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Abstract

Vision-and-language models trained to match images
with text can be combined with visual explanation meth-
ods to point to the locations of specific objects in an im-
age. Our work shows that the localization –“grounding”–
abilities of these models can be further improved by fine-
tuning for self-consistent visual explanations. We propose
a strategy for augmenting existing text-image datasets with
paraphrases using a large language model, and SelfEQ,
a weakly-supervised strategy on visual explanation maps
for paraphrases that encourages self-consistency. Specifi-
cally, for an input textual phrase, we attempt to generate
a paraphrase and finetune the model so that the phrase
and paraphrase map to the same region in the image. We
posit that this both expands the vocabulary that the model
is able to handle, and improves the quality of the object
locations highlighted by gradient-based visual explanation
methods (e.g. GradCAM). We demonstrate that SelfEQ im-
proves performance on Flickr30k, ReferIt, and RefCOCO+
over a strong baseline method and several prior works. Par-
ticularly, comparing to other methods that do not use any
type of box annotations, we obtain 84.07% on Flickr30k
(an absolute improvement of 4.69%), 67.40% on ReferIt (an
absolute improvement of 7.68%), and 75.10%, 55.49% on
RefCOCO+ test sets A and B respectively (an absolute im-
provement of 3.74% on average).

1. Introduction
Vision-and-language models that are trained to associate

images with text have shown to be effective for many tasks

and benchmarks [21, 27, 31, 41], including object detec-

tion [18, 54] and image segmentation [15, 36, 50]. Since

these models are typically trained with in-the-wild data

from the web, they can handle a wide range of vocab-

ulary for objects as long as they are well represented in

the training data. These models are often remarkably ac-

curate [16, 22, 28, 47] even without tuning them to per-

form well in any particular downstream task [14, 32, 52].

The ALBEF model [27] was particularly capable of visual

Figure 1. Previous models can localize the word frisbee, but strug-

gle with equivalent but more uncommon referents such as disc. A

model tuned with our proposed SelfEQ objective encourages con-

sistent visual explanations for paraphrased prompts and performs

well on both examples. SelfEQ not only enables a larger working

vocabulary but also improves overall localization performance.

“grounding” – or in other words – the ability to localize

objects in images by simply using it in conjunction with a

visual explanation method such as GradCAM [43]. This ca-

pability is particularly remarkable given that this model was

only supervised with images and text but no object location

annotations of any type.

In order to improve the ability of vision-and-language

models to perform localization, many methods have in-

corporated further finetuning with either box or segment

annotations, or rely on pretrained object detectors or box

proposal networks [5, 12, 19, 23, 30, 51]. Our work in-

stead aims to improve the localization capabilities of models

trained only on image-text pairs through weak supervision.

But, how can we improve the ability of a model to localize

objects without access to object location annotations? Con-

sider the example in Figure 1 where a model is tasked with

pointing to the location of the object frisbee in this image.

The baseline model succeeds at finding the object but is un-

successful at locating the object when prompted with the

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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equivalent but more generic name disc. Regardless of the

ability for the base model to find either of these, the visual

explanations for these two prompts should be the same since

the query refers to the very same object in both cases. Our

work exploits this property by first generating paraphrases

using a large language model and then proposing a weakly-

supervised Self-consistency EQuivalence Tuning (SelfEQ)

objective that encourages consistent visual explanations be-

tween paraphrased input text pairs that refer to the same

object or region in a given image.

Given a base pre-trained vision-and-language model

purely trained on image-text pairs such as ALBEF [27],

SelfEQ tunes the model so that for a given input image

and text pair, the visual attention map extracted using Grad-

CAM [43] produces a similar visual attention map when

provided with the same image and a text paraphrase. Fig-

ure 2 provides an overview of our method. Another contri-

bution of our work consists in exploiting a large language

model (LLM) to automatically generate paraphrases for ex-

isting datasets such as Visual Genome [26] that contains

textual descriptions of individual objects and regions, or

MS-COCO [33] and CC3M [46] that contain global im-

age descriptions. We find that SelfEQ not only expands

the vocabulary of objects that the base model is able to lo-

calize but more importantly, improves the visual grounding

capabilities of the model on standard benchmarks such as

referring expression comprehension on the ReferIt bench-

mark [24] and region-phrase grounding in the Flickr30K

Entities benchmark [40]. In summary, our key contributions

are as follows:

• We design a novel objective, SelfEQ, to encourage vision-

and-language models to generate self-consistent visual

explanations for equivalent text phrases, thereby improv-

ing grounding capabilities while expanding the working

vocabulary of the model.

• We propose to prompt large language models for generat-

ing paraphrased image descriptions of individual objects

or regions. Particularly, we adopt Vicuna-13B [6] and de-

sign text prompts to obtain high quality paraphrases.

• We demonstrate the effectiveness of our method by out-

performing previous methods, leading to 4.69% improve-

ment on Flickr30k, 7.68% improvement on ReferIt, and

3.74% improvement on RefCOCO+.

Finally, we plan to release our code, generated para-

phrases and model checkpoints upon publication.

2. Related Work
Our work is related to previous methods on visual ground-

ing, especially those that are trained under weak supervision

understood as without the use of bounding box or segment

annotations and relying only on image-text pairs. From a

technical perspective our work is related to methods that op-

timize visual explanations to improve the underlying model.

Visual grounding consists of localizing an input textual

description in an image. Supervised methods are pro-

vided with text-image pairs and corresponding bounding

boxes [8, 9, 12, 23, 51]. Other supervised methods lever-

age pretrained object detectors to obtain a region of interest

and then identify the region that aligns most closely under

their textual representations [5, 7, 17, 19, 35, 48]. In both

cases, these methods use some form of box supervision dur-

ing pre-training or at test time by relying on a pre-trained

object detector. In contrast, our work focuses exclusively in

the scenario where no bounding boxes or segment annota-

tions are available at any stage.

Weakly-Supervised Grounding. Our setup is similar to that

of Arbelle et al [3] where no box annotations or object de-

tectors are used for grounding. This work proposes Ground-

ing by Separation (GbS) where a model is trained on ran-

domly alpha-blended pairs of images and the goal is to sep-

arate them conditioned on text prompts. Our method instead

relies on data augmentation on the text side and while our

method shows favorable results, our contribution is orthog-

onal. Shaharabany et al [45] builds a weakly-supervised

phrase grounding model by creating a large amount of data

by combining region boxes with a BLIP captioning model.

Later work by Shaharabany and Wolf [44] employs layer-

wise relevance propagation [38] to integrate relevancy and

gradient information with the scores computed from each

attention head in the transformer layers [4], or residual con-

nections [1]. Our work compares favorably or on par with

these methods but since we rely on gradient-based explana-

tions, our work does not require making any modifications

to the base network.

Visual Explanation Tuning. Related to our method is the

strategy used by ALBEF [27] where the model is only

supervised on image-text pairs and performs grounding

through GradCAM [43], a gradient-based visual explana-

tion method that outputs a heatmap indicating spatial rele-

vance. Earlier, Xiao et al [49] used a similar strategy but fur-

ther optimized gradient-based explanations using structural

constraints derived from text. Recently, AMC [51] follows

this strategy but further adds box supervision on the output

maps using a margin-based loss. We adopt ALBEF [27] as

our base model and also adopt a gradient-based explanation

strategy but unlike AMC [51] we do not rely on box anno-

tations for tuning this model and use our proposed SelfEQ

objective instead. Javed et al [20] proposed an objective

function that encourages consistent representations in em-

bedding space for the same input prompt on different im-

ages. In contrast SelfEQ encourages consistent visual ex-

planations for different prompts on the same image by rely-

ing on automatically generated paraphrases. Akbari et al [2]

also optimizes attention maps but in their formulation the

model backbone is modified to explicitly incorporate atten-

tion instead of relying on gradient-based attention maps.
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V

“a choo choo”

T 

V

“a train”

RoI Mask

Figure 2. Overview of our proposed weakly-supervised Self-
consistency EQuivalence tuning objective. We input image-text

and image-paraphrase pairs 〈V, T 〉 and 〈V, T e〉 to our base pre-

trained vision-and-language model. We then obtain gradient-

based visual explanations 〈G,Ge〉 and compute a similarity loss

between them. We also define an overlapping region of inter-

est mask and encourage the model to predict consistently high

saliency scores within this mask for each input pair.

3. Method

We start from a base vision-language model composed of

a text encoder φt , an image encoder φv , and a multimodal

fusion encoder φf , along with a dataset D to finetune this

model consisting of image-text pairs 〈T, V 〉. Section 3.1,

introduces the training objectives for the base model which

we also adopt for finetuning our baseline and are also used

in conjunction with SelfEQ to finetune our final model. Sec-

tion 3.2 introduces in detail SelfEQ, our self-consistency

equivalence tuning objective that assumes the existence of

paraphrases T e for each input image-text pair 〈T, V 〉, and

Section 3.3 describes our approach for automatically gen-

erating paraphrases T e using LLM-prompting. Figure 2

presents an overview of our proposed method.

3.1. Base Model: Preliminaries

Our base vision-and-language model is ALBEF [27] which

relies on three widely used objectives for visual and textual

representation learning: image-text matching, masked lan-

guage modeling and a contrastive loss. We describe them

here briefly as they are also re-used during fine-tuning.

Image-Text Matching Loss (ITM). This loss is calcu-

lated using the output of the [CLS] token to predict if the

input image and the input text are matching or not and is

defined as follows:

Litm = E(V,T )∼D H
(
�y, φcls

f (φv (V ) , φt (T ))
)
, (1)

where �y denotes a two-dimensional one-hot vector, indicat-

ing whether the sample 〈V, T 〉 constitutes a match, φcls
f rep-

resents a linear layer followed by a softmax function, and

H is the cross entropy loss function.

Masking Language Modeling Loss (MLM). This loss

has been applied for various vision-language pretraining

models [5, 27, 29, 34]. It integrates the contextual text and

the input image to infer masked words in the input text. Af-

ter utilizing a linear layer and a softmax activation function

φm
f to individual output embeddings, the objective is ex-

pressed as:

Lmlm = E(V,T−m)∼D H (
�tm, φm

f

(
φv (V ) , φt

(
T−m)))

, (2)

where the one-hot vector �tm denotes the masked token, and

T−m represents the input masked text.

Image-Text Contrastive Loss (ITC). It improves the

alignment between visual and textual representations by

bringing closer the representations for corresponding text-

image pairs relative to text-image pairs that do not corre-

spond. This objective can be defined as follows:

Litc = E(V,T )∼D
1

2

[
H
(
�y,

exp (φv(V ) · φt(T )) /τ∑B
b=1 s (V, Tb)

)

+H
(
�y,

exp (φt(T ) · φv(V )) /τ∑B
b=1 s (T, Vb)

)]
,

(3)

where B is the number of negative sample pairs, and τ is a

temperature parameter for the softmax function.

The training objective for the base model is a combina-

tion of the previous three loss functions:

Lvl = Litm + Lmlm + Litc. (4)

This loss Lvl will also be used to tune our baseline model.

3.2. Self-Consistency Equivalence Tuning

SelfEQ assumes that the model has access to paraphrases

T e for each input image-text pair 〈V, T 〉 or, in practice, for a

subset of those samples. Therefore we assume a finetuning

dataset D′ with triplets 〈V, T, T e〉 such that T e exists for

a corresponding input text T . The first step to define our

SelfEQ objective is to generate the explanation heatmaps

(i.e., attention maps) through GradCAM [43] conditioned

on the input text. We extract intermediate feature maps from

the multimodal interactive encoder φf for input pairs 〈V, T 〉
and 〈V, T e〉 as follows:

F = φ (φv(V ), φt(T )) , F
e = φ (φv(V ), φt(T

e)) , (5)

where φ denotes the feature map extraction operation. We

then proceed to calculate the gradient of F and F e related

to the image-text matching score Litm. This computation

yields the attention maps for the original text and para-

phrased text, referred to as G and Ge, respectively:

G = ReLU
(
F � �H

(
�y, φcls

f (φv(V ), φt(T ))
))

,

Ge = ReLU
(
F e � �H

(
�y, φcls

f (φv(V ), φt(T
e))

))
.

(6)
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Our SelfEQ tuning is based on the premise that if a

vision-language model is identified as self-consistent, the

attention maps produced for both the text and its equivalent

paraphrase should yield nearly identical results. To achieve

this, we first apply a simple mean squared error loss over the

produced heatmaps so that their �2 distance is minimized

and thus become more similar.

Lsim = E(V,T,Te)∼D′

[
1

N

∑
i,j

(Gi,j −Ge
i,j)

2

]
. (7)

Nevertheless, while minimizing a sum of pixel-wise dis-

tances contributes to self-consistency, without a regulariza-

tion term this loss can easily fall into a trivial solution. For

instance, it could lead to attention maps with uniformly

negative or positive predictions, or just really small val-

ues. To address this limitation, we propose to integrate

these heatmaps by defining a Region of Interest (RoI) mask.

This mask is designed to preserve regions within the atten-

tion maps that possibly contain correct predictions. Our ap-

proach hinges on the observation that, despite the predic-

tions of equivalent textual inputs being inconsistent, some-

times regions with large values or regions that overlap be-

tween the two heatmaps tend to be correct. As such, we as-

sume that if the sum of attention scores at a given position

(i, j) exceeds a certain threshold k, it is likely indicative of

a correct prediction. We formalize the condition as follows:

Mi,j =

{
1, (Gi,j +Ge

i,j) ≥ k

0, (Gi,j +Ge
i,j) < k

. (8)

The attention maps within RoI masks are obtained by

element-wise multiplication as follows:

R = G�M, Re = Ge �M. (9)

The integration of RoI masks allows us to use equiva-

lent texts for mutual supervision, refining and improving

the accuracy and providing regularization for the previously

defined distance-based loss. Moreover, it could potentially

address errors owing to unknown or less common words

by working vocabulary expansion. Presuming one of the

textual expressions is known and correctly understood, the

model could extrapolate the meaning of the other equivalent

expression via weak supervision. To implement it, we first

compute the mean μRoI , μ
e
RoI and the standard deviation

σRoI , σ
e
RoI within the RoI as follows:

μRoI =

∑
i,j Ri,j∑
i,j Mi,j

, μe
RoI =

∑
i,j R

e
i,j∑

i,j Mi,j
, (10)

σRoI =

√∑
i,j Mi,j · (Ri,j − μRoI)2∑

i,j Mi,j
,

σe
RoI =

√∑
i,j Mi,j · (Re

i,j − μe
RoI)

2∑
i,j Mi,j

.

(11)

We propose a consistency loss (Lcst), expecting the

RoI regions of attention maps to achieve consistently high

scores, further reinforcing self-consistency, accuracy, and

potential working vocabulary expansion. This objective is

formulated as follows:

Lcst =E(V,T,Te)∼D′

[
σRoI + σe

RoI+

max(0, k/2− μRoI) + max(0, k/2− μe
RoI)

]
.

(12)

Finally, the objective of our self-consistency equivalence

tuning is expressed as:

LSelfEQ = Lsim + λ · Lcst, (13)

where λ is a hyperparameter to control the relative influence

of each loss.

3.3. Self-Consistency Data Augmentation

In this section we define a function F that can automatically

map input textual phrases T as paraphrases T e without the

need to rely on human annotations such that T e ∼ F(T ).
We achieve this goal through a two-level prompting ap-

proach using a large language model which we describe in

detail below.

Phrase Chunking: Using our first-level prompts, we aim

to augment the original text using phrase chunking to en-

courage global captions to concentrate on more specific re-

gions. Visual grounding seeks to localize objects in images

based on textual inputs. In contrast, global captions usually

describe the entire image, typically describing several ob-

jects. While training on global captions could be beneficial

for learning cross-modal information, it may lead the model

to predict a broader region (i.e., global context) rather than a

specific region. Phrase chunking (i.e., shallow parsing [55])

aims to identify continuous sequences of tokens represent-

ing syntactic units, enabling the extraction of phrases from

unstructured text. We leverage an LLM to segment global

captions into object-centric short phrases. During training,

we use these image-chunk pairs instead of global captions,

effectively guiding the model attention toward localized re-

gions of interest. We refer the reader to the supplementary
material for prompting details and generated examples.

Paraphrase Generation: Our SelfEQ approach involves

feeding the model with pairs of textual descriptions that re-

fer to the same underlying concept, with the expectation that

the model can make similar predictions for these equivalent

description pairs 〈T, T e〉. We augment our dataset by trans-

forming the region-based captions (i.e., text that only refers

to a region in the image) and the object-centric short phrases

we obtained from phrase chunking into equivalent para-

phrases referring to the same concept through our second-

level LLM-prompts.
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Figure 3. Two samples from our LLM-prompt for paraphrase gen-

eration. The first set showcases an example of a region-based cap-

tion, and the second set shows a non-sentence phrase. Q is the

query text and A is the expected answer.

There are many ways to paraphrase, including substi-

tuting words, altering sentence structures, and rewriting

sentences based on semantics. However, considering that

self-consistency in vision and language is relatively under-

explored, we adopt a straightforward strategy: Replacing

the primary object in the sentence while retaining all other

attributes. This strategy yields several benefits. First, it pro-

vides a consistent context, which serves as a reference for

the model to identify equivalent descriptions. This enables

the equivalent relationships of paraphrases to be learned in-

tuitively. Second, it simplifies prompt designing and post-

processing by detecting the primary object and generating

its synonym.

To generate paraphrases for the dataset consisting of

region-based captions, we select four textual descriptions

in which the primary noun plays different syntactic roles.

We further select two non-sentence phrases as examples

of query texts in our prompts. We show an example of

a region-based caption and a non-sentence phrase in Fig-

ure 3. To design our prompt, we identify the primary ob-

ject in the query text Q. Then we use WordNet [37] to ob-

tain synonyms automatically and further remove inaccurate

or invalid words. We add A to indicate the expected an-

swer and include other relationships such as antonym, hy-
pernym and meronym to provide richer contexts for LLM

in-context learning. Additional prompting details and para-
phrase samples are provided in the supplementary material.

This two-level prompt-based LLM augmentation ap-

proach ensures that our model is exposed to textual inputs

that share the same concept while varying in linguistic rep-

resentation, thereby promoting self-consistency and work-

ing vocabulary expansion.

4. Experimental Settings

Training. We use ALBEF [27] as our base model in

all our experiments, given its reported off-the-shelf visual

grounding performance via GradCAM [43]. ALBEF com-

bines a ViT-B [11] model for encoding images and a BERT-

base [10] model for encoding text. It is pre-trained on a

range of datasets, including ImageNet-1K [42], Conceptual

Captions [46], SBU Captions [39], MS-COCO [33], and

Method Training Flickr30k ReferIt

B
o

x
S

u
p

er
v

is
io

n Align2Ground [7] VG-boxes 71.00 -

12-in-1 [35] VG-boxes 76.40 -

InfoGround [19] VG-boxes 76.74 -

VMRM [12] VG-boxes 81.11 -

AMC [51] VG-boxes 86.59 73.17

W
it

h
o

u
t

B
o

x
S

u
p

er
v

is
io

n

TD [56] VG 42.40 31.97

SSS [20] VG 49.10 39.98

MG-BiLSTM [2] VG 57.91 62.76

MG-ELMo [2] VG 60.08 60.01

GbS [3] VG 73.39 62.24

g [45] VG 75.63 65.95

g++ [44] VG 79.95 70.25
SelfEQ (ours) VG 81.90 67.40

FCVC [13] MS-COCO 29.03 33.52

MG-BiLSTM [2] MS-COCO 53.29 47.89

MG-ELMo [2] MS-COCO 61.66 47.52

GbS [3] MS-COCO 74.50 49.26

g [45] MS-COCO 75.43 61.03

g++ [44] MS-COCO 78.10 61.53

SelfEQ (ours) MS-COCO 84.07 62.75

Table 1. Visual Grounding results on two benchmarks using point-

ing game accuracy with two training datasets. SelfEQ yields

generally the best overall performance among weakly-supervised

methods, and comes second to g++ on the ReferIt benchmark

when trained using VG. We also show at the top the results of

methods using additional box supervision from Visual Genome

(VG) either directly or through an object detector.

Visual Genome (VG) [26] excluding box annotations. We

finetune ALBEF with image-text pairs from VG and MS-

COCO without any type of box supervision (i.e., no bound-

ing boxes or object detectors), following prior work [2].

We further leverage Vicuna-13B [6] as our LLM-prompting

model to generate the object-centric short phrases (via shal-

low parsing or chunking) and the equivalent paraphrases

for our self-consistency data augmentation. Additionally,

we validate the effectiveness of our SelfEQ tuning and self-

consistency data augmentation method by training on a pre-

processed subset of the Conceptual Captions 3M (CC3M)

dataset [46], which contains many noisy or unaligned web-

crawled AltText-image pairs. With this subset, we achieve

an absolute improvement of 2.15% on Flickr30k, 3.32% on

ReferIt, and 1.33% on RefCOCO+; refer to the supplemen-
tary material for detailed CC3M experiments.

Evaluation. We conduct evaluations using Flickr30k [40]

and ReferIt [24] under pointing game accuracy following

previous weakly-supervised visual grounding works [2, 3].

To underscore the competitive edge of our method, we also
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Method Box Supervision
RefCOCO+

Test A Test B

InfoGround [19] Yes 39.80 41.11

VMRM [12] Yes 58.87 50.32

AMC [51] Yes 80.34 64.55

ALBEF [27] No 69.35 53.77

SelfEQ (ours) No 75.10 55.49

Table 2. Results on RefCOCO+ pointing game accuracy. SelfEQ

shows significant improvements over off-the-shelf ALBEF and

competitive results compared to box-supervised methods.

present its performance on RefCOCO+ [53], a challenging

benchmark more commonly used for testing box-supervised

methods [7, 12, 19, 35, 51].

4.1. Implementation Details

Our experiments are conducted on a single computing node

with 8 NVIDIA A40 GPUs. During the training phase, in-

put images are resized to 256×256 and augmented with hor-

izontal flipping, color jittering, and random grayscale con-

version. We set up an Adam optimizer [25] with a learning

rate of 1e-5 and a batch size of 448 across all experiments.

We empirically set the RoI threshold k to 0.8 and the hy-

perparameter λ to 1.0. For training with raw image-text

pairs from the datasets, we employ the vision-language ob-

jective Lvl (Sec. 3.1), while for the subset with equivalent

paraphrases, we use our self-consistency equivalence tun-

ing objective LSelfEQ (Sec. 3.2) and corresponding vision-

language objective Le
vl. The composite objective function

is given by L = α · Lvl + (1− α) · (LSelfEQ +Le
vl), where

α is initially set to 0 and increments to 1, remaining con-

stant after the second epoch. Our hyperparameter values

and schedules were determined empirically on a small vali-

dation subset.

5. Experimental Results
Our resulting model obtains the best performance on the

task of weakly-supervised visual grounding compared to

most methods under this setting and is comparable to sev-

eral prior works that rely on some of box supervision.

Moreover, our qualitative results show that our method can

handle paraphrases and a larger working vocabulary without

the needed to increment the training dataset significantly.

Flickr30k and ReferIt. We evaluate the effectiveness of

our proposed SelfEQ method in Table 1, demonstrating its

substantial lead over GradCAM-based weakly-supervised

approaches. Our self-consistency equivalent tuning adapts

well for both region-based (i.e.,, VG) and global-based

(i.e.,, COCO) image-text pairs, yielding a performance gain

of 4.69% on Flickr30k and 7.68% on ReferIt, compared to

Image

Text: “blue thermos very bottom”

Text: “trees on the right”

Text: “white bldg”

Text: “kangaroo furthest away facing right”

Text: “person right corner”

Image

Image

Image

Image

Figure 4. Qualitative results of our method in challenging visual

grounding scenarios compared to prior works. On top of each row

we show the reference text, the first column shows the image, then

we show our base model ALBEF, the SotA box-supervised method

AMC, and finally we show results with our method SelfEQ.

our base model ALBEF (see first row in Table 3). Notably,

our method outperforms almost all box-supervised meth-

ods on Flickr30k [7, 12, 19, 35]. In the weakly-supervised

setting, our method only comes second on ReferIt com-

pared to g++[44] when trained on Visual Genome image-

text pairs. This method leverages a custom architecture

to produce a mask and uses heatmap supervision from a

CLIP [41] model as pseudo-labels during training. We

posit that our contribution is orthogonal and our approach

would likely also benefit from similar supervision, since

CLIP is trained in a much larger image-text pair dataset.

Despite differences, our method still obtains higher per-

formance when trained on MS-COCO and the best per-

formance compared to all weakly-supervised methods on

Flickr30K region-phrase grounding.

RefCOCO+. RefCOCO+ [53] serves as a rigorous bench-

mark for visual grounding, typically used to evaluate box-

supervised techniques. In Table 2, we present the per-
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Data Objective RefCOCO+ Flickr30k ReferIt
Test A Test B

- Lvl 69.35 53.77 79.38 59.72

T Lvl 72.30 54.22 78.75 65.86

T + T e Lvl 71.55 53.51 78.05 64.57

T + T e LSelfEQ 75.10 55.49 81.90 67.40

Table 3. Ablation studies on different ways to utilize extra equiv-

alent paraphrased data. The first row is off-the-shelf ALBEF per-

formance before tuning. T denotes the textual captions from the

dataset, and T e corresponds to the associated equivalent para-

phrases. Lvl is the vision-language objective, and LSelfEQ is our

self-consistency equivalence tuning objective.

formance of our weakly-supervised method (VG trained)

against box-supervised methods. Our results indicate that

our approach is competitive without reliance on any form

of box annotations and significantly improves over the base

ALBEF model.

Visual Grounding Analysis. Figure 4 provides qualita-

tive results of our method in challenging scenarios, includ-

ing occluded objects (row 1), small objects within complex

scenes (row 2), objects partially shown in the corner of the

image (row 3), multiple similar objects (row 4), and abbre-

viated text inputs (row 5). Our self-consistency equivalency

tuning approach exhibits substantial improvements in the

grounding capability of the base ALBEF [27] model. Re-

markably, our approach even outperforms the state-of-the-

art box-supervised method AMC [51] in multiple scenarios.

Self-Consistency Analysis. Figure 5 demonstrates qualita-

tive results for the self-consistency capability across differ-

ent equivalent paraphrases, encompassing terminology (row

1), synonym substitutions (row 2), and regional slang com-

bining with different sentence structures (row 3). Although

other methods succeed in localizing certain phrases, they

demonstrate inconsistencies for the equivalent paraphrases.

In contrast, our model finetuned with SelfEQ effectively

establishes connections between semantically equivalent

paraphrases, thereby enhancing the model self-consistency

ability and potentially expanding its working vocabulary.

5.1. Ablation Studies

Data Quantity. We assess the impact of the data quantity of

our generated paraphrases and compare our tuning strategy

against standard vision-language objectives. We randomly

sample portions of data from VG by 10% associated with

our augmented equivalent paraphrases three times. To com-

pare, we use the vision-language objective with VG text-

image pairs as baselines. In Figure 6, we show the mean

and standard deviation pointing game accuracy. The perfor-

mance of the base vision-language objective does not ex-

hibit a steady improvement with more text-image pairs. Al-

Text: “water”

Equivalent Paraphrase: “H2O”

Image

ALBEF AMC Ours

ALBEF AMC Ours

Text: “right light”

Equivalent Paraphrase: “right illuminator”

Image

ALBEF AMC Ours

ALBEF AMC Ours

Text: “an umbrella”

Equivalent Paraphrase: “there is a brolly in the image”

Image

ALBEF AMC Ours

ALBEF AMC Ours

Figure 5. Qualitative results across equivalent paraphrases among

different methods. For each image, we show a caption referring

to an object in the first row and an equivalent paraphrase in the

second row. Each column shows the results of ALBEF, the SotA

box-supervised method AMC, and our SelfEQ method.

though ReferIt performance increases, the performance on

RefCOCO+ Test A remains mostly unchanged. Addition-

ally, the performance on Flickr30k notably decreases, and

there is a mixed effect on RefCOCO+ Test B, with half of

the accuracy falling below the off-the-shelf ALBEF perfor-

mance of 53.77%.

In contrast, SelfEQ consistently leads to performance en-

hancements with more equivalent paraphrases. Clear up-

ward trends are observed on Flickr30k, ReferIt, and Ref-

COCO+ Test A as more data with corresponding equiva-

lent paraphrases are added, meanwhile the gaps between the

baselines generally widen. Notably, SelfEQ tuning main-

tains performance gains on Flickr30k, whereas the base-

lines performances drop. Although the trend on RefCOCO+

Test B is not consistently increasing, it is essential to em-

phasize that RefCOCO+ Test B is only a subset, and SelfEQ

illustrates more stable and effective tuning performance on

it, compared to the base vision-language objective.

These observations indicate that more equivalent para-

phrases connecting with associated text phrases enable the
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Figure 6. Tuning performance with different data quantities on Flickr30k, ReferIt, RefCOCO+ Test A and Test B. The purple and cyan

lines represent SelfEQ (ours) and ALBEF baseline losses (vision-language objective), respectively. We show the impact of progressively

augmenting captions via LLM-prompting for generating equivalent paraphrases tuned with our SelfEQ objective. Best viewed in color.

Format Objective Flickr30k ReferIt

- Lvl 79.38 59.72

C Lvl 79.90 60.64

C LSelfEQ 81.28 62.04

P Lvl 81.18 61.18

P LSelfEQ 84.07 62.75

Table 4. Comparisons on data augmentation strategy for global-

based captions in MS-COCO with or without the paraphrases. C is

the global-based captions from MS-COCO, and P is our Vicuna-

13B processed object-centric phrases separately. The first row is

the off-the-shelf ALBEF performance before tuning.

model to acquire more valuable information during tuning.

SelfEQ proves to be an effective and robust strategy for con-

sistently improving performance with our generated para-

phrases. With increased self-consistency augmented data,

SelfEQ guides the model toward better grounding perfor-

mance by enhancing its self-consistency capabilities.

Our method generates equivalent paraphrases for self-

consistency enhancement, but it also contributes additional

data for training. To ascertain the specific impact of our

SelfEQ tuning strategy, we run a control experiment on

this variable. As shown in Table 3, we assess the model’s

performance when equivalent paraphrases are integrated

as regular image-text pairs with vision-language objectives

(Sec. 3.1). This comparison reveals that merely augment-

ing the dataset with extra image-paraphrase pairs, without

forming explicit linkages between the original text and its

paraphrases, does not yield performance improvements.

Data Augmentation. For global-based captions in MS-

COCO, we preprocess the captions C to object-centric short

phrases P via LLM-prompting. As shown in Table 4, tuning

with phrases P leads to better performance, benefiting both

the vision-language objective (Lvl) and our self-consistency

equivalence tuning objective (LSelfEQ). This improvement

is probably attributed to short phrases allowing the model to

focus on a specific region rather than the entire scene, align-

ing more closely with the objective of visual grounding. By

utilizing equivalent paraphrases with our SelfEQ objective

(row 3 and 5), phrase chunking helps SelfEQ even more,

indicating the important role of equivalent paraphrases in

promoting self-consistency and grounding ability.

Lsim Lcst
RefCOCO+ Flickr30k ReferIt

Test A Test B

� 66.42 47.21 68.26 55.96

� 73.33 55.88 80.94 66.57

� � 75.10 55.49 81.90 67.40

Table 5. Ablation studies on objective components of self-

consistency equivalence tuning objective LSelfEQ.

Objective. Table 5 evaluates each component within our

self-consistency equivalence tuning objective. The Lsim

loss targets pixel-wise similarity, ensuring that maps for a

caption and its equivalent paraphrase are identical. How-

ever, focusing solely on pixel-level similarity may neglect

the precise spatial positioning of objects. To address this,

the Lcst loss is proposed to identify the most likely cor-

rect object positions within the two maps (i.e., RoI). It

then encourages the model to yield consistently high atten-

tion scores within the RoI. By integrating both Lsim and

Lcst, self-consistency equivalence tuning objective fosters

the model to not only align global similarities but also to

pinpoint accurate object locations through the mutual su-

pervision provided by a caption and its paraphrase, thereby

enhancing self-consistency and accuracy.

6. Conclusion
We propose a novel weakly-supervised tuning approach

coupled with a data augmentation strategy to enhance the

localization capabilities of an image-text supervised model

through self-consistency. Using an open-source LLM, we

expand a dataset with equivalent paraphrases tailored to be

object-centric. The augmented data is used to finetune a

base model employing our novel self-consistency equiva-

lence tuning objective. Our approach has been rigorously

validated across pretraining on diverse datasets, ranging

from region-based captions (i.e., VG) to global-based cap-

tions (i.e., COCO). Our method achieves superior and self-

consistent performance on three benchmarks and is even

competitive with some box-supervised methods.
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