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Abstract

By leveraging temporal dependency in video se-
quences, multi-frame human pose estimation algorithms
have demonstrated remarkable results in complicated sit-
uations, such as occlusion, motion blur, and video defocus.
These algorithms are predominantly based on heatmaps, re-
sulting in high computation and storage requirements per
frame, which limits their flexibility and real-time applica-
tion in video scenarios, particularly on edge devices. In this
paper, we develop an efficient and effective video-based hu-
man pose regression method, which bypasses intermediate
representations such as heatmaps and instead directly maps
the input to the output joint coordinates. Despite the inher-
ent spatial correlation among adjacent joints of the human
pose, the temporal trajectory of each individual joint ex-
hibits relative independence. In light of this, we propose a
novel Decoupled Space-Time Aggregation network (DSTA)
to separately capture the spatial contexts between adja-
cent joints and the temporal cues of each individual joint,
thereby avoiding the conflation of spatiotemporal dimen-
sions. Concretely, DSTA learns a dedicated feature token
for each joint to facilitate the modeling of their spatiotem-
poral dependencies. With the proposed joint-wise local-
awareness attention mechanism, our method is capable of
efficiently and flexibly utilizing the spatial dependency of
adjacent joints and the temporal dependency of each joint
itself. Extensive experiments demonstrate the superiority of
our method. Compared to previous regression-based single-
frame human pose estimation methods, DSTA significantly
enhances performance, achieving an 8.9 mAP improvement
on PoseTrack2017. Furthermore, our approach either sur-
passes or is on par with the state-of-the-art heatmap-based
multi-frame human pose estimation methods. Project page:
https://github.com/zgspose/DSTA.

1. Introduction
Human pose estimation, which aims at identifying anatom-
ical keypoints (e.g., elbow, knee, etc.) of human bodies
from images or videos, has been extensively studied in the
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Figure 1. (a) Compared to our proposed video-based regression
method, previous image-based regression methods of RLE [18]
and Poseur [23] have a substantial performance decline when pro-
cessing video input, e.g., the dataset of PoseTrack2017 [14]. (b)
Despite the intrinsic spatial correlations among human body joints,
each joint exhibits independent motion trajectories temporally.

computer vision community [8, 31, 37, 41]. It plays a
crucial role in a variety of human-centric tasks, including
motion capture, activity analysis, surveillance, and human-
robot interaction [43]. Recently, significant progress has
been made in the field of human pose estimation, particu-
larly with the advent of deep convolutional neural networks
(CNNs) [11, 25, 26] and Transformer networks [30, 36].
While the majority of recent methods focus on estimating
human poses in static images, it has been demonstrated
in [2, 7, 20] that the significance of dynamic cues (i.e., tem-
poral dependency and geometric consistency) across video
frames cannot be overlooked. To address inherent chal-
lenges in human motion images, such as motion blur, video
defocus, and pose occlusions, it is essential to sufficiently
exploit the temporal cues in video sequences.

Existing methods of human pose estimation can be di-
vided into two categories: heatmap-based [8, 20, 26, 28,
31, 34, 37, 41], and regression-based [18, 19, 23, 29, 40].
Heatmap-based methods generate a likelihood heatmap for
each joint, whereas regression-based methods directly map
the input to the output joint coordinates. Owing to their
superior performance, heatmap-based methods dominate
in the field of human pose estimation, particularly among
video-based approaches [2, 7, 15, 20]. The high compu-
tation and storage requirements of heatmap-based meth-
ods, however, make them expensive in 3D contexts (tem-
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poral), which restricts their versatility and real-time deploy-
ment in video applications, especially on edge devices. On
the other hand, regression-based methods are more flexible
and efficient. According to [18], while a standard heatmap
head (3 deconv layers) costs 1.4× FLOPs of the ResNet-50
backbone, the regression head only costs 1/20000 FLOPs
of the same backbone. Moreover, recent regression-based
approaches [18, 23] have demonstrated outstanding perfor-
mance that is on par with heatmap-based methods. Unfor-
tunately, these regression-based approaches are all built for
static images and neglect the temporal dependency between
video frames, leading to a marked decline in performance
when handling video input, as shown in Fig. 1(a).

In this work, we explore the video-based human pose re-
gression to facilitate multi-person pose estimation in video
sequences. Regression-based approaches primarily focus
on regressing the coordinates of pose joints, often overlook-
ing the rich structural information inherent in the pose [27].
As demonstrated in [23], the self-attention module em-
ployed in the Transformer architecture [30] can be used
across the pose joints to naturally capture their spatial de-
pendency. A simple and direct extension is to use the
self-attention module across all the joints from consecutive
video frames to capture both the structural information of
the pose and its temporal dependency in video sequences.
However, as illustrated in Fig. 1(b), while there’s an inher-
ent spatial correlation between adjacent joints of the human
pose, the temporal trajectory of each joint tends to be rather
independent. This implies that the spatial structure of the
pose and its temporal dynamics across video frames cannot
be conflated and must be captured separately.

To this end, we propose a novel and effective video-
based human pose regression method, named Decoupled
Space-Time Aggregation (DSTA), that models the spatial
structure between adjacent joints and the temporal dynamic
of each individual joint separately, thereby avoiding the
conflation of spatiotemporal information. Rather than using
the output feature maps of a CNN backbone to regress the
joints’ coordinates as in existing regression models [18, 23],
DSTA converts the backbone’s output into a sequence of
tokens, with each token uniquely representing a joint. In-
tuitively, each token embodies the feature embedding of
its corresponding joint; therefore, it is natural to use them
to model the spatiotemporal dependencies of pose joints.
Specifically, DSTA first establishes the feature token for
each joint via Joint-centric Feature Decoder (JFD) module,
which are hence used to capture the spatiotemporal relations
of pose joints in the Space-Time Decoupling (STD) module.
To efficiently and flexibly model the spatial dependency be-
tween adjacent joints and the temporal dependency of each
joint itself, we introduce a joint-wise local-awareness atten-
tion mechanism to ensure each joint only attends to those
joints that are structurally or temporally relevant. The ag-

gregated spatial and temporal information is utilized to de-
termine the coordinates of the joints. During training, the
JFD and STD modules are optimized simultaneously, with
the entire model undergoing end-to-end training.

To the best of our knowledge, this is an original ef-
fort on regression-based framework for multi-person pose
estimation in video sequences. We evaluate our method
through the widely-utilized video-based benchmarks for hu-
man pose estimation: PoseTrack datasets [1, 6, 14]. With
a simple yet effective architecture, DSTA achieves a no-
table improvement of 8.9 mAP over previous regression-
based methods tailored for static images and obtains supe-
rior performance to the heatmap-based methods for video
sequences. Moreover, it offers greater efficiency of compu-
tation and storage than heatmap-based multi-frame human
pose estimation methods, making it more suitable for real-
time video applications and easier to deploy, particularly on
edge devices. For instance, utilizing the HRNet-W48 back-
bone, our regression-based DSTA achieves 83.4 mAP on
the PoseTrack2017 [14] dataset with a head computation of
merely 0.02 GFLOPs, while heatmap-based DCPose [20]
attains 82.8 mAP on the same dataset with a significantly
higher head computation of 11.0 GFLOPs.

Our main contributions can be summarized as follows:
• We propose DSTA, a novel and effective video-based hu-

man pose regression framework. The proposed method
efficiently and flexibly models the spatiotemporal depen-
dencies of pose joints in the video sequences.

• Our method is the first regression-based method for multi-
frame human pose estimation. Compared to heatmap-
based methods, our method is efficient and flexible, open-
ing up new possibilities for real-time video applications.

• We demonstrate the effectiveness of our approach with
extensive experiments. Our method not only delivers a
marked improvement over prior regression-based meth-
ods designed for static images, but also achieves perfor-
mance superior to the heatmap-based methods.

2. Related Work
Heatmap-based Human Pose Estimation. Since the in-
troduction of likelihood heatmaps to represent human joint
positions [28], heatmap-based methods have become pre-
dominant in the field of 2D human pose estimation [13, 26,
37, 38, 41], owing to their superior performance. To per-
form multi-person human pose estiamtion, the top-down ap-
proaches initially identify person bounding boxes and sub-
sequently conduct single-person pose estimation within the
cropped regions [12, 26, 37]. Conversely, bottom-up meth-
ods commence by detecting identity-free keypoints for all
individuals and then cluster these keypoints into distinct
persons [3, 4, 17, 22]. Recently, the heatmaps or CNN
features from adjacent frames have been utilized to extract
the temporal dependencies of human poses, thereby enhanc-
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ing the performance of multi-person human pose estimation
in video sequences [2, 20, 21]. Despite its effectiveness,
the heatmap representation inherently suffers from several
drawbacks, such as quantization errors and the high com-
putational and storage demands associated with maintaining
high-resolution heatmaps.
Regression-based Human Pose Estimation. Regression-
based methods forgo the use of intermediate heatmaps, opt-
ing instead to map the input directly to the output joint co-
ordinates [29]. This approach is flexible and efficient for
a wide range of human pose estimation tasks and real-time
applications, especially on edge devices. Despite their effi-
ciency, regression-based methods have traditionally lagged
behind heatmap-based methods in accuracy within the
realm of human pose estimation, leading to less focus on
their development [19, 24, 29, 33]. Recently, advancements
such as RLE [18] and Poseur [23] have significantly pro-
pelled regression-based approaches, elevating their perfor-
mance to a level comparable with heatmap-based methods.
However, these regression-based methods are designed ex-
clusively for static images. When these image-based meth-
ods are directly applied to video sequences, they tend to
yield suboptimal predictions due to their inability to cap-
ture temporal dependencies between frames. As a result,
such models struggle with challenges inherent to video in-
puts, such as motion blur, defocusing, and pose occlusions,
which are common in dynamic scenes.

In this work, we present for the first time a regression-
based approach for multi-person human pose estimation in
video sequences, outperforming or is on par with state-of-
the-art heatmap-based methods for video sequences.

3. Method

3.1. Overview

Given a video frame I(t) at time t containing multi-
ple persons, we are interested in estimating locations
of pose joints for each person. To enhance pose es-
timation for the frame I(t), we leverage the tempo-
ral dynamics from a consecutive frame sequence S =
⟨I(t− T ), . . . , I(t), . . . , I(t+ T )⟩, where T is a pre-
defined temporal span. Our method follows the top-
down paradigm. Initially, we use an human detector
to identify individual persons in the frame I(t). Sub-
sequently, each detected bounding box is expanded by
25% to extract the same individual across the frame
sequence S, resulting in a cropped video clip Si =
⟨Ii(t− T ), . . . , Ii(t), . . . , Ii(t+ T )⟩ for every individual
i. The goal of estimating human pose for individual i within
the specified video frame I(t) can then be denoted as

{xj
i (t)}

n
j=1 = HPE(Si),

where HPE(·) denotes the human pose estimation module,
xji (t) is the j-th pose joint for the individual i in video frame
I(t), and n represents the number of joints for each person,
e.g., n = 15 for PoseTrack datasets [1, 6, 14]. For sim-
plicity in the following description of our algorithm, unless
otherwise specified, we will refer to a specific individual i.

We adopt the regression-based method to implement the
human pose estimation module HPE(·). Compared to the
heatmap-based method, the regression-based method of-
fers several advantages: i) It eliminates the need for high-
resolution heatmaps, resulting in reduced computation and
storage demands. This makes it more apt for real-time
video applications and facilitates deployment, especially on
edge devices. ii) It provides continuous outputs, avoiding
the quantization issues inherent in heatmap methods. In
the regression-based pose estimation module HPE(·), the
global feature maps extracted by a CNN backbone are fed
into a regression module, which then directly produces the
coordinates of the joints, i.e.,

{xj
i (t)}

n
j=1 = REG(Ŝi), (1)

where REG(·) denotes the regression module and Ŝi =
⟨Fi(t− T ), . . . ,Fi(t), . . . ,Fi(t+ T )⟩. Here, Fi(t

′) with
t′ ∈ [t − T, t + T ] is the global feature maps extracted by
the CNN backbone from the cropped image Ii(t′). Note,
when regressing the pose joints at the current frame time
t, we aim to utilize the temporal feature information across
the video clip Si, rather than solely relying on the feature
information from the current frame Ii(t).

Prior work, such as Poseur [23], has demonstrated that
the spatial dependencies among pose joints can be naturally
captured by applying the self-attention mechanism [30]
over them. It follows that we can also employ the self-
attention mechanism on the global pose features in the tem-
poral sequence Ŝi to discern the temporal dependency of
individual’s pose over the time interval [t − T, t + T ]. As
depicted in Fig. 1(b), each pose joint exhibits a relatively
independent temporal trajectory. Hence, it’s more appro-
priate to model the temporal dependency at the joint level
rather than for the entire pose. To this end, extra efforts are
required to convert each global feature Fi(t

′) into a set of
joint-aware feature embeddings. This procedure is finished
in the Joint-centric Feature Decoder (JFD) , which can be
denoted as

{F j
i (t

′)}nj=1 = JFD(Fi(t
′)), t′ ∈ [t− T, t+ T ], (2)

where F j
i (t

′), termed a feature token, represents the feature
embedding of the j-th joint of the pose at the video frame of
time t′. Let’s represent the feature tokens for each joint of
the pose over the time span [t−T, t+T ] as S̃i. That is, S̃i =
⟨{F j

i (t− T )}nj=1, . . . , {F
j
i (t)}nj=1, . . . , {F

j
i (t+ T )}nj=1⟩.

We subsequently utilize the feature tokens in S̃i to model
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Figure 2. The pipeline of the proposed Decoupled Space-Time Aggregation (DSTA). The goal is to detect the human pose of the key frame
Ii(t). Given a video sequence ⟨Ii(t− T ), . . . , Ii(t), . . . , Ii(t+ T )⟩, DSTA uses a backbone network to extract their feature maps. From
these maps, Joint-centric Feature Decoder (JFD) extracts feature tokens to individually represent each joint. Space-Time Decoupling (STD)
then models the temporal dynamic dependencies and spatial structural dependencies of joints separately, producing aggregated space-time
features for the current key frame. Each of these aggregated features is utilized to regress the coordinates of the corresponding joint.

the spatiotemporal dependencies of pose joints via
Space-Time Decoupling (STD),

{fji (t)}
n
j=1 = STD(S̃i), (3)

where fji (t) is the aggregated space-time feature for the j-th
joint of the pose at the current video frame t, which is then
fed to a joint-wise fully connected feed-forward network to
produce the coordinates of the joint.

Our proposed Decoupled Space-Time Aggregation Net-
work (DSTA) is composed of three primary modules: the
backbone, JFD(·), and STD(·). We learn DSTA by training
the backbone, JFD, STD modules in an end-to-end man-
ner. The architecture and workflow of DSTA are depicted
in Fig. 2. Subsequent sections delve into the specifics of the
JFD, STD, and the computation of the loss function.

3.2. Joint-centric Feature Decoder

As shown in Fig. 2, the purpose of JFD is to extract the
feature embedding for each joint from the given global
feature maps Fi(t

′) with t′ ∈ [t − T, t + T ]. As sug-
gested by [23], one potential approach to construct the joint
embedding is as follows: initially, a traditional regression
method such as [18] is utilized to regress the joint coordi-
nates from Fi(t

′). For each joint, its x-y coordinates are
converted into position embedding using sine-cosine posi-
tion encoding [30]. Concurrently, a learnable class embed-
ding is designated for every joint type. The final feature
embedding for each joint is derived by summing its posi-
tion embedding with the respective class embedding. How-

ever, this approach loses crucial contextual information of
the joints within the pose that is learned in the global feature
maps Fi(t

′). Though we can augment each joint with rele-
vant contextual feature from the global feature maps, such
as the approach in [23] which uses the joint’s embedding as
a query and applies a multi-scale deformable attention mod-
ule to sample features for each joint from the feature maps,
this method incurs significant computational costs.

We employ a straightforward yet efficient approach to
construct the joint embeddings from the provided global
feature maps Fi(t

′). Given the global feature maps pro-
duced by the backbone, previous heatmap-based methods
convolve these maps via convolution layers to generate a
heatmap feature for each joint [2, 20]. We follow this strat-
egy, deriving the feature embedding for each joint from
Fi(t

′) through a convolution layer or a fully connected layer
(FC). In our setup, the ResNet backbones (like ResNet50 or
ResNet152) are followed by a global average pooling layer
and a FC layer. The FC layer comprises 2048×K neurons.
Here, 2048 represents the dimensionality of Fi(t

′) after un-
dergoing global average pooling and flattening. Meanwhile,
K is calculated as n× 32, where n indicates the number of
pose joints, and 32 signifies the dimension of the joint em-
bedding. The output of the FC layer is the feature embed-
ding for each joint, where the output is evenly divided into
n parts, denoted as {F j

i (t
′)}nj=1, with each part represent-

ing a feature embedding for a joint. Further implementation
details regarding more backbones (e.g., HRNet backbone)
can be found in the supplementary material.
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3.3. Space-Time Decoupling

STD is designated to model the spatial and temporal de-
pendencies between joints based on their embeddings over
the time span [t − T, t + T ], i.e., all feature tokens in S̃i =
⟨{F j

i (t− T )}nj=1, . . . , {F
j
i (t)}nj=1, . . . , {F

j
i (t+ T )}nj=1⟩.

In numerous applications [5, 23], the self-attention mecha-
nism’s proficiency in capturing long-distance dependencies
within sequences has been thoroughly demonstrated [30].
Thus, a direct approach to capturing the spatio-temporal
dependencies between joints is to apply the self-attention
module to the sequence of feature tokens in S̃i,

{F̂ j
i (t)}

n
j=1 = S-ATT(S̃i), (4)

where S-ATT(·) denotes the self-attention module [30], and
F̂ j

i (t), which encodes the spatial and temporal information
learned by the S-ATT module, represents the updated fea-
ture token for the j-th joint at the current video frame t.
In our implementation, the S-ATT module adheres to the
conventional Transformer architecture [30]. In our setup, 4
identical layers are stacked sequentially. Each layer com-
prises two sub-layers: the first one employs a multi-head
self-attention mechanism, and the second one utilizes a
simple, token-wise, fully connected feed-forward network.
The input feature tokens pass through these modules in se-
quence, each producing an updated version that serves as
the input for the subsequent layer. Additionally, each of the
initial input feature tokens is equipped with a learnable po-
sition embedding, and their sum forms the final input.

3.3.1 Decoupled Space-Time Aggregation

However, as illustrated in Fig. 1(b), despite the inherent spa-
tial correlation among adjacent joints of the human pose,
the temporal trajectory of each individual joint tends to be
rather independent. So, as shown in Fig. 2, our proposed
DSTA models the temporal dynamic dependencies and spa-
tial structure dependencies separately, instead of modeling
spatial and temporal dependencies together as in Eq. 4. This
approach allows for a more nuanced capture of the unique
dependency characteristics that joints exhibit separately in
both the temporal and spatial dimensions. Then, by fus-
ing the captured spatial and temporal information, an ag-
gregated spatio-temporal feature for each joint of current
frame t, i.e., fji (t), is derived:

{fji (t)}
n
j=1 = SD(S̃i)

⊕
TD(S̃i), (5)

where
⊕

denotes the concatenation operation, which is in-
dividually applied to each pair of corresponding updated
feature tokens associated with each joint. By utilizing the
local-awareness attention introduced below (Sec. 3.3.2), the
SD(·) module learns the spatial dependencies between ad-
jacent joints and correspondingly generates an updated fea-
ture token for each joint in the current frame. Concurrently,

the TD(·) module discerns the temporal dependencies of
each joint, resulting in another updated feature token for
each joint in the current frame. Subsequently, the aggre-
gated features of joints {fji (t)}nj=1 are fed into a joint-wise
fully connected feed-forward network, producing the coor-
dinates of the joints {xj

i (t)}nj=1:

{fji (t)}
n
j=1

joint-wise fully connected−−−−−−−−−−−−−→
feed-forward network

{xj
i (t)}

n
j=1. (6)

3.3.2 Local-awareness Attention

From a temporal perspective, each joint is intimately con-
nected only with its corresponding joints in preceding and
succeeding frames, having no relevance with other joints.
From a spatial perspective, the structure dependencies of
joints are primarily manifested between adjacent joints
within a single frame. Therefore, we introduce a joint-wise
local-awareness attention mechanism, ensuring that each
joint only attends to those that are structurally or temporally
relevant. This local-awareness attention mechanism is elab-
orated upon, demonstrating its application in implementing
the aforementioned SD(·) and TD(·) modules.

In the TD module, we capture the temporal dynamic de-
pendency for each joint j at the current frame t. To this
end, our proposed local-awareness attention selectively ap-
plies the self-attention module S-ATT in Eq. 4 across the
corresponding joints over the time span [t− T, t+ T ],

Ḟ j
i (t) = S-ATT(S̃j

i ), j = 1, 2, . . . , n, (7)

where S̃j
i = ⟨F j

i (t− T ), . . . ,F j
i (t), . . . ,F

j
i (t+ T )⟩, and

Ḟ j
i (t) denotes the updated feature token for the j-th joint

at the current video frame t, encoding the temporal depen-
dency information of this joint embedded within the se-
quence S̃j

i . Since the sequence S̃j
i only includes the feature

tokens of joint j over the time span [t− T, t+ T ], the tem-
poral dependency encoded in Ḟ j

i (t) is solely related to the
joint itself, without any relevance to other joints.

In the SD module, we capture the spatial structure depen-
dency among joints within the current frame t. A straight-
forward way is to directly apply the self-attention module
S-ATT from Eq. 4 to all joints in the current frame. To al-
low each joint to focus more closely on the adjacent joints
that are intimately associated with it in structure, we divide
the joints into K groups according to the semantic struc-
ture of the human pose, as shown in the top right of Fig. 2.
Our proposed local-awareness attention conducts the self-
attention module S-ATT separately for each group,

{F̈ j
i (t)}j∈G(k) = S-ATT(⟨F(t)ji ⟩j∈G(k)), k = 1, . . . ,K,

(8)
where G(k) represents the set of joint indices in group k,
and F̈ j

i (t) denotes the updated feature token for the j-th
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joint at the current video frame t, encapsulating the spatial
structure dependencies of this joint within the pose.

Through the modules TD and SD , we have captured the
spatial and temporal contexts for each joint in the current
frame, obtaining the corresponding updated feature tokens,
Ḟ j

i (t) and F̈ j
i (t). Consequently, the spatio-temporal aggre-

gated feature fji (t) for each joint j at the current frame t, as
per Eq. 5, can be explicitly computed as follows:

fji (t) = Ḟ j
i (t)⊕ F̈ j

i (t), j = 1, 2, . . . , n, (9)

where ⊕ denotes the concatenation operation.
Discussion: Compared with the global attention

method as defined in Eq. 4, our proposed local-awareness
attention ensures that each joint only attends to those that
are structurally or temporally relevant. This approach not
only avoids the undesired conflation of spatiotemporal di-
mensions but also reduces computational overhead. For
example, the computational cost of the S-ATT module is
mainly determined by the multi-head self-attention mecha-
nism [30], where the computational complexity is propor-
tionate to the square of the quantity of feature tokens. Con-
sequently, the computational complexity of the global at-
tention method delineated in Eq. 4 is approximately O((n×
(2T+1))2) = O(4n2T 2+4n2T+n2). In contrast, the total
computational complexity of our local-awareness attention
methods, corresponding to Eqs. 7 and 8, is approximately
O(n×(2T+1)2+K×( n

K )2) = O(4nT 2+4nT+n+ n2

K ).
In the experiment, the value of T is quite small, for in-
stance T = 1, thus our local-awareness attention method
reduces the time complexity from O(9n2) to O(n

2

K + 9n)
with K = 5 in our implementation, thereby achieving a
speedup close to 45 times.

3.4. Loss Computation

During training, the entire model undergoes end-to-end op-
timization, aiming to minimize the discrepancy between
the coordinates of the predicted joints and the ground truth
joints in the current frame t. To boost the regression per-
formance, we employ the residual log-likelihood estimation
loss (RLE) as proposed in [18], in lieu of the conventional
regression loss (l1 or l2). We extend the RLE loss, origi-
nally designed for image-based pose regression, to the con-
text of video-based pose regression. Given an input cropped
video clip, Si, for individual i, we calculate a distribution,
Pθ,ϕ({xji (t)}nj=1|Si), which reflects the likelihood that the
ground truth at the current frame t appears at the predicted
locations {xji (t)}nj=1. Here, θ represents the parameters of
our model, and ϕ represents the parameters of a flow model.
The flow model is not required to operate during inference,
thereby introducing no additional overhead at test time. The
learning process involves the simultaneous optimizations of
the model parameters θ and ϕ, aiming to maximize the prob-
ability of observing the ground truth µg . This is achieved by

Method ResNet-50 HRNet-W48 ViT-H
image-based
RLE [18] 70.7 75.7 79.0
Poseur [23] 74.4 79.3 81.0
video-based
DSTA (Ours) 79.7 84.6 85.6

Table 1. Comparison with image-based regression (mAP) on
PoseTrack2017 val. set.

defining the RLE loss as follows:

Lrle = −Pθ,ϕ({xji (t)}
n
j=1|Si)

∣∣∣
{xji (t)}n

j=1=µg

. (10)

For a more detailed discussion and further information
about the RLE loss, we refer readers to [18].

4. Experiments
4.1. Experimental Settings

We have conducted evaluations on three widely-utilized
video-based benchmarks for human pose estimation: Pose-
Track2017 [14], PoseTrack2018 [1], and PoseTrack21 [6].
These datasets contain video sequences of complex scenar-
ios involving rapid movements of highly occluded individ-
uals in crowded environments. To assess the performance
of our models, we utilize the Average Precision (AP) met-
ric [2, 18, 20, 26]. The AP is calculated for each joint,
and the mean AP across all joints is denoted as mAP. Our
method is implemented using PyTorch. Unless otherwise
specified, the input image size is 384× 288 when using the
HRNet-w48 backbone, while for other backbones, the in-
put image size is 256 × 192. We pretrained the backbones
on the COCO dataset. For further implementation details,
please refer to the supplementary materials provided.

4.2. Main Results

4.2.1 Comparison with Image-based Regression

To study the effectiveness of the proposed regression
method on video input, we compare it with existing state-of-
the-art image-based regression methods, namely RLE [18]
and Poseur [23]. For thorough and fair comparisons,
we utilized three distinct backbone networks—ResNet-50,
HRNet-W48, and ViT-H—and ensured that each approach
applied the identical pre-trained model to each backbone
network. The experimental results on the PoseTrack2017
validation set are presented in Table 1. As shown, our
proposed video-based method achieves significant perfor-
mance improvements across all backbone networks when
compared to image-based methods. For instance, our
method outperforms RLE [18] by a notable margin of 8.9
mAP (or 9.0 mAP) when utilizing the HRNet-W48 (or
ResNet-50) backbone. This demonstrates the importance
of incorporating temporal cues from neighboring frames.
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Figure 3. Qualitative comparison of a) our DSTA, b) DC-
Pose [20], c) Poseur [23], and d) RLE [18] on the PoseTrack
datasets, featuring challenges such as occlusions, nearby-person
interactions, and motion blur. Inaccurate predictions are marked
with red solid circles.

By leveraging temporal dependencies across consecutive
frames, our video-based regression is better equipped to
handle challenging situations such as occlusion or motion
blur commonly encountered in video scenarios, as demon-
strated in Fig. 3. These experiments demonstrate the su-
perior performance of our proposed video-based regression
framework, which significantly outstrips the capabilities of
prior image-based methods when handling the video input.

4.2.2 Comparison with State-of-the-art Methods

Current state-of-the-art algorithms for video-based human
pose estimation are predominantly based on heatmaps. We
first conduct a performance comparison of our method with
these heatmap-based approaches on the PoseTrack datasets.
Subsequently, we compare the computational complex-
ity between the heatmap-based methods and our proposed
regression-based approach. Furthermore, we examine the
varying impacts of input resolution on both the heatmap-
based methods and our regression-based approach.

Results on the PoseTrack Datasets. Table 2 presents
the quantitative results of different approaches on Pose-
Track2017 validation set. Our method achieves comparable
performance to the state-of-the-art methods. For example,
employing the HRNet-W48 backbone, our method attains
an mAP of 84.6, which surpasses the adopted backbone
network HRNet-W48 [26] by 7.3 points. When compared
to video-based approaches utilizing the same backbone, our
method outperforms DCPose [20] by 1.8 points while main-
taining a performance level on par with the state-of-the-art
FAMI-Pose [21]. Our approach is flexible and can be eas-
ily integrated into various backbone networks. When using
the ViT-H backbone, our method further pushes the perfor-
mance boundary and achieves an mAP of 85.6. The per-
formance enhancement for the relatively challenging joints
is truly encouraging: an mAP of 82.6 (↑ 2.6) for wrists

Method Bkbone Head Should. Elbow Wrist Hip Knee Ankle Mean
heatmap-based
PoseTrack [9] ResNet-101 67.5 70.2 62.0 51.7 60.7 58.7 49.8 60.6
PoseFlow [35] ResNet-152 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5
FastPose [42] ResNet-101 80.0 80.3 69.5 59.1 71.4 67.5 59.4 70.3
SimBase. [34] ResNet-152 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7
STEmbed. [16] ResNet-152 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0
HRNet [26] HRNet-W48 82.1 83.6 80.4 73.3 75.5 75.3 68.5 77.3
MDPN [10] ResNet-152 85.2 88.5 83.9 77.5 79.0 77.0 71.4 80.7
Dyn.-GNN [39] HRNet-W48 88.4 88.4 82.0 74.5 79.1 78.3 73.1 81.1
PoseWarp. [2] HRNet-W48 81.4 88.3 83.9 78.0 82.4 80.5 73.6 81.2
DCPose [20] HRNet-W48 88.0 88.7 84.1 78.4 83.0 81.4 74.2 82.8
DetTrack [32] HRNet-W48 89.4 89.7 85.5 79.5 82.4 80.8 76.4 83.8
FAMIPose [21] HRNet-W48 89.6 90.1 86.3 80.0 84.6 83.4 77.0 84.8
regression-based
DSTA (Ours) ResNet-152 88.3 88.1 83.3 76.0 82.5 81.1 70.0 81.8
DSTA (Ours) HRNet-W48 89.8 90.8 86.2 79.3 85.2 82.2 75.9 84.6
DSTA (Ours) ViT-H 89.3 90.6 87.3 82.6 84.5 85.1 77.8 85.6

Table 2. Comparison with the SOTA on PoseTrack2017 val. set.
Similar to FAMI-Pose [21], our proposed DSTA sets the tempo-
ral span T to 2, consisting of two preceding and two subsequent
frames, totalling four auxiliary frames.

Method #Params
GFLOPs GFLOPs

mAP
of Backbone of Net. Head

heatmap-based
PoseWarper [2] 71.1M 35.5 156.7 81.0
DCPose [20] 65.2M 35.5 11.0 82.8
regression-based
DSTA (Ours) 63.9M 35.5 0.02 83.4

Table 3. Computation complexity with HRNet-W48 backbone.
#Params includes the parameters of entire network. All methods
utilize the same two auxiliary frames as in [20].

and an mAP of 77.8 (↑ 0.8) for ankles. It is worth noting
that methods utilizing temporal information, such as Pose-
Warper [2], DCPose [20], DetTrack [32], FAMI-Pose [21],
and our DSTA, consistently outperform those relying solely
on a single key frame, such as HRNet [26]. This reaffirms
the importance of incorporating temporal cues from adja-
cent frames. Qualitative results are shown in Fig. 3.

We further evaluate our model on the PoseTrack2018
and PoseTrack21 datasets. Due to space limitation, we
present these results in the supplementary materials. Based
on these results, it is evident that our approach either outper-
forms or is on par with the state-of-the-art heatmap-based
methods. Using the HRNet-w48 backbone, we achieve 82.1
mAP and 82.0 mAP on these two datasets, respectively,
while using the ViT-H backbone, we further improve per-
formance by 1.3 and 1.5 points, respectively.

Computation Complexity. We conduct experiments to
assess computation complexity using the PoseTrack2017
validation set, and the results are presented in Table 3. To
ensure a fair comparison, all methods utilize the identical
HRNet-W48 backbone and adopt the identical two auxiliary
frames. Our proposed method outperforms heatmap-based
methods while utilizing significantly lower computation
complexity and fewer model parameters. The FLOPs of our
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JFD w/o w/ ✓ ✓ ✓

STD
SD ✓ ✓
TD ✓ ✓

mAP 73.8 74.8 71.4 78.1 78.6

Table 4. Ablation of different modules in DSTA.

JFD Method MFLOPs mAP
[23] (a) 0.3 74.6
[23] (b) 19.3 77.9
Ours 5.0 78.6

Table 5. Different methods for
constructing joint embeddings.

#Auxiliary Frame ResNet-50 HRNet-W48 ViT-H
1 {-1} 78.0 82.6 82.6

2 {-1, +1} 78.6 83.4 84.3
4 {-2, -1, +1, +2} 79.7 84.6 85.6

Table 6. Different number of auxiliary frames. ‘-’
indicates previous frames while ‘+’ indicates subse-
quent frames.

Method
Input Size

384×288 256×192 128×128 64×64
heatmap-based
DCPose [20] 82.8 81.2 71.7 35.1
regression-based
DSTA (Ours) 83.4 82.3 77.9 55.4

Table 7. Performance with different input resolutions. Note
that, as in [20], only two auxiliary frames are used in DSTA.

regression-based head are an almost negligible 1/7835 or
1/550 of those heatmap-based heads. We encourage our
readers to refer to the supplementary materials for addi-
tional comparisons using smaller backbones, i.e., ResNet
and MobileNet. The computational superiority of our pro-
posed regression framework is of great value in the industry,
particularly for real-time video applications.

Gains on Low-resolution Input. In practical applica-
tions, especially on some edge devices with limited compu-
tation resources, it is common to use low-resolution images
for reduced computational cost. To explore the robustness
of our model under different input resolutions, we compare
our method with heatmap-based DCPose [20] on the Pose-
Track2017 validation set. As shown in Table 7, our method
consistently outperforms DCPose across all input sizes. The
results also show that the performance of heatmap-based
methods decreases significantly with low-resolution input.
For example, at an input resolution of 64×64, our proposed
method outperforms DCPose by 20.3 mAP.

4.3. Ablation Study

We conduct ablation experiments to analyze the influence
of each component using the PoseTrack2017 validation set.
The temporal span T is set to 1, consisting of one preceding
and one subsequent frames, totalling 2 auxiliary frames, and
the ResNet-50 backbone is employed.

Impact of different modules. Table 4 lists the perfor-
mance impact of each module of our approach. When we
adopt global pose features instead of modeling the temporal
dependency at the joint level, i.e., without the JFD and STD
modules, the algorithm achieves an mAP of 73.8, decreas-
ing 4.8 points. When capturing spatiotemporal relations
based on joints using Eq. 4, i.e., Space-Time coupling, the
accuracy reaches 74.8 mAP. It aligns with our assumption
that modeling temporal dependency at the joint level, as op-
posed to the entire pose, is more appropriate. Furthermore,
when using the SD and TD modules to separately model the

temporal dynamic dependencies and spatial structure de-
pendencies, the algorithm achieves the highest accuracy of
78.6 mAP. It proves that the temporal dependencies of each
joint should be individually captured, as every joint exhibits
an independent temporal trajectory. Meanwhile, we can see
that the TD module capturing temporal dependencies has a
much greater impact (78.1) on overall performance than the
SD module capturing spatial dependencies (71.4). We be-
lieve this is mainly because the feature token extracted by
the JFD module for each joint already contains its spatial
context information within the pose. This means the spatial
structure information complemented by the SD module is
limited.

Choice of JFD. As discussed in Sec. 3.2, [23] pro-
poses an alternative approach to constructing feature em-
beddings for each joint. We compare our JFD module with
this method in Table 5, where [23] (b) augments the feature
embedding of each joint with relevant contextual features
while [23] (a) does not. As can be seen, our approach im-
proves accuracy by 4.0 points with a relatively small com-
putational overhead, achieving the highest accuracy.

Auxiliary Frames. In addition, we investigate the im-
pact of using different numbers of auxiliary frames. The re-
sults presented in Table 6 consistently demonstrate that in-
creasing the number of auxiliary frames leads to improved
performance across various backbone networks. It aligns
with our intuition that more auxiliary frames can provide
more complementary information, thereby facilitating the
enhancement of pose estimation for the key frame.

5. Conclusion
In this paper, we propose a novel and effective regres-
sion framework for video-based human pose estimation.
Through the proposed Decoupled Space-Time Aggregation
network (DSTA), we efficiently leverage temporal depen-
dencies in video sequences for multi-frame human pose es-
timation, while reducing computational and storage require-
ments. Extensive experiments demonstrate the superiority
of our approach over image-based regression methods as
well as heatmap-based methods, opening up new possibili-
ties for real-time video applications.
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