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Figure 1. Teaser – we propose an unsupervised method to learn keypoints based on optimizing text embeddings of latent diffusion
models [44]. Our method is motivated by the fact that random text tokens already respond roughly consistently to semantically similar
regions. By promoting localization we obtain unsupervised keypoints that outperform the state-of-the-art.

Abstract

Unsupervised learning of keypoints and landmarks has
seen significant progress with the help of modern neural
network architectures, but performance is yet to match the
supervised counterpart, making their practicability ques-
tionable. We leverage the emergent knowledge within text-
to-image diffusion models, towards more robust unsuper-
vised keypoints. Our core idea is to find text embeddings
that would cause the generative model to consistently at-
tend to compact regions in images (i.e. keypoints). To
do so, we simply optimize the text embedding such that
the cross-attention maps within the denoising network are
localized as Gaussians with small standard deviations.
We validate our performance on multiple datasets: the
CelebA, CUB-200-2011, Tai-Chi-HD, DeepFashion, and
Human3.6m datasets. We achieve significantly improved
accuracy, sometimes even outperforming supervised ones,
particularly for data that is non-aligned and less curated.
Our code is publicly available at the project page.

1. Introduction

Keypoints or landmarks have played a critical role in com-
puter vision for various task including image matching [31],
3D reconstruction [18], and motion tracking [32, 60]. Sim-
ilarly to many other areas of computer vision, research has
quickly adopted supervised learning to tackle this prob-
lem [3, 27]. However, labeling is tedious and sometimes
even ambiguous—for example, it is difficult to consistently
decide which keypoints on a human face are the “most im-
portant”. Researchers have therefore been investigating un-
supervised approaches [12, 13, 19, 30, 55, 67]. These are
typically implemented as autoencoders paired with hand-
crafted intermediate layers, or losses that enforce spatial
locality and equivariance of keypoint locations under de-
formation. However, as we will show later, these methods
struggle with non-preprocessed data, and their performance
is heavily reliant on knowing the ground truth location of
objects, clearly limiting their practical applicability.

To enhance the learning of unsupervised keypoints, we
draw inspiration from the demonstrated success of scaling
up datasets [52]. For example, in natural language pro-
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Figure 2. Example attention maps – we show example attention maps for a selected learned keypoint for the CUB-200-2011 dataset, on
the CUB-aligned subset. As shown, our keypoint attention map responds consistently across varying images.

cessing performance has recently improved to a great ex-
tent thanks to large models and data [7, 39, 57]. Similarly,
in computer vision, the performance of text-to-image mod-
els [43, 44, 46] has drastically improved thanks to the avail-
ability of extra large datasets [48]. However, unsupervised
keypoint learning typically assumes class-specific datasets,
e.g., animals that have a shared skeleton that connects key-
points, and these datasets are small in scale.

Rather than collecting larger domain-specific datasets,
we instead propose to leverage the knowledge stored within
large generative models, such as Stable Diffusion [44].
This has been shown to be very effective across a number
tasks [1, 2, 4, 8, 15, 24, 26, 33, 35, 41, 54, 56, 59, 61, 63, 64,
66], but, to the best of our knowledge, it has not yet found
application for the task of keypoint learning. Our main idea
is to localize “important” keypoints by finding text embed-
dings that consistently correspond to a distinct location in
images of a certain object class. This idea is rooted in the
observation that, even with random text embeddings, the at-
tention maps for various images roughly correspond to re-
gions that are semantically similar; see Fig. 1. Therefore,
text embeddings carry semantic meaning, which could be
used to relate collections of images to each other; see Fig. 2.

We find embeddings that are specific to certain loca-
tions by enforcing localized attention maps. In more de-
tail, we propose to find (i.e., optimize) a set of tokens in
a text embedding that locally responds in the Stable Diffu-
sion cross-attention layers. We enforce locality by maxi-
mizing the similarity of the attention responses of each to-
ken to a single-mode Gaussian distribution. Thanks to the
way the cross-attention layers are constructed within Stable
Diffusion, this simple objective also prevents the different
tokens from attending to the same locations in an image, a
common degenerate solution that typically requires explicit
workarounds [23].

We evaluate our method on established benchmarks:
CelebA [28], CUB-200-2011 [58], Tai-Chi-HD [50], Deep-
Fashion [29], and Human3.6m [17]. Our approach yields
results on par with state-of-the-art methods for well-curated
and aligned datasets, while notably enhancing performance

for in-the-wild setups, particularly with unaligned data,
sometimes even surpassing fully supervised baselines.

2. Related Work

Below we review the literature of finding keypoints in un-
supervised and supervised fashion, along with work that
exploits large pre-trained models like stable-diffusion for
lower-level computer vision tasks.

Learning keypoints with supervision. Pose estimation
and landmark estimation are fundamental problems in com-
puter vision. They naturally arise in various tasks, includ-
ing human [69] and animal pose estimation [22], hand [5]
and face landmark estimation [62], and object pose track-
ing [34]. Many fully supervised methods find different
ways to induce some prior within the model to better cap-
ture the task at hand, such as using part affinity fields [3],
temporal consistency for video data [45], spacial relation-
ships [65], and geometry constraints [21] among others.
While fully supervised methods have excelled in categories
with abundant labeled data, such as human pose estima-
tion, their major drawback is the insatiable need for large
and high-quality datasets [22, 37, 42]. The scalability of
gathering such extensive and meticulously annotated data
for every conceivable object category remains a significant
drawback [22, 37, 42].

Learning keypoints via self-supervision. The amount of
unlabeled data far exceeds that of labeled data, so unsu-
pervised keypoint estimation methods attempt to take ad-
vantage of this. Self-supervised keypoint detection of-
ten relies on tracking how keypoints move with image
changes and uses various constraints for known transfor-
mations [16, 19, 30, 49, 55, 67], but these methods can
struggle with background modeling [49, 67] and pose vari-
ations [16]. One can also rely on image reconstruction
to learn keypoints. Some methods use GANs to gener-
ate images from keypoints [12, 14], but this often results
in training instability. Alternatively, auto-encoders can be
also used [13, 67], but these require training from scratch
on each dataset. Our method neither suffers from GAN
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training instability, nor requires dataset fine-tuning. Fi-
nally, there exist self-supervised methods that exploit skele-
tal representations [13, 20, 40]. However, many of these
approaches generally require known keypoint connectivity
and video data [20, 40], and often face limitations in back-
ground handling and generalizability to objects within the
same class [13, 20, 40]. Our method has no object-specific
priors, and generalizes well due to the large dataset used by
the pre-trained diffusion models.

Diffusion models for image understanding. Recently,
large image diffusion models have reached impressive im-
age generation quality [43, 44, 46]. These models learn pri-
ors for real images within the latent space of the diffusion
model, and provide a useful initialization for many down-
stream tasks such as image correspondence [15, 33, 54, 66],
object detection [4], semantic segmentation [2, 24, 56,
59, 61, 63, 64], and image classification [1, 8]. Inter-
estingly, without requiring any retraining, these models
demonstrate an innate ability to understand 3D spatial con-
figurations [26, 35, 41]. Recent work in each of these areas
has shown the emergent power of these large models, most
of them using the model without any modifications or extra
supervision required. More relevant to our work, Mokady
et al. [36] found that the pre-trained Stable Diffusion [44]
model’s cross-attention maps connect text tokens to seman-
tically relevant areas in images.

Correspondences via diffusion models. Among works
that re-purpose diffusion models, of high relevance, is the
effectiveness of diffusion models in correspondence estima-
tion tasks [15, 33, 54, 66]. Hedlin et al. [15] optimizes the
attention map for a specific point in a source image and finds
the corresponding activation in a target image. However,
this method requires a query to be provided in the source
image. While our method shares the same inspiration of
utilizing attention maps, critically, rather than optimizing
the embedding given a single image, we optimize an em-
bedding given a dataset of images from a given object class.
In other words, our method discovers on its own, where to
focus, rather than relying on user input. Our task is there-
fore changed from image matching between two images, to
semantic matching across all images within the dataset.

3. Method
To identify a set of representative keypoints across a dataset
of images, we formulate our approach in an unsupervised
framework leveraging conditional diffusion models; see
Fig. 3. In particular, we utilize the cross-attention maps be-
tween the text embeddings and the image features, derived
from the latent diffusion model [44], and force them to con-
sistently concentrate their activation on highly localized re-
gions within the images. While Hedlin et al. [15] employed
a similar mechanism (i.e., given a set of keypoint locations

in one image, identify correspondences in another image),
in this work we seek to identify semantic correspondences
across all images within a class-specific dataset (e.g., human
faces), without any given knowledge on what and where to
focus. We show that this is possible simply by enforcing
locality and equivariance to transformations.

Let us start by quickly reviewing the fundamentals of
diffusion models and formalizing the attention maps that
we will utilize within these models (Sec. 3.1). We then de-
tail the objectives used to learn the text embeddings that
represent keypoints (Sec. 3.2) and discuss important imple-
mentation details (Sec. 3.3).

3.1. Attention maps in diffusion networks

Diffusion models are a class of generative models that ap-
proximate the data distribution by denoising a base (typi-
cally Gaussian) distribution [38]. A latent diffusion model
operates on a latent representation z rather than the image
itself, with an encoder that maps an image X into a latent
z, and a decoder that maps z into X. These models define a
forward diffusion process, where the latent representation z
is gradually transformed into Gaussian noise over a series
of T time steps. The inverse process, over a sequence de-
noising steps t = 1, . . . , T predicts the latent noise ϵθ(zt, t)
which was gradually added in each iteration in order to re-
cover the original (latent) signal.

In our work, we are interested in conditional diffusion
models, and the explicit attentional relationship between
the condition (i.e. text) and the generated outcome (i.e. im-
age) that these models learn. Typically, diffusion models
are made conditional on some text y, by providing an em-
bedding e = τθ(y) from a text encoder τθ to the denoiser.
They are then trained to optimize

LLDM = Ez,t,ϵ∼N (0,1)

[
∥ϵ− ϵθ(zt, t, e)∥22

]
, (1)

where the denoiser ϵθ(zt, t, e) is typically implemented by
a transformer architecture [38] involving a combination of
self-attention and cross-attention layers. Of our interest
here is the cross-attention layers that relate e to zt, which
we now formalize.

Specifically, in the transformer part of the model, de-
note Φc

l (·) and Ψc
l (·) as the c-th head and the l-th linear

layers of the U-Net. We calculate the query as Qc
l =

Φc
l (zt=1) ∈ R(H×W )×Dl ,1 and the key from the language

embedding Kc
l = Ψc

l (e) ∈ RN×Dl , where N is the num-
ber of tokens, C the number of heads in the transformer
attention layer, H and W are image height and width at that
specific layer in U-Net, and Dl the dimensionality of the
layer. Given query and key, the cross-attention map Ml ∈
R(H×W )×N is then computed via softmax along the N di-

1We choose t=1 where T=50 steps via hyper-parameter tuning.
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Figure 3. Overview – we pass a randomly initialized text embedding into Stable Diffusion [44] and extract the attention maps. We then
optimize the text embedding to have localized attention maps, by supervising them to become a single-mode Gaussian distribution, drawn
at the location of their maxima. We also enforce attention maps to be transformation equivariant to small affine transformations on images.
We repeat this process over a set of training images, which after optimization provides a set of K keypoints.

mension, and average pooling along the C dimension:

Ml(e,X) = Ec

[
softmaxn

(
Qc

l ·Kl/
√
Dl

)]
. (2)

As various layers of the U-Net exhibit distinct levels of se-
mantic understanding, following Hedlin et al. [15], we col-
lect this information by average pooling across a selection
of layers:

M̃ = El=7..10

[
Ml(e,X)

]
∈ R(H×W )×N . (3)

In what follows, to lighten the notation, we drop the atten-
tion mask arguments (e,X) and write the attention map for
the n-th token as M̃n.

3.2. Optimizing to find the keypoint embeddings

To obtain a text embedding that can be used to locate key-
points, for each of them, we simply optimize for two objec-
tives that respectively encourages localization and equivari-
ance to geometric transformations. We thus write

Ltotal = Llocalize + λequivLequiv, (4)

where we apply λequiv=10 to balance the two losses to be in
a similar operating range. Equivariance is enforced in the
typical form of learning to be invariant to transformations.
We first quickly detail Lequiv, and then discuss how we en-
force localization, which is the core of our method.

Equivariance – Lequiv. To ensure our model’s attention
mechanism remains consistent across different geometric
transformations T of the input, we use the typical equiv-
ariance loss [25]:

Lequiv = En ∥T −1(Mn(e, T (X)))−Mn(e,X)∥2 (5)

For T we simply utilize minor affine transformations. We
use random rotations between±15 degrees, translations be-
tween ±0.25 ×W , and scaling between 100–120% of the
original image size.

Encouraging localization – Llocalize. We encourage local-
ization by forcing M̃n to be a single-mode Gaussian distri-
bution located at its maximum. In more details, denoting
the Gaussian image that shares the same maximum as M̃n

as Gn, we write

Llocalize = En∥M̃n −Gn∥2. (6)

To create the Gaussian images Gn, we first identify the
spatial location exhibiting the maximal response within
the heatmap corresponding to each token n by taking the
argmax:

µn = argmax
w,h

M̃n[h,w]. (7)

We then generate a Gaussian image; see Fig. 3:

Gn = exp

(
−∥XYcoord − µn∥22

2σ2

)
, (8)

where XYcoord is a tensor of image coordinates.

Promoting mutual exclusivity. It is important to note that
while Llocalize in (6) at first glance seem to only encour-
age localization, it also enforces M̃n to be mutually exclu-
sive for different n because of the softmax operation in (2).
Should multiple embeddings become similar, their attention
responses in (2) Qc

l ·Kl will become similar, resulting in the
softmax of the attention map being a flat response (i.e. devi-
ating from a Gaussian shape). In other words, (6) naturally
enforces exclusivity with the help of (2).

Stabilizing optimization by working with a subset. We
noticed in our experiments that attention maps M for some
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tokens can be ‘spread’ for some images, e.g., due to occlu-
sions, destabilizing optimization. We thus opt for a sim-
ple solution of looking into the top-K tokens that are local.
Specifically, we apply our losses over n ∈ N (κ), which
returns the κ∈N entries with the most spatially localized
heatmap responses 2, as measured by KL divergence:

N (κ) = ArgTopκ {−KL(Gn, M̃n)}Nn=1. (9)

Final keypoints. While Llocalize naturally enforces exclu-
sivity, it does not guarantee a complete coverage of the ob-
ject. Thus, after we finish optimizing, we refine the set of
keypoints through furthest point sampling using the training
images. Specifically, for each image we write:

K = FPSK({µi | i ∈ N (κ)}), (10)

where K is the desired number of keypoints K < κ. Then,
as the set K differs in each image, we simply choose K to-
kens that appeared most frequently in K within the training
image set.

3.3. Implementation details

Test-time ensembling. At inference time, as in common
literature [3, 10, 15], rather than employing the attention
map of the original image, we average the attention maps
across multiple augmentations (we use the same transfor-
mations for test time augmentation as in (5)) of the image:

M̃←−
∑
i

T −1
i (M (e, Ti(X))) . (11)

Upsampling attention maps. The attention maps in (2) are
typically of low resolution. Specifically, as we use Stable
Diffusion 1.5 [44], depending on the layer we extract the
attention maps from, they are either 16× 16 or 32× 32. We
thus opt to upsample the query Q via bicubic interpolation
to achieve a standard resolution of 128 × 128. We have
experimented with other upsampling techniques such as the
commonly used bilinear sampling or a learned upsampler
that is trained alongside, but a simple bicubic upsample was
shown to be effective.

4. Results
4.1. Experimental setup

We evaluate our method on five standard datasets for unsu-
pervised keypoint evaluation:

• CelebA dataset [28]: A dataset of 202,599 facial images
of celebrities. We evaluate both the aligned and non-
aligned cases following the standard protocol of omitting
images with faces occupying less than 30% of the image.

2We empirically found that using κ=25 works best in general.

The standard metric for this dataset is to measure the av-
erage ℓ2 error normalized by the inter-ocular distance.

• CUB-200-2011 dataset [58]: This dataset consists of
11,788 bird images. We use both the aligned (CUB-
aligned) and non-aligned (CUB-all) variants. For the non-
aligned variants, we further look at CUB-001, CUB-002,
and CUB-003, which are specific bird subcategories. No-
tably, these subsets contain only 30 images each—we
only use these 30 for training. We follow the standard pro-
tocol [6, 30] and normalize the images to be of 256×256.
The standard metric for this dataset is the mean ℓ2 error,
normalized by the dimension of the images after normal-
ization.

• Tai-Chi-HD dataset [50]: This dataset contains 3049
training videos and 285 test videos of people perform-
ing Tai-Chi, which shows more diverse poses compared
to the other datasets, and is the most challenging among
the human pose-centric datasets that we use. We follow
Siarohin et al. [51] and use 500 images for testing and 300
images for training. The standard metric for this dataset
is to measure the accumulated ℓ2 error, with the images
standardized to 256× 256.

• DeepFashion dataset [29]: This dataset contains 53k im-
ages of fashion models, mostly standing with a white
background. We follow Lorenz et al. [30] and only keep
full body images. This leaves 10,604 images for train-
ing and 1,179 images for testing. Also following the
baselines, we use keypoints generated by AlphaPose [11]
as ground truth. The standard metric for this dataset is
the percentage of correct keypoints (PCK) with a 6-pixel
threshold.

• Human 3.6M dataset [17]: This dataset is of humans per-
forming various actions, comprised of 3.6 million images.
We follow the standard protocol [67] and focus on six
activities: direction, discussion, posing, waiting, greet-
ing, and walking. We utilize subjects 1, 5, 6, 7, 8, and
9 for training, while subject 11 is reserved for testing.
This division yields a training dataset comprising 796,648
images and a testing dataset containing 87,975 images.
The background for this dataset is also simple, and often
masked out with ground-truth masks for evaluation. This
dataset is also typically heavily pre-processed and aligned
when used for unsupervised keypoint evaluation. We ex-
periment with the standard pre-processing [30, 67] and
also a relaxed version of our own. To relax the alignment,
we crop a square bounding box such that the margin from
the bounding box to the person is 100 pixels, which on
average corresponds to the person’s height being 2/3 of
the crop. We further add a uniform random translation
up to 100 pixels (same as the margin) to remove the cen-
tral bias. Example crops are visualized in Fig. 4f. The
standard metric for this dataset is the ℓ2 error after nor-
malizing the image resolution to 128×128.
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Method
Aligned
(K=10)↓

Wild
(K=4) ↓

Wild
(K=8) ↓

Thewlis et al. [55] 7.95 - 31.30
Zhang et al. [67] 3.46 - 40.82
LatentKeypointGAN [12] 5.85 25.81 21.90
Lorenz et al. [30] 3.24 15.49 11.41
IMM [19] 3.19 19.42 8.74
LatentKeypointGAN-tuned [12] 3.31 12.10 5.63
Autolink [13] 3.92 7.72 5.66
Autolink † [13] 3.54 6.11 5.24
Our method 3.60 5.24 4.35

Table 1. Quantitave results for the CelebA dataset – we report
results with the standard metrics. Our method performs best for
non-aligned cases and is comparable to the state of the art for the
aligned case. † symbol represents the thickness-tuned variant.

Note that each dataset comes with its own metric. To make
results more comparable across the human pose datasets,
we report both their original metrics as well as the ℓ2 error
when normalizing the image resolution to 128×128.

Regressing human-annotated landmarks. To evaluate the
quality of unsupervised keypoints, one must relate them
with human-annotated landmarks. As in prior research [55],
we use linear regression (without bias) to relate between un-
supervised keypoints and human-annotated landmarks.

Number of keypoints and hyperparameters. For each
method, we use the standard number of unsupervised key-
points defined for each evaluation protocol—we denote
them in our Tables. We use the same hyperparameter for
all our experiments as introduced in Sec. 3.2, except for the
number of optimization iterations. We optimize the embed-
dings for 10k iterations, except for the human pose datasets,
for which we optimize 500 iterations. To find the number
of optimization rounds we use a 10% validation subset from
the training data. While we observed our results on the val-
idation subset to improve consistently for most datasets, we
found 10k to give a reasonable optimization time of two
hours on an RTX 3090. For the human pose dataset, we
found optimization to have converged already at 500 itera-
tions on our validation split.

4.2. Experimental results

Quantiative results – Tabs. 1 to 3. We report our results
for each dataset in Tabs. 1 to 3. As shown, except for the
case when data is heavily processed and aligned (CelebA
aligned in Tab. 1, CUB-aligned in Tab. 2, and Human 3.6M
in Tab. 3), our method significantly outperforms the state
of the art. The most visible gains are for the Tai-Chi-HD
dataset, the most challenging among human pose datasets,
and on CUB unaligned datasets. For the CUB dataset and
the Tai-Chi-HD datasets, we outperform even those that
have been supervised with silhouettes or saliency maps.

Method Supervision
CUB-aligned

(K=10) ↓
CUB-001
(K=4) ↓

CUB-002
(K=4) ↓

CUB-003
(K=4) ↓

CUB-all
(K=4) ↓

SCOPS [16] GT silhouette - 18.3 17.7 17.0 12.6
Choudhury et al. [6] GT silhouette - 11.3 15.0 10.6 9.2
DFF [9] testing dataset - 22.4 21.6 22.0 -
SCOPS [16] saliency maps - 18.5 18.8 21.1 -

Lorenz et al. [30] unsupervised 3.91 - - - -
ULD [55, 67] unsupervised - 30.1 29.4 28.2 -
Zhang et al. [67] unsupervised 5.36 26.9 27.6 27.1 22.4
LatentKeypointGAN [12] unsupervised 5.21 22.6 29.1 21.2 14.7
GANSeg [14] unsupervised 3.23 22.1 22.3 21.5 12.1
Autolink [13] unsupervised 4.15 20.6 20.3 19.7 11.6
Autolink † [13] unsupervised 3.51 20.2 19.2 18.5 11.3
Our method unsupervised 5.06 10.5 11.1 10.3 5.4

Table 2. Quantitave results for the CUB-200-2011 dataset –
we report results with the standard metrics. Except for the CUB-
aligned case, our method performs nearly twice better than the
compared methods, even outperforming Choudhury et al. [6],
which is supervised with ground-truth silhouettes. † represents
the thickness-tuned variant.

Method Supervision
Human 3.6M

(K=16)
ℓ2 standard / unaligned ↓

DeepFashion
(K=16)

PCK↑ / Rel. ℓ2 ↓

Tai-Chi-HD
(K=10)

Cum ℓ2 ↓ / Rel. ℓ2 ↓
Newell et al. [20] paired gt 2.16 / - - -
DFF [9] testing dataset - - 494.48 / 14.78
SCOPS [16] saliency maps - - 411.38 / 12.29
Jakab et al. [20] video* 2.73 / - - -
Siarohin et al. [51] videos - - 389.78 / 11.65
Zhang et al. [68] videos - - 343.67 / 10.27
Zhang et al. [67] videos 4.14 / - - -
Schmidtke et al. [47] video* 3.31 / - - -
Sun et al. [53] videos 2.53 / - - -
Thewlis et al. [55] unsupervised 7.51 / - - -
Zhang et al. [67] unsupervised 4.91 / - - -
LatentKeypointGAN [12] unsupervised - 49% 437.69 / 13.08
Lorenz et al. [30] unsupervised 2.79 / - 57% -
GANSeg [14] unsupervised - 59% 417.17 / 12.47
autolink [13] unsupervised 2.81 / 7.59 65% 337.50 / 10.08
autolink † [13] unsupervised 2.76 / - 66% 316.10 / 9.45
Our method unsupervised 4.45 / 5.77 70%/6.46 234.89 / 7.02

Table 3. Quantitative results for human pose datasets – We
report results for the Human 3.6M dataset, Deep Fashion dataset,
and the Challenging Tai-Chi-HD datasets. We report both standard
metrics for each dataset and the relative ℓ2 error after normalizing
images to 128 × 128. Our method, except for the Human 3.6M
dataset that is heavily pre-processed, outperforms all baselines.
This includes, for the challenging Tai-Chi-HD dataset, supervised
ones. * denotes additional supervision (Jakab et al. [20] uses un-
paired ground truth, and Schmidtke et al. [47] use the T-pose). The
† symbol represents the thickness-tuned variant for Autolink.

We note that our primary focus is on unaligned cases, as
we argue that they represent more how keypoints would be
used in real-world applications—most real-world datasets
are unaligned except for specific classes of objects. More-
over, methods focusing on aligned settings use strong lo-
cational priors, and as shown by their results in the un-
aligned setup—CelebA in the wild, non-aligned cases of
Human 3.6M and CUB-200-2011, and Tai-Chi-HD—may
perform significantly worse once this alignment prior is bro-
ken. Given that the performance of our method, even in
the aligned case, is not too far off from methods that uti-
lize alignment, we suspect a more in-depth tuning of our
method may make our method outperform these methods,
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(a) CelebA dataset keypoints (b) CUB-200-2011 dataset keypoints

(c) Tai-Chi-HD dataset keypoints (d) DeepFashion dataset keypoints

(e) Human 3.6M dataset keypoints (f) Unaligned Human 3.6M dataset keypoints

Figure 4. Qualitative examples of unsupervised keypoints – we show our learned keypoints for the CelebA, CUB-200-2011, Tai-Chi-
HD, DeepFashion, and Human 3.6M datasets (both for cropped and masked as well as our relaxed version). Note how our keypoints are
consistent despite the variability. Our method significantly outperforms other baselines, especially for the challenging Tai-Chi-HD dataset
and the CUB subsets.

Variant Normalized ℓ2

Full (Our method) 5.4
Without test time ensembling 5.6
Without furthest point sampling 6.4
Without upsampling the query Q 8.0
Without equivariance 22.2

Table 4. Ablation results – we report the effect of each of our de-
sign choices can be seen on the CUB-all dataset. All components
contribute to the final performance.

but we leave this as future work.
Finally, also note that for CUB-001, CUB-002, and

CUB-003, these datasets are small. These datasets are non-
aligned, have a large variability between individual images,
and only contain 30 images each in the training set. Our
method, just from 30 images, successfully identifies key-
points. These results highlight the potential of leveraging
emergent (prior) knowledge within Stable Diffusion [44].

Qualitative results – Fig. 4. We provide example visual-
izations of our unsupervised keypoints in Fig. 4. As shown,
our method discovers keypoints that are consistently local-
ized across the dataset, despite the wide appearance variety.

4.3. Ablation study

We perform an ablation study for various design choices of
our method on the CUB-all dataset. We report the perfor-
mance of our method with different components disabled
in Tab. 4. As shown, all components contribute to the final
performance. Test-time ensembling enhances performance,

but the computation cost linearly scales. We choose, ten
augmentations, which provide a good compromise between
computation time and accuracy. To remove furthest point
sampling we set κ=K, which then makes furthest point
sampling select all samples. While this causes points to be
more grouped, it still provides reasonable performance. To
remove upsampling we instead upsample M to the size of
the target image, effectively having the attention map build
at lower resolutions, sometimes as low as 16×16. This re-
sults in significant degradation in performance. Lequiv is es-
sential, as without it, the tokens can ‘cheat’ and simply opt
to learn fixed positions on the image.

Number of training images.. Inspired by our results for
the small subsets of CUB-200-2011 dataset, we investigate
the impact that the number of images that we use to find
keypoints has on our results. We thus optimized our key-
points only with 100 images for CelebA non-aligned setup.
Surprisingly, we achieve 5.33 K=8, which is comparable
to the state of the art. This demonstrates once more how
our method is able to leverage information that is already
learned in Stable Diffusion [44] to find keypoints.

4.4. Generalization

We further test the generalization capacity of our learned
keypoints. As they are effectively text embeddings, we can
simply apply them to any image, including those completely
outside of the training domain. We quantitatively evaluate
our method and the previous best-performing method Au-
tolink [13]. We find that even in these generalization ex-
periments, our keypoints reach performance comparable to
data-specific keypoints. Applying Tai-Chi-HD tokens to un-
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(a) Applying Tai-Chi-HD tokens to Human 3.6M (b) Applying CUB-200-2011 tokens to Tai-Chi-HD

(c) Applying CelebA tokens to Tai-Chi-HD (d) Applying CelebA tokens to CUB-200-2011

Figure 5. Generalization – we apply our learned text tokens (keypoints) to images from other datasets, including those that are of
completely different domains. Our tokens generalize well for data of similar type, and surprisingly well even for some extreme cases.

aligned Human 3.6M achieves state-of-the-art performance
despite using fewer keypoints (K=10 vs K=16). We also
perform on par with the previous state of the art when we
apply CUB-200-2011 tokens to Tai-Chi-HD—a case where
the dataset gap is not only about the appearance but also
beyond classes. Despite the drastic gap, our keypoints per-
form extremely well, leveraging the generalization power of
large pre-trained diffusion models.

We show qualitative examples in Fig. 5. As shown, even
when applied to different datasets, they look reasonable.
For example, in Fig. 5a, when applying Tai-Chi-HD tokens
to Human 3.6M, the tokens respond to the same locations on
the human body as in Tai-Chi-HD. Surprising was when we
applied CUB-200-2011 tokens to Tai-Chi-HD in Fig. 5b—
they still responded to the body of the human being, rea-
sonably consistently, although these tokens were trained to
respond to birds. Of note are tokens two and six, which cor-
respond to the front and back of the bird heads in Fig. 4—
they also reply to the front and back of human heads. Ap-
plying CelebA tokens to Tai-Chi-HD in Fig. 5c also shows
interesting outcomes, as tokens generally respond to human
faces, despite the scale being drastically different between
the two datasets. Finally, applying CelebA tokens to the
CUB-200-2011 dataset in Fig. 5d shows mixed results—
when it is ‘successful’ it focuses also on the faces of the
bird, when it fails, it fails completely. These results hint
that the keypoints (tokens) we have learned carry semantic
meanings, as expected. We note that none of the baselines
that we compare against are able to generalize beyond the
dataset they were trained for.

5. Conclusions

We have proposed a novel method to find unsupervised
keypoints using pre-trained text-to-image diffusion models.
Given a set of images of a certain object, we propose to
optimize the text embeddings (tokens) such that the cross-

Tai-Chi-HD
→unaligned
Human3.6m
(K=10)↓

CUB-200-2011
→Tai-Chi-HD
(K=10)↓
Cum ℓ2 ↓ / Rel. ℓ2 ↓

CelebA
→Tai-Chi-HD
(K=8)↓
Cum ℓ2 ↓ / Rel. ℓ2 ↓

CelebA
→CUB-200-2011
(K=8)↓

Ours 4.88 317.94 / 9.50 - / 8.6 18.60
Autolink [13] 16.92 535.61 / 16.00 - / 28.2 22.56

Table 5. Generalization – we quantitatively evaluate the perfor-
mance of our keypoints on other datasets. Our Tai-Chi-HD key-
points applied to the unaligned Human3.6m setting reach state-of-
the-art performance. Interestingly, our CUB keypoints applied to
Tai-Chi-HD are on par with the previous state of the art, despite
the differences between these datasets.

attention maps within diffusion models become localized as
Gaussians with a small standard deviation. By doing so, we
find text tokens that can be used to extract keypoints by ex-
tracting the maxima of the attention maps. We have shown
that our method, on multiple datasets, under the challenging
un-aligned setup, significantly outperforms the state of the
art. We have further demonstrated that these tokens are also
generalizable.
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