
Efficient Stitchable Task Adaptation

Haoyu He Zizheng Pan Jing Liu Jianfei Cai Bohan Zhuang†

ZIP Lab, Monash University, Australia

Abstract

The paradigm of pre-training and fine-tuning has laid
the foundation for deploying deep learning models. How-
ever, most fine-tuning methods are designed to meet a spe-
cific resource budget. Recently, considering diverse deploy-
ment scenarios with various resource budgets, SN-Net [51]
is introduced to quickly obtain numerous new networks
(stitches) from the pre-trained models (anchors) in a model
family via model stitching. Although promising, SN-Net
confronts new challenges when adapting it to new target
domains, including huge memory and storage requirements
and a long and sub-optimal multistage adaptation pro-
cess. In this work, we present a novel framework, Efficient
Stitchable Task Adaptation (ESTA), to efficiently produce a
palette of fine-tuned models that adhere to diverse resource
constraints. Specifically, we first tailor parameter-efficient
fine-tuning to share low-rank updates among the stitches
while maintaining independent bias terms. In this way, we
largely reduce fine-tuning memory burdens and mitigate the
interference among stitches that arises in task adaptation.
Furthermore, we streamline a simple yet effective one-stage
deployment pipeline, which estimates the important stitches
to deploy with training-time gradient statistics. By assign-
ing higher sampling probabilities to important stitches, we
also get a boosted Pareto frontier. Extensive experiments on
25 downstream visual recognition tasks demonstrate that
our ESTA is capable of generating stitches with smooth
accuracy-efficiency trade-offs and surpasses the direct SN-
Net adaptation by remarkable margins with significantly
lower training time and fewer trainable parameters. Fur-
thermore, we demonstrate the flexibility and scalability of
our ESTA framework by stitching LLMs from LLaMA fam-
ily, obtaining chatbot stitches of assorted sizes1.

1. Introduction
The paradigm of pre-training and fine-tuning has un-
derpinned modern applications in both vision and lan-

†Corresponding author. E-mail: bohan.zhuang@gmail.com
1Source code will be released at https://github.com/

ziplab/Stitched_LLaMA.

guage. With off-the-shelf models pre-trained on large-
scale datasets, the de-facto choice is vanilla full fine-tuning,
which tunes all the model parameters with the down-
stream data. To reduce memory footprint and avoid over-
fitting, an emerging trend is to tune a small proportion
of the model parameters while freezing the majority ones
with Parameter-Efficient Fine-Tuning (PEFT) [27, 28, 31].
However, both full fine-tuning and PEFT target an exclusive
specific resource budget for each downstream task, while in
reality, we often need to deploy multiple models simulta-
neously to meet various resource demands. This makes us
ponder: What is an effective and efficient way to obtain a
palette of fine-tuned models meeting different resource con-
straints?

A natural approach is to compress a well-trained large
model into numerous smaller ones [11, 21, 29, 36]. How-
ever, the computational cost grows linearly with the number
of deployment scenarios. Following the once-for-all net-
work [8, 20], a few works first pre-train a weight-sharing
over-parameterized supernet, then adapt the supernet to the
downstream tasks. Although promising, training supernets
at scale with large datasets requires prohibitive computa-
tional resources, e.g., thousands of GPU training hours,
which is practically infeasible.

On the other hand, there are many open-source large
models [5, 23, 64] from communities such as Hugging-
Face [72] that are pre-trained on large-scale datasets and
ready to be downloaded. Inspired by the success of model
stitching [4, 12, 38], recently, Stitchable Neural Networks
(SN-Net) [51] has been proposed to stitch pre-trained mod-
els (anchors) of the same family to quickly obtain a set of
candidate new networks (stitches) with different accuracy-
efficiency trade-offs of a wide FLOPs range. However, the
scope of SN-Net is limited to the pre-training classification
task on the same source domain [56]. When directly adapt-
ing the standard approach of SN-Net to a target domain,
it faces new challenges. Specifically, the straightforward
way to employ SN-Net in task adaptation typically requires
three stages: first adapting anchors individually to the tar-
get domain, followed by stitching the adapted anchors, and
finally evaluating all stitches to find and deploy the ones
on the Pareto Frontier. Such a three-stage adaptation pro-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

28555



Table 1. Comparison of frameworks for obtaining a palette of networks to meet different hardware efficiency constraints. Supernet-based
methods NAT [47] and TOFA [35] necessitate a supernet training stage plus long deployment GPU hours and are restricted to small FLOPs
ranges. SN-Net [51] employs model stitching to achieve a wide FLOPs range with significantly reduced deployment GPU hours. Our
ESTA framework further reduces the deployment GPU hours, fine-tuning memory, and trainable parameters, and is scalable to produce
LLM stitches with billions of parameters (Section 5.2). The deployment GPU hours and fine-tuning memory for both SN-Net and ESTA
are measured on a single NVIDIA GeForce RTX 3090 GPU when stitching ViT-Ti/S/B anchors [16] with batch size 64. ∗ indicates data is
inferred from the training recipe of TOFA’s supernet architecture FBNetV3 [14].

Method Adapting supernet Deployment GPU hours Fine-tuning memory Trainable parameter # FLOPs range (G) LLM friendly

NAT [47] ✗ >1,000 - >10M [0.2, 0.6] ✗

TOFA [35] ✓ >1,000∗ - >10M∗ [0.2, 2.5] ✗

SN-Net [51] ✗ 19.3 13,235M 124.2M [1.3, 17.6] ✗

ESTA (ours) ✗ 5.0 9,685M 4.6M [1.3, 17.6] ✓

cess is expensive and sub-optimal. Moreover, adapting SN-
Net typically needs to load and optimize all parameters of
multiple models, leading to a daunting training-time mem-
ory cost. For instance, stitching the two smallest models
in the LLaMA family [64, 64] with SN-Net under standard
training settings (32-bit floating point parameters and Adam
optimizer on a single GPU) requires more than 80G Video
RAM that cannot fit into high-end GPUs such as NVIDIA
A100. SN-Net also requires saving a separate instance of
the model family for each task, making the storage grow
linearly with the number of deployed applications.

Therefore, in this paper, we introduce a novel Efficient
Stitchable Task Adaptation (ESTA) framework. Specifi-
cally, built upon SN-Net [51], ESTA introduces two main
designs to overcome the aforementioned issues. First,
to reduce the memory and storage costs, we tailor a
Parameter-efficient Stitch fine-Tuning (PST) method, which
incorporates the representative sparse fine-tuning tech-
nique LoRA [28] to keep the anchors and stitching layer
weights frozen, while approximating their updates with
trainable low-rank decomposition matrices. In addition to
stitch-agnostic LoRA modules, we further introduce stitch-
specific bias terms to alleviate the conflict among different
stitches. Second, we propose a simple one-stage deploy-
ment pipeline to simultaneously adapt and stitch the pre-
trained anchors to the target domain. Moreover, we propose
to estimate and accumulate an importance score for each
stitch via the saliency pruning criterion [37]. With the im-
portance scores, we develop a novel stitch-sampling method
to assign important stitches with higher sampling probabil-
ities. More importantly, after fine-tuning, the stitch impor-
tance scores can be directly used to infer the best ones at the
Pareto frontier for deployment. Table 1 compares different
efficient frameworks for diverse deployments.

Overall, our paper has the following major contribu-
tions. 1) This is a pioneering work to investigate the prob-
lem of efficient fine-tuning of SN-Net for task adaptation.
Our solution ESTA is a successful endeavor that deliv-
ers dozens of ready-to-deploy vision models up to 17.6G
FLOPs in 5 GPU hours as well as multiple chatbot mod-
els with billions of parameters by stitching LLaMA mod-

els [64, 65] for the instruction-following task. 2) We de-
vise a parameter-efficient stitch fine-tuning method that
incorporates trainable stitch-agnostic LoRA modules and
stitch-specific bias terms, which largely reduces the fine-
tuning memory footprints while alleviating the interference
issue among stitches. Moreover, we streamline a simple
one-stage deployment pipeline with a novel task-specific
stitch sampling strategy that greatly reduces the deployment
time and improves Pareto frontiers. 3) Extensive experi-
ments conducted on 25 downstream visual recognition tasks
demonstrate that when stitching ViT-Ti/S/B [16], our ESTA
achieves remarkable performance improvements compared
to the direct SN-Net adaptation counterpart while utilizing
significantly fewer trainable parameters.

2. Related Work

Model stitching. Model stitching [4, 38] targets connect-
ing the bottom layers of one network to the top layers of
another with a stitching layer. Following [38], model stitch-
ing is first employed to measure the similarities for the inner
representations learned by deep neural networks [4, 12, 25].
Previous works [4, 12] observe that trained networks with
different initializations can be effectively stitched without
incurring significant performance drop. Based on this ob-
servation, DeRy [76] stitches the blocks dissected from dif-
ferent pre-trained models and assembles a new model based
on their quantified similarity for better performance. Herdt
et al. [24] propose interpreting the inner representations of
a deep network by stitching it with a pre-trained GAN gen-
erator. Recently, from the perspective of flexible deploy-
ment, SN-Net [51] stitches models of different sizes within
a model family to cheaply produce numerous new networks
with diverse accuracy and efficiency trade-offs in the pre-
training task. In contrast to [51], our work specifically tar-
gets obtaining a palette of fine-tuned models for the task
adaptation setting. To do so, we make key redesigns in-
cluding a parameter-efficient stitch fine-tuning method and
a simple one-stage deployment pipeline to overcome the ef-
ficiency challenges in SN-Net adaptation.
Parameter-efficient fine-tuning. Parameter-efficient fine-

28556



tuning [27, 28, 31, 40] is a powerful alternative to vanilla
full tine-tuning, which updates only a small number of pa-
rameters while freezing the majority ones. Freezing the ma-
jority of parameters allows us to optimize storage and re-
duces the burden on training GPU memory, as there is no
need to store their gradients or other training time statis-
tics. Recent research freezes the vast majority of param-
eters while fine-tuning either the parameters that are in-
herited in the backbone [77, 80] or additionally added, in
the form of learnable prompts [31, 39], low-rank bottleneck
layers [27], learnable scaling and shifting factors [41], and
separated small networks [61]. Meanwhile, PEFT has been
employed in numerous downstream applications. For in-
stance, while freezing the most parameters, Polyhistor [45]
learns a hyper-network to generate adapter weights [27] for
multi-task adaptation, LLaMA-Adapter [83] inserts learn-
able prompts into Transformer layers for the instruction-
following task, and ControlNet [82] employs the zero-
initialized convolutions to fine-tune diffusion generative
models [55]. However, these works target only one exclu-
sive resource budget and are not scalable to diverse deploy-
ment scenarios. Unlike other methods, our ESTA is crafted
to yield multiple fine-tuned models with diverse capaci-
ties while jointly incorporating stitch-specific and stitch-
agnostic lightweight trainable parameters.
Fine-tuning with multiple models. The presence of more
large-scale models has unleashed the potential to utilize
multiple models instead of a single one during fine-tuning.
One line of work selects the best pre-trained model in the
model zoo to fine-tune. To identify the best model, prior
studies quantize the transferability of the pre-trained mod-
els ahead of fine-tuning by estimating their accuracy on
the downstream tasks [3, 17, 33] or the generalization ca-
pability to mitigate the domain gaps [6, 49, 66, 78]. An-
other way is to do model selection using an efficient on-
line learning regime [74]. Considering the diversity among
the pre-trained models, research efforts have been devoted
to effectively exploit their knowledge with feature aggre-
gation [42, 57, 58], model merging [13, 30, 48, 73], or a
mixture-of-experts architecture [59]. In contrast to previ-
ous works that merely target better performance, our work
employs off-the-shelf pre-trained model families to produce
plentiful new models for diverse deployment requirements.

3. Preliminaries

3.1. Model Stitching

Considering an L-layer feed-forward artificial neural net-
work fθ1 : X → Y parameterized by θ1, that maps any
input from the input space X to the output space Y , fθ1
can be denoted as a composition of functions that fθ1 =
fL ◦ · · · ◦ f1, where ◦ denotes the function composition. In
model stitching, fθ1 can be split up at the l-th layer into two

portions of functions where l ∈ [1, L− 1]. Given any input
X ⊆ X , the first portion of the head functions maps X to
activations Xl at layer l, i.e., Hθ1,l(X) = fl◦· · ·◦f1 = Xl.
The second portion of the tail functions maps Xl to the final
output, i.e., Tθ1,l(Xl) = fL ◦ · · · ◦ fl+1.

Given another pre-trained M -layer artificial neural net-
work fθ2 parameterized by θ2 that is split up at the m-th
layer that m ∈ [2,M ], we can then employ a stitching layer
S : Aθ1,l → Aθ2,m to map between the two activation
spaces at layers l and m. In this case, we obtain a new net-
work parameterized by ϕ and the stitching layer parameters,
i.e.,

Fϕ,S(X) = Tθ2,m ◦ S ◦Hθ1,l(X), (1)
where ϕ consists of partial parameters from both θ1 and θ2.

3.2. Stitchable Neural Network

In Stitchable Neural Network (SN-Net) [51], let a pre-
trained model family of size Z be Z = {fθz}Zz=1, where
θz is the model parameter of the z-th model. The goal
is to derive additional N candidate new networks N =
{Fϕn,Sn

}Nn=1 to adapt to various resource constraints. To
do so, SN-Net first selects a pair of pre-trained models (an-
chors) from Z and then stitches them with Eq. (1) at dif-
ferent layer indexes to get N stitches. Then, SN-Net sam-
ples the stitches randomly and jointly optimizes them. An
overview of SN-Net is depicted in Figure 1 (a). Since the
anchors vary in scale, the newly assembled stitches have di-
verse performances and complexities. Importantly, SN-Net
gives practical principles to design the space of N that one
should 1) stitch a pair of nearest anchors in terms of model
complexity in a model family; 2) stitch the head of a faster
and smaller anchor to the tail of a larger and slower anchor.
Unless specified otherwise, we adopt these as the default
experimental settings in this paper.

4. Method
In this section, we introduce our ESTA framework, which
consists of two major components: parameter-efficient
stitch fine-tuning (PST) and a simple one-stage deployment
pipeline. PST is tailored to cheaply fine-tune a palette of
stitches (Section 4.1 and Figure 1 (b)). The one-stage de-
ployment pipeline aims to simultaneously save deployment
time and improve adaptation performance (Section 4.2).

4.1. Parameter-efficient Stitch Fine-tuning

To address the problems of large storage and memory con-
sumption when adapting SN-Net to downstream tasks with
full fine-tuning, we introduce a parameter-efficient stitch
fine-tuning (PST) method as depicted in Figure 1 (b). Our
basic idea is to adapt the representative sparse fine-tuning
method LoRA [28] for SN-Net fine-tuning.
LoRA on Transformer layers. Specifically, let any pre-
trained weight matrix in the multi-head self-attention layer

28557



1Block

Block

Stitching
Layer

Moving
Average

Small
Anchor

Large
Anchor

Sampling

….

Stitch Subset 𝒩!

Scoring function Q(" ; ")

𝜋 (𝒩!)

𝐹"!,#!

SN-Net

Block
…

LoRA … 1LoRA

Stitching
Layer

Stitch

…

Bias terms

Bias terms

× N

PST

(a) (b) (c)

Figure 1. (a) Illustration of Stitchable Neural Network [51]. With two anchors from the same model family, SN-Net connects the early
layers of the smaller one to the latter layers of the larger one with stitching layers to obtain a set of new networks with different performance-
efficiency trade-offs, e.g., the path in Blue. (b) Overview of our PST method tailored for fine-tuning a palette of stitches, which integrates
stitch-agnostic LoRA modules with stitch-specific bias terms, aiming to promote diverse representations among stitches while maintaining
low trainable parameters. (c) Overview of our task-specific stitch sampling. We estimate the importance scores of the stitches with a
scoring function Q(·, ·) and accumulate them as global statistics with moving averages. For a resource constraint γ, we sample with a
categorical distribution π(Nγ) that is parameterized by the normalized importance scores so as to assign the important stitches with higher
sampling probabilities. After fine-tuning, we directly deploy the stitches with the highest scores to avoid the costly evaluation stage.

Conflicts Conflicts

Figure 2. Distribution of pair-wise gradient angles among stitches
when updating shared weights at fine-tuning iteration 600. We
highlight angle 90◦ with a dashed red line. For simplicity, we
show the gradient angles among the combined query, key, and
value projection matrices for a total of 32 stitches when stitch-
ing ViT-Ti and ViT-S anchors. Generally, the gradient angles are
larger in the target domain Stanford Cars [18] than in the source
domain ImageNet-1k [56].

be W ∈ Rd×k, we freeze W and insert trainable low-rank
decomposition matrices Wdown ∈ Rd×r and Wup ∈ Rr×k,
where r is the pre-defined rank that r ≪ min(d, k). In this
way, the updated version of W can be formulated as

W ′ ←W +WdownWup. (2)

We follow [28] to respectively use Gaussian and zero initial-
izations for Wup and Wdown, so that WdownWup is zero at
the beginning of fine-tuning.
LoRA on stitching layers. We further extend the low-
rank weight update to stitching layers. In SN-Net, a stitch-
ing layer is designed as a full-rank transformation matrix.
Without loss of generality, we show the low-rank update
of stitching layer Sn that stitches fθ1 and fθ2 at layers l
and m, respectively. We first follow the initialization of
stitching layers in [12, 51] to align the activations at layers
l and m − 1. Let the activations be Hθ1,l(X) ∈ Rb×d1

and Hθ2,m−1(X) ∈ Rb×d2 with sequence length b and
feature dimensions d1 and d2. The stitching layer is pa-
rameterized by a transformation matrix M ∈ Rd1×d2 ,
which is initialized by solving a least squares problem, i.e.,
M = Hθ1,l(X)†Hθ2,m−1(X), where Hθ1,l(X)† is the

Moore-Penrose pseudoinverse of Hθ1,l(X). We find that
such initialization already has impressive representational
capacity on the target domain and they can be updated with
low-rank decomposition without hurting the performance
too much. Accordingly, we update M similar to updating
W in Eq. (2) by approximating its update with two learn-
able low-rank matrices with the same initializations.

Although the low-rank updates significantly enhance pa-
rameter efficiency, the low-rank essence [2] largely lim-
its the network capacity. Particularly, in task adaptation,
we often observe conflicting updates on the shared weights
among the stitches. Figure 2 gives an example, where we
stitch pre-trained anchors on ImageNet-1k [56] and Stan-
ford Cars [18] and visualize the distribution of pair-wise
gradient angles among different stitches when updating
shared weights. We find that stitches agree less and con-
flict more (i.e., with more large angles) on the target domain
Stanford Cars compared to the source domain ImageNet-1k.
Stitch-specific bias. To address the above issue, we fur-
ther introduce stitch-specific bias terms as depicted in Fig-
ure 1 (b). Particularly, for a linear layer parameterized by
W and a bias term b, we add bias term bs when optimiz-
ing the s-th stitch, for which the output activation becomes
WX + b + bs. We employ a set of distinct bias terms
at different layers for each stitch. In this way, the stitches
are encouraged to learn distinct feature representations for
different resource requirements. To restrict the number of
trainable parameters, following [28], we only apply PST to
self-attention layers while freezing feed-forward layers.

4.2. One-stage Deployment Pipeline

Simultaneously adapt and stitch anchors. As aforemen-
tioned, given a model family Z pre-trained in the source
domain, directly adapting SN-Net to a target domain typi-
cally involves three stages. First, adapting each anchor to
the target domain D by solving θz

∗ = argminθzL(θz;D).
In the second stage, at each training iteration, SN-Net sam-

28558



ples a stitch and optimizes it with objective L(ϕ∗
n, Sn;D),

where ϕ∗
n is the set of SN-Net parameters for stitch Fϕn,Sn

which has been optimized once in the first stage. In the
final stage, all optimized stitches need to be evaluated to
identify the ones on the Pareto frontier for diverse resource
constraints. Such a three-stage approach is expensive and
sub-optimal (see more discussions in the supplementary
material). Thus, we propose to adapt and stitch the an-
chors simultaneously within one stage, by directly optimiz-
ing L(ϕn, Sn;D) for each sampled stitch. Moreover, we in-
troduce a novel task-specific stitch-sampling method to al-
low the promising stitches more likely to be sampled, based
on a stitch importance score. After fine-tuning, the stitches
with the highest scores are naturally selected for deploy-
ment without the need for the above final stage evaluation.
Task-specific stitch sampling. SN-Net assumes that all
stitches are equally important and performs random (uni-
form) sampling during training. However, as recognized by
prior research [43, 70] that random sampling causes a gap
between training and deployment as only the best stitches
on the Pareto frontier are actually deployed. Moreover,
since the importance of the pre-trained weights varies in dif-
ferent downstream tasks [19, 22, 75], we argue that the per-
formance of stitches that are parameterized by these weights
is also different across these tasks.

To this end, we propose to assign the important stitches
that are likely to be on the Pareto frontier with higher sam-
pling probabilities during fine-tuning to ensure that they are
optimized sufficiently. Specifically, we first estimate the
importance of each stitch with a data-dependent saliency
pruning metric SNIP [37], which measures the importance
with the first-order gradient information with barely any ex-
tra computational cost. When the n-th stitch is sampled, we
can get its importance score Q(Fϕ,Sn

,X) with the scoring
function Q(·, ·) [37]. To obtain robust importance scores
for sampling, we accumulate scores with moving average
during training, i.e.,

qtn ← ηqt−1
n + (1− η)Q(Fϕn,Sn ,X), (3)

where qtn and qt−1
n are the importance score at the t-th and

(t − 1)-th iteration, respectively, and η ∈ [0, 1) is the mo-
mentum coefficient. In this way, we can get stable impor-
tance scores. After a warm-up period that employs uniform
sampling to accumulate the scores, we assign the important
stitches with higher sampling probabilities for the rest of
the fine-tuning epochs. To do so, we uniformly divide the
resource constraint range of our stitches into several inter-
vals and sample an interval γ with uniform sampling. Ac-
cordingly, we can obtain a subset of stitches Nγ whose re-
source constraints belong to γ and their corresponding im-
portance scores Qγ . We can then define a categorical dis-
tribution based on the normalized importance scores, i.e.,
π(Nγ) = softmax(Qγ) and finally get the sampled stitch

Fϕn,Sn ∼ π (Nγ). We show that our task-specific stitch
sampling improves the performance in Section 5.3.

Additionally, with the sampled stitch, SN-Net employs
knowledge distillation with a RegNetY-160 [54] pre-trained
teacher to improve its performance. However, pre-trained
teachers on downstream tasks are often unavailable. There-
fore, in each training iteration, we always sample and train
the largest anchor (teacher) and transfer its knowledge to the
sampled stitch (student) similar to inplace distillation [79].
In practice, we employ the hard-label distillation [26, 63].
Reuse stitch importance scores for deployment. After
fine-tuning, with the set of accumulated importance scores
Qγ for all stitches, we directly use them to select the stitches
with the highest scores to deploy, which eliminates the need
for the costly evaluation of the final stage of the straightfor-
ward SN-Net adaptation solution. We empirically observe
that the deployed stitches are mostly on the Pareto frontier
in Section 5.3, suggesting our estimation of the important
stitches is accurate. Furthermore, in the supplementary ma-
terial, we show that the important stitches differ across dif-
ferent tasks, proving the need for task-specific deployment
strategies, as highlighted in [19, 22, 75]. It’s worth noting
that although the SNIP metric has been widely employed
as a one-shot metric to efficiently estimate network perfor-
mance [1, 69], we extend it to estimate stitch importance for
better training and selection.

5. Experiments

5.1. Visual Recognition

We evaluate the effectiveness of our method on a to-
tal of 25 downstream visual recognition tasks, including
fine-grained visual classification (FGVC) benchmark, com-
mon visual classification benchmark CIFAR-100 [34], and
VTAB-1k [81] benchmark. FGVC benchmark contains
NABirds [67], CUB-200-2011 [68], Stanford Cars [18],
Stanford Dogs [32], and Oxford Flowers [50] tasks and
the VTAB-1k benchmark includes 19 tasks in different do-
mains, each of which has 800 training samples. For vi-
sual recognition experiments, we stitch ImageNet-21k pre-
trained ViT-Ti/S/B models [16] from [60].
Implementation details. We employ the stitching space
and settings (kernel size as 2 and stride as 1) in [51] for
downstream visual recognition tasks. We uniformly di-
vide the resource constraints supported by the stitches into
around 15 intervals and deploy one stitch within each inter-
val. We set the hyper-parameter r for the rank of weight up-
dating in the self-attention layers to be 32, 16, and 8 for ViT-
Ti, ViT-S, and ViT-B, respectively. We also set r = d1//4
universally for all stitching layers and η in Eq. (3) as 0.9 by
grid search. We follow [31] to fine-tune 100 epochs on each
task and select the other hyper-parameters and augmenta-
tion methods. We include more implementation details in

28559



Figure 3. Performance comparisons with SN-Net [51] for adapting ViT-Ti/S/B pre-trained on ImageNet-22k [15] to Stanford Cars [18],
CUB-200-2011 [68], Stanford Dogs [32], and NABirds [67]. We denote individually fine-tuned anchors as yellow stars. We also show the
number of trainable parameters.

Figure 4. Performance comparisons with SN-Net [51] for adapting
ViT-Ti/S/B pre-trained on ImageNet-22k [15] to VTAB-1k [81]
and CIFAR-100 [34]. We denote individually fine-tuned anchors
as yellow stars and also show the number of trainable parameters.

Table 2. Relative response quality to Alpaca-LoRA 7B [62] on Vi-
cuna Bench [10]. Our Stitched LLaMA successfully interpolates
the answer quality between Alpaca-LoRA 7B and 13B.

Alpaca-LoRA Stitched LLaMA

Parameter # (B) 6.7 13.0 6.9 7.8 11.5 12.5 13.0
Quality (%) 100 123 113 114 115 120 123

the supplementary material.
Main results. We compare the performance of our ESTA
with SN-Net and the individual anchors fine-tuned with
LoRA [28] on various datasets. The FLOPs-accuracy
curves are visualized in Figures 3 and 4. We report the av-
eraged results over the three task groups on VTAB-1k fol-
lowing [31]. Overall, the stitches obtained by our ESTA ex-
hibit smooth FLOPs-accuracy trade-off curves consistently
across all datasets. Notably, the curve for our ESTA out-
performs SN-Net by significant margins with much fewer
trainable parameters. We show that the inferior results of
SN-Net on downstream tasks are led by the sub-optimal de-
signs of fine-tuning all model parameters and a three-stage
adaptation pipeline in Section 5.3.

We also observe that the stitches even outperform the an-
chors with comparable or lower FLOPs in many cases. For
instance, stitches outperform individually fine-tuned ViT-
S/B anchors by clear margins on NABirds, CUB-200-2011,
Stanford Cars, and Stanford Dogs datasets with comparable
computational complexity. This phenomenon is consistent
with the observations made in [52, 79]. We conjecture that
weight sharing among the stitches serves as a strong regu-
larization to improve their generalization. We show more
results on few-shot learning and stitching Convnets [46] in
the supplementary material.

5.2. Instruction-following Task

We also evaluate the instruction-following capability when
stitching the LLaMA family [64] with our ESTA frame-
work. We adapt and fine-tune LLaMA-7B/13B on the 52K
instruction-following dataset from [62] to obtain chatbot
stitches of varying sizes. The 52K instruction-following
data is generated from 175 human-written instruction-
output pairs with [71]. Each sample in the dataset is formu-
lated by a task description, the context of the task, and the
answer that is generated by GPT-3.5 (text-davinci-003) [7].
Implementation details. We employ the stitching space
and settings (kernel size as 1 and stride as 1) in [51] for
the instruction-following task and introduce 40 stitches. We
uniformly divide the resource constraints supported by the
stitches into 6 intervals and deploy one stitch within each
interval. We set η in Eq. (3) as 0.9. The rank r is set to 16
and d1//4 for LoRA modules in self-attention and stitch-
ing layers, respectively. We employ Adam optimizer and
fine-tune with batch size 128 for 10 epochs with gradient
accumulation. During the generation stage, we employ top-
p sampling to sample from the top subword candidates with
the probability p = 0.75, conduct the beam search, and set
the beam size as 4.
Results. We term the stitches obtained by our ESTA frame-
work as Stitched LLaMA and compare them with Alpaca-
LoRA 7B and 13B that respectively freeze the LLaMA 7B
and 13B backbones and update the self-attention weights
with LoRA modules [28]. For quantitative results reported
in Table 2, we observe that similar to the visual recog-
nition tasks, our Stitched LLaMA with different numbers
of parameters generates answers with plausible quality in-
between Alpaca-LoRA 7B and 13B. Figure 5 gives quali-
tative comparisons. Our Stitched LLaMAs produce reason-
able responses, suggesting the potential of our ESTA for
adapting large language models (LLMs) for more down-
stream language tasks. More examples can be found in the
supplementary material.

5.3. Ablation Study
Effect of parameter-efficient stitch fine-tuning. We in-
vestigate the effectiveness of our PST on five FGVC tasks
and visualize the averaged results in Figure 6 (a) and (b).

28560



Alpaca-LoRA 7B (0.035 s/token): Dear [Name 
of Employer], I am writing to inform you that I 

am resigning from my position as [Job Title] with 
[Company Name]. It has been a pleasure working with 
you and I am grateful for the opportunities you have 
provided me. I wish you and the company all the best 
in the future. Sincerely, [Your Name]

Stitched LLaMA 8B (0.037 s/token): Dear [Employer], I am writing to inform you that I am
resigning from my position at [Company Name] with a heavy heart. I have enjoyed my time 

working with you and the team, and I am grateful for the opportunities that have been provided to me. 
I would like to express my sincere appreciation for the training, support, and opportunities that have 
been provided to me during my time at [Company Name]. I have learned a great deal and have grown 
personally and professionally. Please accept my best wishes for the continued success of [Company 
Name] and the team. I wish you all the best in the future. Sincerely, [Your Name]

Instruction: Can you help me write a resignation letter to my current employer, while leaving on good terms and expressing gratitude for the opportunities provided?

Stitched LLaMA 8B (0.037 s/token): Alpacas are herbivorous mammals that belong 
to the family Camelidae, which also includes camels and camelids. They are native to 

the South American continent and are commonly found in Peru, Argentina, Bolivia, and Chile. 
Alpacas are smaller than their cousin, the camel, and are typically about 80-90 inches tall 
when fully grown. They are known for their soft, shimmering, and light-weight fibers, which 
are used to make clothing, carpets, and other textile products. Alpacas are herbivores, and 
their diet consists mainly of grasses, leaves, and straw. They are social animals and live in 
herds of up to 100 alpacas, led by a dominant male. Alpacas are known for their calm and 
gentle nature, and they are often used as livestock for their soft, shimmering fibers.

Alpaca-LoRA 7B (0.035 s/token): Alpacas are members of
the camelid family, which also includes llamas and camels. 

They are native to the Andes Mountains in South America, where 
they have been domesticated for thousands of years. Alpacas are 
known for their soft, luxurious fiber, which is used to make 
clothing, blankets, and other textiles. They are also raised for their 
meat, which is considered a delicacy in some parts of the world. 
Alpacas are gentle, intelligent animals, and they are prized for 
their docile nature and ability to thrive in a wide range of climates.

Stitched LLaMA 11B (0.041 s/token): Alpacas are native to South America and are members of the camelid family. They are known for their soft, fluffy
coats and their gentle nature. Alpacas are herbivores, meaning they feed on grass and other vegetation. They have a gestation period of approximately 11 

months and usually give birth to a single baby, although twins and triplets are not uncommon. Alpacas are social animals and live in herds, led by a dominant 
male. They communicate with each other using a variety of vocalizations, including whistles, grunts, and barks. Alpacas are intelligent animals and are known for 
their curiosity and playful nature. Alpacas have been domesticated for thousands of years and are used for a variety of purposes, including as pets, for their fiber, 
and for their meat. Alpaca fiber is prized for its softness and warmth, making it a popular material for clothing and blankets. Alpaca meat is also considered a 
delicacy in some parts of the world. Overall, alpacas are gentle, intelligent animals that have been domesticated for thousands of years. They are valued for their 
fiber, meat, and companionship.

Instruction: Tell me about alpacas.

Stitched LLaMA 11B (0.041 s/token): Dear [Employer], I am writing this letter to inform you of my decision to resign from my position at [Company]. It has 
been a great pleasure to work for [Company] and I have learned a lot during my time here. I would like to express my gratitude for the opportunities that 

have been provided to me and for the support and guidance that I have received from my colleagues and supervisors. I have grown both professionally and 
personally during my time at [Company] and I am grateful for the experiences I have had. I am leaving on good terms and would be happy to provide a positive 
reference for [Company] in the future. If there is anything I can do to assist with the transition, please do not hesitate to reach out. Thank you for the opportunity to 
work for [Company] and I wish you all the best in your future endeavors. Sincerely, [Your Name]

Figure 5. Instruction-following comparison between Stitched LLaMA obtained by our ESTA and the Alpaca-LoRA 7B fine-tuned with
LoRA [28].

(a) (b) (c) (d)

Figure 6. Ablation studies with results averaged over five FGVC tasks. (a) Effect of our stitch-agnostic LoRA modules. “Full FT”
represents full fine-tuning of all the model parameters. “PST w/ full SL” employs fully fine-tuned stitching layers. We also show the
number of trainable parameters. (b) Effect of our stitch-specific bias terms. “SSB” and “scaled r” represent stitch-specific bias terms and
scaling the rank hyperparameter to reach 4.6M trainable parameters, respectively. (c) Effect of our task-specific stitch sampling. “Uniform,
all” and “Uniform, best” represent all the stitches fine-tuned with uniform sampling and their best ones in each resource constraint interval
on the Pareto frontier, respectively. (d) Effect of our strategy to simultaneously adapt and stitch anchors. Our strategy “Adapt-and-stitch”
takes 100 epochs for fine-tuning. In contrast, “Adapt-then-stitch”, as a straightforward approach to apply SN-Net, first individually adapts
each anchor for a total of 300 epochs, and then fine-tunes SN-Net for another 100 epochs.

To recall, our PST keeps the majority of the model parame-
ters frozen while introducing trainable stitch-agonistic low-
rank decomposition matrices and stitch-specific bias terms.
In Figure 6 (a), we observe that when employing LoRA to
the multi-head self-attention layers, there are solid perfor-
mance gains on all FLOPs ranges with significantly fewer
trainable parameters, echoing the observations in [31, 41].

It is suggested that low-rank weight updates is a powerful
alternative to full fine-tuning for stitching and adapting an-
chors and we speculate that low-rank weight update avoids
overfitting under limited downstream data. We further em-
ploy low-rank weight updates to the stitching layers and
save 2.4M more trainable parameters with a slight overall
performance drop. We conjecture that the stitching layers

28561



for large pre-trained models are also in low intrinsic dimen-
sions [2] and least-squares initialization [51] already pro-
vide a good initialization for them.

Figure 6 (b) shows that employing stitch-specific bias
terms achieves better performance with affordable 1.4M ex-
tra trainable parameters. We also include the baseline that
simply scales the low-rank dimension r to reach the same
number of trainable parameters as our PST. This baseline is
inferior to our PST. We speculate that the stitch-specific bias
terms enable flexible adjustments of feature representations
for different stitches, leading to enhanced performance.
Effect of task-specific stitch sampling. We investigate the
effectiveness of our sampling strategy (introduced in Sec-
tion 4.2) on the five FGVC tasks. The averaged results are
visualized in Figure 6 (c). We compare our task-specific
stitch sampling with the uniform one that is adopted in [51].
We empirically find that for uniform sampling, there is a
clear performance gap between the best stitches that will
be deployed and the others that will be dropped after train-
ing, suggesting the need for concentrating on the impor-
tant stitches during training. To this end, our task-specific
sampling strategy performs better than uniform sampling,
indicating that our sampling strategy selects accurate task-
specific important stitches. Most importantly, our strategy
circumvents the need for the costly evaluation stage in the
direct solution of adapting SN-Net for downstream tasks.
Effect of simultaneously adapting and stitching anchors.
We study the effect of simultaneously adapting and stitching
anchors strategy (introduced in Section 4.2) on five FGVC
tasks. The averaged results are visualized in Figure 6 (d).
We compare our approach with the direct SN-Net adapta-
tion that first adapts each anchor individually for a total of
300 epochs before stitching them under the exact setting
as ESTA. It can be seen that the direct SN-Net adaptation
yields poor results in task adaptation. Fine-tuned individual
anchors, especially the larger ones, are likely to overfit the
limited downstream data [44, 53]. Accordingly, we specu-
late that the adapted anchor weights serve as a sub-optimal
initialization for the stitches in the context of model stitch-
ing. On the other hand, our approach achieves better perfor-
mance and greatly saves the fine-tuning cost.
Effect of the PEFT technique choices. We compare the
effect of different PEFT technique choices and visualize the
averaged results on the five FGVC tasks in Figure 7 left. We
experiment to employ other PEFT techniques Adapter [27]
and Adaptformer [9]. We follow their default setting to re-
spectively insert bottleneck structures sequentially and in
parallel to the feed-forward layers and fix the number of
trainable parameters the same as ours for a fair comparison.
We observe that the overall performance for different PEFT
techniques is similar, suggesting that our ESTA framework
is compatible with more PEFT technique choices. Since
low-rank weight updates of LoRA [28] can be merged into

Figure 7. Left: effect of different PEFT technique choices. Right:
effect of the rank hyper-parameter r in LoRA modules of self-
attention layers, for which the three values represent the ranks in
ViT-Ti, ViT-S, and ViT-B, respectively. The results are averaged
on five FGVC tasks.

the backbone after training without extra inference compu-
tational cost, we employ LoRA by default.

Effect of the low-rank hyper-parameter r. We investigate
the effect of different r which controls the rank when updat-
ing weights in self-attention layers on the five FGVC tasks.
The averaged results on the five FGVC tasks are visualized
in Figure 7 right. We find that setting r to be different values
barely has any effect on the overall performance, suggesting
our ESTA framework is robust to the rank hyper-parameter
r. Since setting r to be 32, 16, and 8 for low-rank updating
the self-attention weights in ViT-Ti, ViT-S, and ViT-B has
slightly higher averaged performance among the stitches,
we make it our default setting.

6. Conclusion and Future Work

In this paper, we have introduced a novel task adaptation
framework to cheaply obtain a palette of fine-tuned net-
works via model stitching, supporting diverse efficiency-
performance tradeoffs at runtime. Specifically, built on
SN-Net, we have tailored a parameter-efficient stitch fine-
tuning method, which learns lightweight stitch-agnostic
LoRA modules and stitch-specific bias terms while keep-
ing the majority of the parameters frozen. Our design sig-
nificantly reduces fine-tuning memory and storage costs for
downstream task adaptation. Moreover, we have devised a
task-specific stitch sampling strategy to assign higher sam-
pling probability to the important stitches during training,
which simultaneously improves the Pareto frontiers and
avoids a costly evaluation stage. Extensive experiments on
25 downstream visual recognition tasks and the instruction-
following task have demonstrated the effectiveness of our
proposed framework.

Limitations. Due to the constraints of computational re-
sources, our experiments are limited to visual recognition
and instruction-tuning tasks. In the future, we will explore
adapting pre-trained model families to dense prediction and
multi-modal tasks.

28562



References
[1] Mohamed S. Abdelfattah, Abhinav Mehrotra, Lukasz

Dudziak, and Nicholas D. Lane. Zero-cost proxies for
lightweight nas. In ICLR, 2021. 5

[2] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. In-
trinsic dimensionality explains the effectiveness of language
model fine-tuning. In ACL, 2021. 4, 8

[3] Haitham Bou Ammar, Eric Eaton, Matthew E Taylor, Dece-
bal Constantin Mocanu, Kurt Driessens, Gerhard Weiss, and
Karl Tuyls. An automated measure of mdp similarity for
transfer in reinforcement learning. In AAAIW, 2014. 3

[4] Yamini Bansal, Preetum Nakkiran, and Boaz Barak. Re-
visiting model stitching to compare neural representations.
NeurIPS, 34:225–236, 2021. 1, 2

[5] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit:
Bert pre-training of image transformers. In ICLR, 2022. 1

[6] Daniel Bolya, Rohit Mittapalli, and Judy Hoffman. Scal-
able diverse model selection for accessible transfer learning.
NeurIPS, 34:19301–19312, 2021. 3

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. NeurIPS, 33:1877–
1901, 2020. 6

[8] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. In ICLR, 2020. 1

[9] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang,
Yibing Song, Jue Wang, and Ping Luo. Adaptformer:
Adapting vision transformers for scalable visual recognition.
NeurIPS, 2022. 8

[10] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhang-
hao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yong-
hao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P.
Xing. Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality, 2023. 6

[11] Adam Coates and Andrew Y Ng. The importance of encod-
ing versus training with sparse coding and vector quantiza-
tion. In ICML, pages 921–928, 2011. 1

[12] Adrián Csiszárik, Péter Kőrösi-Szabó, Akos Matszangosz,
Gergely Papp, and Dániel Varga. Similarity and matching
of neural network representations. NeurIPS, 34:5656–5668,
2021. 1, 2, 4

[13] Dong Dai and Tong Zhang. Greedy model averaging.
NeurIPS, 24, 2011. 3

[14] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zi-
jian He, Zhen Wei, Kan Chen, Yuandong Tian, Matthew Yu,
Peter Vajda, et al. Fbnetv3: Joint architecture-recipe search
using predictor pretraining. In CVPR, pages 16276–16285,
2021. 2

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 6

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is

worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 2, 5

[17] Eric Eaton, Marie Desjardins, and Terran Lane. Model-
ing transfer relationships between learning tasks for im-
proved inductive transfer. In ECML PKDD, pages 317–332.
Springer, 2008. 3

[18] Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen,
Jia Deng, and Li Fei-Fei. Fine-grained car detection for vi-
sual census estimation. In AAAI, 2017. 4, 5, 6

[19] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grau-
man, Tajana Rosing, and Rogerio Feris. Spottune: transfer
learning through adaptive fine-tuning. In CVPR, pages 4805–
4814, 2019. 5

[20] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot
neural architecture search with uniform sampling. In ECCV,
pages 544–560. Springer, 2020. 1

[21] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network.
NeurIPS, 28, 2015. 1

[22] Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao, and Bohan
Zhuang. Sensitivity-aware visual parameter-efficient tuning.
In ICCV, 2023. 5

[23] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, pages 16000–16009, 2022. 1

[24] Rudolf Herdt, Maximilian Schmidt, Daniel Otero Baguer,
Jean Le’Clerc Arrastia, and Peter Maass. Model stitching
and visualization how gan generators can invert networks in
real-time. arXiv preprint arXiv:2302.02181, 2023. 2

[25] Adriano Hernandez, Rumen Dangovski, Peter Y. Lu, and
Marin Soljacic. Model stitching: Looking for functional sim-
ilarity between representations. NeurIPSW, 2022. 2

[26] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. NeurIPSW, 2014. 5

[27] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In ICML, pages 2790–2799, 2019. 1, 3,
8

[28] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
LoRA: Low-rank adaptation of large language models. In
ICLR, 2022. 1, 2, 3, 4, 6, 7, 8

[29] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-
Yaniv, and Yoshua Bengio. Quantized neural networks:
Training neural networks with low precision weights and ac-
tivations. JMLR, 18(1):6869–6898, 2017. 1

[30] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry
Vetrov, and Andrew Gordon Wilson. Averaging weights
leads to wider optima and better generalization. In UAI,
2018. 3

[31] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In ECCV, 2022. 1, 3, 5, 6, 7

[32] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng
Yao, and Li Fei-Fei. Novel dataset for fine-grained image
categorization. In CVPRW, 2011. 5, 6

28563



[33] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do bet-
ter imagenet models transfer better? In CVPR, pages 2661–
2671, 2019. 3

[34] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009. 5, 6

[35] Achintya Kundu, Laura Wynter, Rhui Dih Lee, and Luis An-
gel Bathen. Tofa: Transfer-once-for-all. arXiv preprint
arXiv:2303.15485, 2023. 2

[36] Yann LeCun, John Denker, and Sara Solla. Optimal brain
damage. NeurIPS, 2, 1989. 1

[37] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr.
Snip: Single-shot network pruning based on connection sen-
sitivity. In ICLR, 2019. 2, 5

[38] Karel Lenc and Andrea Vedaldi. Understanding image repre-
sentations by measuring their equivariance and equivalence.
In CVPR, pages 991–999, 2015. 1, 2

[39] Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. In EMNLP,
2021. 3

[40] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing
continuous prompts for generation. In ACL, 2021. 3

[41] Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao
Wang. Scaling & shifting your features: A new baseline for
efficient model tuning. NeurIPS, 2022. 3, 7

[42] Iou-Jen Liu, Jian Peng, and Alexander G Schwing. Knowl-
edge flow: Improve upon your teachers. In ICLR, 2019. 3

[43] Jing Liu, Jianfei Cai, and Bohan Zhuang. Focusformer: Fo-
cusing on what we need via architecture sampler. arXiv
preprint arXiv:2208.10861, 2022. 5

[44] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hi-
roaki Hayashi, and Graham Neubig. Pre-train, prompt, and
predict: A systematic survey of prompting methods in natu-
ral language processing. ACM Comput. Surv., 2023. 8

[45] Yen-Cheng Liu, Chih-Yao Ma, Junjiao Tian, Zijian He, and
Zsolt Kira. Polyhistor: Parameter-efficient multi-task adap-
tation for dense vision tasks. NeurIPS, 2022. 3

[46] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In CVPR, pages 11976–11986, 2022. 6

[47] Zhichao Lu, Gautam Sreekumar, Erik Goodman, Wolfgang
Banzhaf, Kalyanmoy Deb, and Vishnu Naresh Boddeti. Neu-
ral architecture transfer. TPAMI, 43(9):2971–2989, 2021. 2

[48] Michael S Matena and Colin A Raffel. Merging models
with fisher-weighted averaging. NeurIPS, 35:17703–17716,
2022. 3

[49] Cuong Nguyen, Tal Hassner, Matthias Seeger, and Cedric
Archambeau. Leep: A new measure to evaluate transferabil-
ity of learned representations. In ICML, pages 7294–7305.
PMLR, 2020. 3

[50] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In
ICVGIP, pages 722–729. IEEE, 2008. 5

[51] Zizheng Pan, Jianfei Cai, and Bohan Zhuang. Stitchable neu-
ral networks. In CVPR, 2023. 1, 2, 3, 4, 5, 6, 8

[52] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In ICML, pages 4095–4104. PMLR, 2018. 6

[53] Jo Plested and Tom Gedeon. Deep transfer learn-
ing for image classification: a survey. arXiv preprint
arXiv:2205.09904, 2022. 8

[54] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In CVPR, pages 10428–10436, 2020. 5

[55] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 3

[56] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. IJCV, 115:211–252,
2015. 1, 4

[57] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 3

[58] Yang Shu, Zhi Kou, Zhangjie Cao, Jianmin Wang, and Ming-
sheng Long. Zoo-tuning: Adaptive transfer from a zoo of
models. In ICML, pages 9626–9637. PMLR, 2021. 3

[59] Yang Shu, Zhangjie Cao, Ziyang Zhang, Jianmin Wang, and
Mingsheng Long. Hub-pathway: Transfer learning from a
hub of pre-trained models. NeurIPS, 2022. 3

[60] Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross
Wightman, Jakob Uszkoreit, and Lucas Beyer. How to train
your vit? data, augmentation, and regularization in vision
transformers. TMLR, 2022. 5

[61] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Lad-
der side-tuning for parameter and memory efficient transfer
learning. NeurIPS, 2022. 3

[62] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois,
Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B.
Hashimoto. Stanford alpaca: An instruction-following
llama model. https://github.com/tatsu-lab/
stanford_alpaca, 2023. 6

[63] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, pages 10347–10357. PMLR, 2021. 5

[64] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023. 1, 2, 6

[65] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023. 2

[66] Anh T Tran, Cuong V Nguyen, and Tal Hassner. Transfer-
ability and hardness of supervised classification tasks. In
ICCV, pages 1395–1405, 2019. 3

[67] Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber,
Jessie Barry, Panos Ipeirotis, Pietro Perona, and Serge Be-
longie. Building a bird recognition app and large scale

28564



dataset with citizen scientists: The fine print in fine-grained
dataset collection. In CVPR, pages 595–604, 2015. 5, 6

[68] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. Tech. Rep. CNS-TR-2011-001, California Institute
of Technology, 2011. 5, 6

[69] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking
winning tickets before training by preserving gradient flow.
In ICLR, 2020. 5

[70] Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chandra.
Attentivenas: Improving neural architecture search via atten-
tive sampling. In CVPR, pages 6418–6427, 2021. 5

[71] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu,
Noah A Smith, Daniel Khashabi, and Hannaneh Hajishirzi.
Self-instruct: Aligning language model with self generated
instructions. arXiv preprint arXiv:2212.10560, 2022. 6

[72] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, Rémi Louf, Morgan Funtowicz, et al. Transform-
ers: State-of-the-art natural language processing. In EMNLP,
pages 38–45, 2020. 1

[73] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Re-
becca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,
Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Ko-
rnblith, et al. Model soups: averaging weights of multiple
fine-tuned models improves accuracy without increasing in-
ference time. In ICML, pages 23965–23998. PMLR, 2022.
3

[74] Hang Xu, Ning Kang, Gengwei Zhang, Chuanlong Xie, Xi-
aodan Liang, and Zhenguo Li. Nasoa: Towards faster task-
oriented online fine-tuning with a zoo of models. In ICCV,
pages 5097–5106, 2021. 3

[75] Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao
Chang, Songfang Huang, and Fei Huang. Raise a child in
large language model: Towards effective and generalizable
fine-tuning. In EMNLP, 2021. 5

[76] Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, and
Xinchao Wang. Deep model reassembly. NeurIPS, 35:
25739–25753, 2022. 2

[77] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lip-
son. How transferable are features in deep neural networks?
NeurIPS, 27, 2014. 3

[78] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng
Long. Logme: Practical assessment of pre-trained models
for transfer learning. In ICML, pages 12133–12143. PMLR,
2021. 3

[79] Jiahui Yu and Thomas S Huang. Universally slimmable net-
works and improved training techniques. In ICCV, pages
1803–1811, 2019. 5, 6

[80] Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit:
Simple parameter-efficient fine-tuning for transformer-based
masked language-models. In ACL, pages 1–9, 2022. 3

[81] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov,
Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djo-
longa, Andre Susano Pinto, Maxim Neumann, Alexey Doso-
vitskiy, et al. A large-scale study of representation learning
with the visual task adaptation benchmark. arXiv preprint
arXiv:1910.04867, 2019. 5, 6

[82] Lvmin Zhang and Maneesh Agrawala. Adding conditional
control to text-to-image diffusion models. In ICCV, 2023. 3

[83] Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu,
Shilin Yan, Pan Lu, Hongsheng Li, Peng Gao, and Yu Qiao.
Llama-adapter: Efficient fine-tuning of language models
with zero-init attention. arXiv preprint arXiv:2303.16199,
2023. 3

28565


