired with 6.6K action annotations. Meanwhile, JHMDB-
Sentences provides 928 videos, each with a description,
spread across 21 unique action categories.

Evaluation Metrics. Unless otherwise specific, the evalua-
tion metrics we used are: region similarity 7 (average loU),
contour accuracy J (mean boundary similarity), and their
average J&JF. The evaluations are conducted using the
official code or online platforms. For A2D-Sentences and
JHMDB-Sentences, we employ mAP, overall IoU (oloU),
and mean IoU (mloU) as the evaluation metrics.

4.2. Implementation Details

For experiments on MeViS dataset, we follow the default
setting of [8]. Specifically, we train the models directly on
MeViS without any pre-training on RefCOCO/+/g [41, 62].
The training spans 50,000 iterations using the AdamW
optimizer [39] with a learning rate set at 0.00005. For
experiments on YouTube-VOS/A2D-Sentences, following
[2, 56], the experiments begin with pre-training on
RefCOCO/+/g [41, 62] and then undergo main training.
Besides, models trained on the Ref-YouTube-VOS/A2D-
Sentences training set are evaluated directly on the val
set of Ref-DAVIS17/JHMDB-Sentences without the use
of additional post-processing techniques. During the pre-
training phase, we train the model with 300,000 iterations.
In the main training phase, we train with 50,000 iterations.
All experiments use RoBERTa [37] as the text encoder.
All frames are cropped to have the longest side of 640
pixels and the shortest side of 360 pixels during training
and evaluation. For hyperparameters, we set values for Ny,

Components Results
Index DS HMP CL J&F J F
0 39.7 36.6 42.8
1 v 42.5 394 45.6
2 v 43.8 40.7 46.9
3 4 42.1 39.0 452
4 v v 45.1 41.8 48.4
5 v v 439 40.8 47.0
6 v v 44.9 41.7 48.1
7 v 4 v 46.4 43.0 49.8

Table 1. Ablation study of our method on MeViS dataset. DS,
HMP, and CL denote components of decoupling sentence, hierar-
chical motion perception, and contrastive learning, respectively.

Ny, Nn, Ny, N;, B, 7, Aeon at 20, 10, 3, 100, 10,000, 0.2,
0.07, 0.5, respectively.

4.3. Ablation Study

Since the main focus of this paper is exploiting motion
information, we conduct ablation study on MeViS [8].
Module Effectiveness. We conduct ablation experiments
to evaluate the effectiveness of different components. As
shown in Tab. 1, the inclusion of Decoupling Sentence
(DS, index 1) leads to a performance improvement of
2.8% J&JF compared to vanilla baseline (index 0), which
is adopted from LMPM [8] with our reproduction. The
introduction of DS enhances the model’s ability to compre-
hensively learn static and motion cues for both image-level
and temporal-level understanding. Then, HMP (index 2)
is used to capture motion information at multiple temporal
granularities, encompassing both short-term and long-term
motions. HMP improves the performance by 4.1% J&F,
highlighting the significance of motion understanding for
referring video segmentation. Next, we present Contrastive
Learning (CL, index 3) to construct discriminative motion
representations enhancing the model’s ability to distinguish
similar-looking objects. Utilizing CL improves the J&F
by 2.4%. When integrating all the components together
(index 7), referred to as DsHmp, we observe a substantial
improvement and achieve new state-of-the-art performance
of 46.4% J & F on the challenging MeViS dataset, demon-
strating the effectiveness of the proposed method.
Importance of sentence decoupling. In Tab. 2 (a), we
study the impact of sentence decoupling on the input queries
to MaskFormer and Motion Decoder. Utilizing only the ba-
sic sentence embedding Fs. like ReferFormer [56] results
ina 1.5% J&JF decrease, demonstrating that relying solely
on sentence embedding limits discriminative capability and
risks overlooking key cues. Meanwhile, solely using the
sentence decoupling query without the sentence embedding
Fs. leads to a 0.8% J&F decrease, which is due to the
lack of sentence context. DS w/o Q,/Q,, uses Fy and
F,, directly, bypassing the integration of static or motion
cues into the learnable query, leading to a 0.5% drop in
J&F. This underscores the importance of incorporating
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Input Query

[J&F J F

N, [T&F T F

No |J&F J F

Fse 449 417 48.1 0 439 4038

DS w/o Fs, 456 42.1 49.1 1 450 418
DS w/o Qs/Qpm | 459 423 495 2 45.8 423
DS 464 43.0 49.8 3 464 43.0

47.0 0 [ 451 418 484 Tokens | J&F J _F

48.2 10 454 419 489 (@] 438 40.7 469
493 100 | 46.4 43.0 49.8 10) 464 43.0 498
49.8 200 | 465 43.1 49.8 (d) Effect of Hungarian match.

(a) Different input query variations.

(b) Different hierarchical stages.

(c) Different negative samples.

Table 2. Ablation studies of different architecture designs on MeViS.

a learnable query to grasp the global dataset distribution.
These findings show that while sentence embeddings are vi-
tal for maintaining language comprehension, relying solely
on them does not facilitate a thorough learning process.
Besides, decoupling sentence into static and motion cues
is helpful for enhancing referring video segmentation.

Number of hierarchical stages N; in HMP. Tab. 2 (b)
shows results obtained with varying numbers of hierarchical
stages. For Nj = 0, only vanilla temporal self-attention
is applied. For N; = 1, the hierarchical cross-attention
mechanism is introduced to capture motion cues at per-
frame level. With increasing N}, the attention mechanism is
refined to capture a larger temporal context. This hierarchi-
cal merging of tokens and extension of the temporal scope
facilitates a transition from short-term to long-term motion
understanding. To effectively capture motion information
across multiple levels of granularity, we have configured the
hierarchical stages at 3 to achieve the best result.

Hungarian match in HMP. Tab. 2 (d) shows the necessity
of adding Hungarian in HMP. Without Hungarian match,
the calculation of motion information and token merge
may not align for the same object, adversely impacting
performance and resulting in a 2.6% drop in J & F.

Number of negative samples V,,. In Tab. 2 (c), we report
results with different numbers of negative samples used in
contrastive loss in Eq. (9). When only using 10 negative
samples, which can be achieved within a mini-batch without
memory bank, the performance is improved by 0.3% J &F
only. Increasing V,, to 100 brings 1.3% J &F performance
gain, demonstrating the necessity of using a memory bank
to store more samples. Employing more negative samples
in Eq. (9) contributes to the establishment of a discrimi-
native and comprehensive motion representation space yet
consumes more computing resources. Striking a balance
between accuracy and efficiency, we set N, to 100.

t-SNE visualization. In Fig. 4, we employ t-SNE [50] to
visualize video token distribution with and without our con-
trastive learning across 25 different objects, each described
by multiple language expressions. Without contrastive
learning, tokens for the same object diverge due to language
diversity, leading to overlap between tokens of similar-
looking objects. Contrastive learning, on the other hand,
brings tokens of the same target object closer and separates
them from other objects, enhancing the model’s ability to
distinguish motions of visually similar objects.
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Figure 4. Visualization of features learned w/o CL (left) and w/ CL
(right). Features are colored according to class labels. As seen, the
proposed CL brings a well-structured video token feature space.

Methods ] Reference ] J&F J JE
URVOS [47] [ECCV’20] 27.8 25.7 29.9
LBDT [12] [CVPR’22] 29.3 27.8 30.8
MTTR [2] [CVPR’22] 30.0 28.8 31.2
ReferFormer [56] [CVPR’22] 31.0 29.8 32.2
VLT+TC [10] [TPAMI’22] 35.5 33.6 37.3
LMPM (8] [ICCV’23] 37.2 342 40.2
DsHmp (ours) [CVPR’24] 46.4 43.0 49.8

Table 3. Comparison on MeViS.

4.4. Comparison with State-of-the-Art Methods

MeViS [8]. In Tab. 3, we evaluate the proposed approach
DsHmp on the newly released motion expression video seg-
mentation dataset MeViS. Following [8], we use Swin-Tiny
as the backbone. DsHmp achieves superior performance
compared to other state-of-the-art methods and surpasses
the previous state-of-the-art LMPM [8] by a remarkable
9.2% J&F. These results demonstrate the effectiveness
of our approach DsHmp in capturing motion information.

Ref-YouTube-VOS [47] & Ref-DAVIS17 [23]. In Tab. 4,
we report results on Ref-YouTube-VOS and Ref-DAVIS17.
Our approach exceeds existing methods on the two datasets
across all metrics. On Ref-YouTube-VOS, DsHmp with the
Video-Swin-Tiny backbone achieves 63.6% J&JF, which
is 1.2% higher than the previous state-of-the-art SOC [40].
When a larger backbone is used, i.e., Video-Swin-Base, the
performance of DsHmp further improves to 67.1% J&F,
consistently outperforming all other methods by more than
1.1%. On Ref-DAVIS17, our approach achieves 64.9%
J&F and surpasses SOC [40] by 0.7%. The perfor-
mance gains on these two datasets are relatively modest
compared to MeViS, mainly because the datasets may
include sentences with image-level descriptions for the first
frame and not strictly require motion expressions. Despite
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Figure 5. Visualization results of complex and motion language descriptions on MeViS. Orange masks represent positive segmentation
results and pink masks denote the negatives. Our DsHmp can capture temporal information effectively across varying timescales.

Ref-YouTube-VOS | Ref-DAVIS17
Method | Reference | 7&F T F | J&F J F
Video-Swin-Tiny
ReferFormer [56] | [CVPR'22] | 59.4 58.0 60.9 | 59.6 56.5 62.7
HTML [15] ] [IcCVv'23] | 61.2 59.5 63.0 - - -
R2-VOS [29]] [1cCcv™23] | 61.3 59.6 63.1 - - -
SgMg [43] | [IcCV23] | 62.0 604 635 | 61.9 59.0 64.8
TempCD [49] | [ICCV'23] | 623 60.5 64.0 | 62.2 59.3 65.0
SOC [40] | [NIPS'23] | 62.4 61.1 63.7 | 63.5 60.2 66.7
DsHmp (ours) | [CVPR24] | 63.6 61.8 654 | 64.0 60.8 67.2
Video-Swin-Base
ReferFormer [56] | [CVPR™22]| 62.9 613 64.6 | 61.1 58.1 64.1
OnlineRefer [55] | [ICCV'23] | 62.9 61.0 64.7 | 624 59.1 65.6
HTML [15]] [IcCVv'23] | 634 61.5 652 | 62.1 59.2 65.1
SgMg [43]]| [ICCV'23] | 65.7 63.9 674 | 63.3 60.6 66.0
TempCD [49] | [ICCV'23] | 65.8 63.6 68.0 | 64.6 61.6 67.6
SOC [40]| [NIPS'23] | 66.0 64.1 679 | 642 61.0 674
DsHmp (ours) | [CVPR24] | 67.1 65.0 69.1 | 649 61.7 68.1

Table 4. Comparison on Ref-YouTube-VOS and Ref-DAVIS17.

this, our method maintains state-of-the-art performance,
underscoring its generalizability and effectiveness.
A2D-Sentences & JHMDB-Sentences [14]. We further
evaluate the proposed approach DsHmp on A2D-Sentences
and JHMDB-Sentences in Tab. 5. Following [56], the
models are first pre-trained on RefCOCO/+/g and then
fine-tuned on A2D-Sentences. JHMDB-Sentences is used
for evaluation only. The proposed DsHmp achieves new
state-of-the-art performance and outperforms the nearest
competitor SgMg [43] by 1.3% and 0.8% mAP on A2D-
Sentences and JHMDB-Sentences, respectively.

4.5. Qualitative Visualization

As shown in Fig. 5, DsHmp is able to understand both
fleeting motions “turning around, falling over” and long-
term motion “playing, pushing” and segment the target
object precisely. In contrast, LMPM [8&] tends to identify
all the objects in the video and fails to comprehend the

A2D-Sentences |JHMDB-Sentences
Method | Reference | mAP oloU mloU |mAP oloU mloU

Video-Swin-Tiny
MTTR [2]|[CVPR22]| 46.1 72.0 64.0 |39.2 70.1 69.8
ReferFormer [56]| [CVPR’22]| 52.8 77.6 69.6 422 719 71.0
HTML [15]| [ICCV°23]| 534 77.6 692 | 427 - -
SOC [40]| [NIPS°23] | 54.8 78.3 70.6 [42.7 72.7 71.6
SgMg [43]| [ICCV'23] | 56.1 78.0 70.4 |44.4 728 71.7
DsHmp (ours) | [CVPR'24] | 57.2 79.0 71.3 | 449 73.1 72.1
Video-Swin-Base
ReferFormer [56]| [CVPR’22]| 55.0 78.6 70.3 |43.7 73.0 71.8
OnlineRefer [55]| [ICCV 23] - 79.6 70.5 - 735 1719
HTML [15]| [1CCV'23] | 56.7 79.5 712|442 - -
SOC [40]| [NIPS°23] | 57.3 80.7 72.5 |44.6 73.6 723
SgMg [43]] [1ICCV'23] | 58.5 79.9 72.0 |45.0 73.7 725
DsHmp (ours) | [CVPR*24] | 59.8 81.1 72.9 |45.8 73.9 73.0

Table 5. Comparison on A2D-Sentences and JHMDB-Sentences.

motion information. The qualitative results further show
the effectiveness of our DsHmp that can capture temporal
information effectively across varying timescales.

5. Conclusion

We propose a decoupled static and hierarchical motion per-
ception approach to enhance temporal comprehension for
referring video segmentation. The static cues and motion
cues provided by the given language expressions are em-
ployed to image-level referring segmentation and temporal-
level motion identification, respectively. Additionally, our
hierarchical motion perception module effectively captures
temporal information across varying timescales and can
well handle both the fleeting and long-term motions in the
language and video. Furthermore, the use of contrastive
learning enables the model to distinguish the motions of vi-
sually similar objects. The proposed approach consistently
achieves new state-of-the-art performance across 5 datasets.
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