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{Quentin.Herau, Nathan.Piasco, Moussab.Bennehar, Luis.Roldao, Dzmitry.Tsishkou}@huawei.com

{Quentin.Herau@etu., Cyrille.Migniot@, Cedric.Demonceaux@}u-bourgogne.fr

Pascal.Vasseur@u-picardie.fr

Abstract

In rapidly-evolving domains such as autonomous driv-

ing, the use of multiple sensors with different modalities is

crucial to ensure high operational precision and stability.

To correctly exploit the provided information by each sensor

in a single common frame, it is essential for these sensors to

be accurately calibrated. In this paper, we leverage the abil-

ity of Neural Radiance Fields (NeRF) to represent different

sensors modalities in a common volumetric representation

to achieve robust and accurate spatio-temporal sensor cali-

bration. By designing a partitioning approach based on the

visible part of the scene for each sensor, we formulate the

calibration problem using only the overlapping areas. This

strategy results in a more robust and accurate calibration

that is less prone to failure. We demonstrate that our ap-

proach works on outdoor urban scenes by validating it on

multiple established driving datasets. Results show that our

method is able to get better accuracy and robustness com-

pared to existing methods.

1. Introduction

Multi-sensor calibration plays a key role in autonomous

systems as it ensures accuracy, reliability, and robustness

in safety-critical tasks such as localization [6] and percep-

tion [22] in self-driving. In typical multi-sensor setups, the

sensors are attached to a common rigid body where the

spatial relationship between them can be obtained through

a rigid transformation matrix. It is therefore important to

identify the exact values of those matrices to correctly ex-

ploit and merge the data provided by the sensors. The pro-

cess of finding these spatial transformations is called ex-

trinsic calibration, which is a topic that has been and is still

being heavily studied thanks to the increasing popularity of

NeRF optimization
(Sec. 3.2)

Sensor registration
(Sec. 3.3)

Updated
NeRF parameters

Updated
calibrationInitial non-calibrated

setup
Final calibrated

setup

Figure 1. Method overview. SOAC is a novel multimodal spatio-

temporal calibration method for cameras and LiDAR in the con-

text of autonomous driving. By alternating the training of multiple

implicit scenes (Sec. 3.2) and sensors co-registration from these

representations (Sec. 3.3), SOAC achieves precise self-supervised

calibration from raw data acquired in unconstrained urban envi-

ronments.

multi-sensor algorithms. In addition to spatial calibration,

without an external synchronization system, it is also nec-

essary to perform temporal calibration. Using temporally

miscalibrated sensors, performance on different tasks can

be severely hindered. Although certain approaches in the

literature address temporal misalignment [12, 29, 36], the

prevailing assumption among these methods is the presence

of properly synchronized sensors. Due to the importance of

sensor calibration, a multitude of calibration solutions ex-

ist in the literature, as highlighted in the review from Li et

al. [17] and summarized in Tab. 1. They can be classified

into two main categories: target-based and targetless meth-

ods.

Target-based calibration methods rely on one or more

elements of known dimensions and features purposefully

placed in the scene. The most classic target is a checker-

board [9, 46], but custom-made planar targets [11] or

boxes [30] have also been proposed. These methods usu-

ally offer precise and robust calibration compared to tar-

getless approaches. However, requiring hand-placed targets

prevents them from being deployed on a large scale and

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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does not enable on-the-fly re-calibration if needed. Thus, a

more suitable method for mass-produced autonomous driv-

ing cars would be targetless.

Targetless methods do not require manually placed tar-

gets and thus can be used on sequences captured without

user intervention. This makes them more suitable for large-

scale deployment. These approaches usually rely on shared

information (i.e. overlap) between the different sensors,

which can be of different modalities. Wang et al. [38] and

Pandey et al. [28] propose a correspondence between the re-

flectivity of the LiDAR scans and the grayscale intensity of

the camera images. Other methods propose to find matches

of specific features, like edges [44] or semantic classes [16].

Following the development of deep learning, methods

relying on deep models were introduced to calibrate RGB

images and LiDAR scans. These methods have the ad-

vantage of being fast and precise, enabling reliable online

calibration. Deep learning techniques can leverage regres-

sion [13, 20, 33], flow [15], keypoints [42] or convolutional

features [7] to supervise or regularize the training. How-

ever, as they are supervised methods, they need an accu-

rately calibrated training dataset to be optimized and have

issues with cross-domain data due to overfitting to a specific

dataset or sensor layout.

Recently, with the arrival of Neural Radiance Fields

(NeRF) [24] for implicit representation of 3D scenes, some

works [12, 40, 47] propose to take advantage of the fully dif-

ferentiable structure of the model to achieve self-supervised

targetless calibration. Using a NeRF as the common frame

for the sensors, these methods are able to densely correlate

the captured observation from different sensors in an im-

plicit volumetric space. Yet, by simultaneously learning the

information from multiple sensors, the NeRF might overfit

regions of the scene only visible from a single sensor with-

out enforcing consistency on the overlapping regions. This

causes the calibration to easily get stuck in a local mini-

mum.

We take inspiration from the aforementioned works by

exploiting the fully differentiable properties of the implicit

scene representation to achieve spatial and temporal calibra-

tion. Different from existing methods [12, 40, 47], we pro-

pose to represent the scene by using multiple NeRFs akin

to their corresponding sensor and advocate to alternate the

optimization target between NeRF training and sensor cali-

bration (i.e. Fig. 1). Our method avoids overfitting the pose

optimization to partial regions of the scene, resulting in a

more robust and accurate calibration.

2. Related Work

With NeRF and the papers improving upon it [1, 26], the

main focus was on the quality of novel view synthesis in

addition to training and rendering speeds. However, since

these approaches often validate their claims on carefully
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Target-based
Zhang et al. [46] X X ✓ X -

Geiger et al. [9] X X ✓ X -

Feature-based
Pandey et al. [28] ✓ X ✓ X -

Park et al. [29] ✓ X ✓ ✓ -

Deep-learning
RegNet [33] ✓ X ✓ X X

LCCNet [20] ✓ X ✓ X X

NeRF-based

INF [47] ✓ X ✓ X ✓

MOISST [12] ✓ ✓ ✓ ✓ ✓

SOAC (ours) ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of calibration methods.

curated datasets, it is often assumed that the input poses

corresponding to the data are already available and are ac-

curate. However, in real-world situations, some or all the

captured frames might be unposed or suffer from inaccura-

cies, hence, significantly impacting the quality of the final

reconstruction result [19]. Therefore, several works later on

attempted to tackle this issue through different formulations

and adaptations of the overall optimization problem.

NeRF-based Image Registration. To register an image

with incorrect or no pose, iNeRF [43] proposes to use an

already trained NeRF. It finds the pose that minimizes the

photometric difference between the captured image and the

rendered result from the model. By focusing on regions of

interest, it is able to register unseen images with high pre-

cision. Using this idea as a basis, Loc-NeRF [21] combines

Monte Carlo localization method [5] with the use of a pre-

trained NeRF as a map, to build a real-time global local-

ization method. CROSSFIRE [25] takes advantage of the

NeRF model’s flexibility to learn not only the radiance and

density information of the map, but also a descriptor field.

During the localization process, by iteratively matching the

descriptors from the query image and the information given

by the NeRF model, this method is able to provide high-

precision localization. Nevertheless, all these methods re-

quire training a NeRF from precise camera poses first be-

fore being able to localize new query images.

NeRF-based Pose Optimization. The first method to

leverage the fully differentiable nature of NeRF to optimize

the input poses through backpropagation is NeRF-- [39]. It

proposes to optimize both the NeRF and the input poses

by representing them as embeddings and show higher novel

view synthesis quality when trained from noisy poses.

BARF [19] improves upon this idea by adding a coarse-

to-fine component to this method. It progressively liber-

ates the frequencies of the input positional encoding to pre-

vent the optimization from getting stuck in a local mini-

mum. SCNeRF [14] adds camera distortion estimation and
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uses a different 6-vector rotation formulation in the op-

timization, while SPARF [37] achieves pose optimization

with sparse input views by relying on pixel matching and

depth consistency. While the aforementioned methods need

an initial estimate of the camera poses, some recent meth-

ods completely remove the need for prior poses. NoPe-

NeRF [2] uses an off-the-shelf monocular depth estimator

(i.e. DPT [31]) to regularize relative poses between succes-

sive images. GNeRF [23] relies on adversarial learning to

coarsely estimate the initial poses before refining them in

a second phase. IR-NeRF [45] improves upon GNeRF by

regularizing the implicit pose estimator with the unposed

real images, increasing its robustness. Although the NeRF-

based pose optimization methods achieve reasonable scene

reconstruction by recovering accurate camera poses, they

are not suited for autonomous driving data as they do not

handle multi-modal observations nor take into account the

rigidity constraint between multiple sensors mounted on a

vehicle.

NeRF-based Sensor Calibration. NeRF-based calibra-

tion methods [12, 40, 47] take advantage of the rigid con-

straint between the sensors and the differentiable nature

of NeRF to efficiently solve this challenging task. These

methods have the advantage of being targetless and self-

supervised, as they do not rely on an annotated training

dataset. The idea is to use the NeRF as a common scene

representation. Each sensor provides its observations (RGB

images, depth measurement, or point clouds), to both train

the NeRF to represent the scene and to optimize its own ex-

trinsic calibration parameters to fit the NeRF representation.

In INF [47], the goal is to find the extrinsic transformation

between a 360° camera and a LiDAR. First, the density net-

work of NeRF is trained using the LiDAR depth data. Then,

the whole scene’s radiance is trained using images, while

simultaneously calibrating the camera. This method is lim-

ited to the calibration of a single 360° camera and a LiDAR,

whereas autonomous driving systems rely on multiple cam-

eras with narrower fields of view. AsyncNeRF [40] cali-

brates a pair of camera and depth sensors. It takes into ac-

count the temporal miscalibration between the sensors, by

building a trajectory function. Nevertheless, the time offset

is provided as input and not determined through optimiza-

tion, which limits its utilization for spatio-temporal calibra-

tion. MOISST [12] proposes to accomplish temporal cali-

bration in addition to extrinsic calibration, and to do so with

any number of LiDARs and cameras, by training the NeRF

with all the data, while also optimizing the prior extrinsic

transformations and time offsets. By using a single NeRF

to fuse the information from all the sensors, we cannot pre-

vent degenerate cases where the estimation of the extrin-

sic parameters of one sensor diverges and causes the NeRF

to learn a wrong scene geometry without correlating multi-

sensor observations. Our method, SOAC, aims to achieve

better robustness and calibration performance by leverag-

ing the use of multiple NeRFs to counterbalance such limi-

tations.

3. Method

Our multi-sensor calibration problem is formulated as fol-

lows: given a vehicle trajectory and initial priors of sen-

sor poses mounted on the vehicle, we aim to recover the

exact spatio-temporal calibration of the sensors on the ve-

hicle. Our method is composed of two optimization steps

that are performed sequentially all along the training (cf.

Fig. 1). The first step consists of training multiple implicit

scene representations (NeRFs), one by camera, using only

the observations from the dedicated sensor. During the sec-

ond optimization step, we refine the extrinsic and temporal

parameters of each sensor using the trained NeRF of all the

other sensors in a round-robin manner. The motivation be-

hind this design is to prevent over-fitting, calibration diver-

gence, or implicit model convergence to a poor local min-

imum when all the observations are fused within the same

implicit representation, as in MOISST [12].

3.1. Notations and Background

Without loss of generality, we consider the trajectory of

camera r (our reference sensor) as the known trajectory

of the vehicle. We use the same notations introduced in

MOISST [12] to describe our method:

• S = {C,L}: the set of sensors composed of at least one

or more cameras C and, optionally, one or more LiDARs

L,

• {Fi}: the set of frames captured by the sensor i ∈ S,

• tni ∈ R
+: the timestamp of frame ni ∈ Fi relative to the

sensor i ∈ S,

• δi ∈ R: the time offset between the reference camera and

the sensor i ∈ S (δr = 0),

• wT
i(t) ∈ R

4×4: the pose of sensor i ∈ S at time t (the

time is relative to sensor i’s own clock) in the world ref-

erence frame,

• jT
i ∈ R

4×4: the transformation matrix from sensor i to

sensor j.

Our goal is to find the optimal transformations ˆ
rT

i and

time offsets δ̂i of the different sensors with respect to the

reference camera. The poses of the reference camera r can

be obtained by relying on IMU, SLAM [27], or Structure-

from-Motion [34]. Similar to MOISST, we build a con-

tinuous trajectory of the reference sensor r, Tr, from the

discrete poses of r using linear interpolation for the pose

translation and spherical linear interpolation (SLERP [35])

for the rotation. This trajectory is expressed as a function of

time, that returns the pose of the reference camera r for any

given time t: wT
r(t) = Tr(t). Using the extrinsic trans-

formations and the time offsets between the other sensors
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(a) (b)

Figure 2. SOAC training strategy. (a) Scene representation training (Sec. 3.2): The parameters Θ̂ of each NeRF are trained with the

images from their associated cameras and the LiDAR scans. The LiDAR calibration is also optimized through T
n(i+2) . (b) Extrinsic and

temporal optimization (Sec. 3.3): The real frame from the sensor is compared to the predicted frame on the other NeRFs to calculate the

losses. The calibration is then optimized with backpropagation through the poses Tn(i+1) and T
n(i+2) .

and the reference camera r, we can compute the absolute

pose of sensor i at specific timestamps with the following

equation:

wT
i(tni + δi) = Tr(t

ni + δi) rT
i. (1)

In order to simplify the equations, we designate the abso-

lute pose of sensor i computed from its extrinsic as Tni =

wT
i(tni + δi).

NeRF model. NeRF is a function of parameters Θ that

takes as input rays obtained from a sensor’s intrinsic param-

eters and pose, and generates for each ray color and density

information via volumetric rendering. This information can

be combined into a color image RI (T
ni | Θ) and a depth

scan RD (Tni | Θ) of frame ni for sensor i.

3.2. Scene Representation Training

For each camera sensor, a dedicated NeRF with parameters

Θi is trained using rays that are generated exclusively from

camera i. Each NeRF model with parameters Θi will only

learn the part of the scene that is observed by its respective

camera sensor i (cf. Fig. 2a). The color loss for training the

scene representation is:

LC =
∑

i∈C

∑

ni∈Fi

∥RI (T
ni | Θi)− Ini∥

2

2
, (2)

with Ini the color image ni of camera i. The training objec-

tive is to estimate the optimal parameters Θ̂i for the NeRF

models such as:
{

Θ̂i

}

i∈C
= argmin

{Θi}i∈C

(LC). (3)

3.3. Extrinsic and Temporal Optimization

During the calibration step, our objective is to optimize the

extrinsic transformation matrix rT
i and temporal parame-

ters δi by optimizing the poses of camera i using all the

NeRFs, except the NeRF of parameters Θi associated to the

current camera being calibrated (cf. Fig. 2b). Using this

optimization formulation, we enforce the images captured

by each camera to be coherent with the NeRF trained by the

other cameras. The camera calibration loss can be written

as:

LCam =
∑

j∈C

∑

i∈C
i ̸=j

∑

ni∈Fi

∥RI (T
ni | Θj)− Ini∥

2

2
, (4)

and by considering Eq. 1, the optimization objective during

the spatio-temporal optimization step is:
{

ˆ
rT

i, δ̂i

}

i∈C
= argmin

{rT
i,δi}i∈C

(LCam). (5)

3.4. LiDAR Calibration

As LiDARs only provide geometric information, we cannot

register an RGB image to a NeRF which was only trained

on LiDAR scans. This means that the registration step (cf.

Sec. 3.3) could not be accomplished on a LiDAR-trained

NeRF. Instead of dedicating a NeRF for each LiDAR, we

simultaneously train the camera NeRFs with all the Li-

DAR scans, and calibrate the LiDARs against all NeRFs

(cf. Fig. 2). Thus, we have for both the NeRF training step

and calibration step:

LD =
∑

j∈C

∑

i∈L

∑

ni∈Fi

|RD (Tni | Θj)−Dni |, (6)

with Dni the point cloud scan ni of LiDAR i. When adding

the LiDAR loss in the objective Eq. 3, it becomes:
{

Θ̂i

}

i∈C
,
{

ˆ
rT

j , δ̂i

}

j∈L
= argmin

{Θi},{rT
j ,δj}

(LC +LD). (7)

and Eq. 5 becomes:
{

ˆ
rT

i, δ̂i

}

i∈S
= argmin

{rT
i,δi}

(LCam + LD). (8)
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(a) (b)

Figure 3. SOAC’s visibility grid (Sec. 3.5). (a) Grid filling: Rays

from camera Ci fill the visibility grid linked to Nerf Θi. (b) Ray

filtering: For cameras Cj,∀j ̸=i, rays are kept or filtered according

to visibility from (a).

3.5. Visibility Grid

In a multi-sensor setup, the NeRF representation exploits

the overlap between sensors w.r.t. the whole sequence rather

than a particular frame as for traditional targetless methods.

However, the portions of the scene observed from the dif-

ferent sensors might not entirely overlap. This can lead to

noisy reconstruction in the NeRF model if inference is per-

formed at the unobserved regions (cf. Fig. 4). To overcome

this problem, NeRF2NeRF [10] performs pairwise registra-

tion of two NeRF models produced from different view-

points by aligning the partially overlapping geometry of the

two models. In a similar sense, we aim to consider the over-

lapping geometry from our different NeRFs that have been

learned separately from each camera.

To achieve this, a boolean visibility grid for each NeRF

model is reconstructed by considering the rays belonging

to its akin sensor (see Fig. 3a) during the scene representa-

tion step (Sec. 3.2). During the calibration step (Sec. 3.3)

we exploit this visibility grid to only consider rays that over-

lap with trained regions on each NeRF used for registration

(cf. Fig. 3b). The grids are reinitialized every few epochs

to account for the new poses resulting from the calibration

refinements.

3.6. Optimization Details

Overall, the training process can be summarized as follows:

during each training step, a mini-batch of rays is first used

in the scene representation training step (Sec. 2a). Rays of

each camera train their specific NeRF and fill the respec-

tive visibility grids (Sec. 3.5). The LiDAR rays train all

the NeRFs and are used to optimize the LiDAR calibration

parameters after being filtered by the visibility grids. In a

subsequent step, the same mini-batch is passed to the extrin-

sic and temporal optimization. Rays are filtered through the

visibility grids before being fed to the NeRFs as explained

in Sec. 3.3. Calibration losses (Eq. 8) are computed and the

gradient is backpropagated to optimize the calibration pa-

rameters. Once this is done, we continue the training with

the next mini-batch.
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Figure 4. Visualization of the visibility grid (Sec. 3.5). Pre-

dictions done with the NeRF trained by front camera on a Pan-

daset [41] sequence.

NeRF delaying. In our system, all the sensors, except the

reference camera, have incorrect calibration. As such, the

NeRF trained with the reference camera is the most ade-

quate for calibration at the beginning. That is why we intro-

duce a delaying schedule for the other NeRFs based on the

overlap with the reference camera; more details about this

policy are provided in the supplementary materials.

Correction bounding. As we consider the extrinsic and

temporal calibration on a car, we can suppose that the trans-

lation error should not be off by more than the car’s size. We

can also consider that the sensors should not have a time off-

set too high, even without the help of an external synchro-

nizing system. Thus, by using an offset and scaled sigmoid

function on the output of the embeddings for the translation

and temporal correction, we can confine the learned correc-

tion, avoiding divergence and increasing the stability and

robustness of the calibration.

4. Experiments

4.1. Setup

Datasets. We perform experiments on three popular au-

tonomous driving datasets: KITTI-360 [18], nuScenes [3]

and Pandaset [41]. For KITTI-360, we use the two front

cameras, the two side cameras and the Velodyne LiDAR

for our experiments. For nuScenes and Pandaset, we use

the front camera, the two front diagonal cameras, and the

LiDAR. Undistorted LiDAR scans are considered for all

datasets. We assign the front-left camera of KITTI-360, and

the front cameras of nuScenes and Pandaset to be the refer-

ence sensor. More details on selected sequences and dataset

parameters are provided in the supplementary materials.
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Figure 5. Results for SOAC and MOISST [12] as box plots with

log scale on KITTI-360 [18] and Nuscenes [3] sequences. The red

lines show the initial error (best viewed in color).

Baseline. We select MOISST [12] as our baseline, as it

also aims to solve targetless, multi-modal, and spatiotem-

poral calibration. We refer to the supplementary for de-

tails about the re-implementation of the method. For the

LiDAR/Camera calibration task, we compare against LC-

CNet [20] by using the code and the pre-trained weights

from the official repository1, and with Pandey et al. [28] us-

ing the official implementation provided by authors2. For

SOAC, We replicate MOISST NeRF architecture and apply

the same supervision and regularization losses. We refer to

the supplementary for more implementation details.

4.2. Results

Spatial and temporal calibration. We run both SOAC

and MOISST on 4 KITTI-360 sequences and 3 nuScenes

sequences. For SOAC, KITTI-360 images are downscaled

by 4, while a downscale factor of 6 is applied for nuScenes.

1https://github.com/IIPCVLAB/LCCNet
2https://robots.engin.umich.edu/SoftwareData/InfoExtrinsicCalib

KITTI-360 [18] Pandaset [41]

Rotation (°) Translation (cm) Rotation (°) Translation (cm)

Pandey et al. [28] 11.8± 5.4 143± 109 15.4± 0.8 139± 17.5
LCCNet [20] 1.9± 0.1 95.8± 7.7 14.3± 3.4 370± 11.6
MOISST [12] 0.2± 0.1 10.0± 9.8 2.8± 2.3 56.4± 17.2
SOAC (ours) 0.3± 0.2 7.8± 3.5 1.3± 0.8 29.4± 13.6

Table 2. LiDAR/Camera calibration results.

For MOISST, we do not downscale the KITTI-360 images

and apply a downscale factor of 2 for nuScenes as we found

that the method performs better with high-resolution im-

ages. Each test is run with an initial noise of 50 cm transla-

tion error and 5° rotation error on each axis, as well as 100

ms of time offset. We use 10 different seeds to randomly

sign the error noises applied and compute the statistics over

these 10 runs. Following common practices [32, 36], we

show results on Fig. 5 by employing box plots3 As can be

seen, SOAC achieves better calibration results on KITTI-

360 with an overall error (average over median for each

sensor) of 0.21°, 5.24 cm and 3.95 ms for rotation, trans-

lation and time offset, respectively. In contrast, MOISST

obtains errors about 10 times higher (i.e. 2.24°, 56.34 cm

and 27.07 ms) for the same setup. Detailed quantitative re-

sults by sequence are given in the supplementary materials.

LiDAR/Camera calibration. For the task of Li-

DAR/Camera calibration, the same initial rotation and

translation error setup from previous experiments is ap-

plied, but without considering any temporal error. We

compare our method against LCCNet [20] and Pandey

et al. [28]. The provided weights for LCCNet were pre-

trained on the KITTI odometry dataset [8]. For KITTI-360,

We predict the calibration between the front-left camera

and the LiDAR. For Pandaset, we predict the calibration

between the front camera and the 360° LiDAR. Results

are shown in Tab. 2. The performance of LCCNet, is very

poor in comparison to SOAC, especially for the translation

(results per sequence are provided in the supplementary).

As LLCNet is a supervised method, we observe that it is

setup-specific, and a slight change in the LiDAR/Camera

configuration greatly reduces the performance. This was

also highlighted by Fu et al. [7] when using the front-right

camera for calibration on the KITTI odometry dataset. For

Pandey et al. [28], we were unable to obtain convincing

calibration results on the sequences. We argue that feature-

based targetless methods are not designed for “in-the-wild”

calibration, and sequences need to be acquired in a specific

manner to obtain proper results (i.e. indoor, structured

environment, dense LiDAR).

3The boxes show the first quartile Q1, median, third quartile Q3. The

whiskers use 1.5 IQR (Interquartile range) above and below the box and

stop at a value within the results.
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Figure 6. Results on nuScenes [3] with 5 cameras for SOAC and SOAC w/o NeRF delaying as box plots with log scale, the red lines show

the initial error (best viewed in color).

F-Left F-Right LiDAR
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Figure 7. Results on Pandaset [41] for SOAC, MOISST [12] and

SOAC w/o semantic filtering as box plots with log scale, the red

lines show the initial error (best viewed in color).

Calibration in dynamic environments. For the evalu-

ation in dynamic environments, we select 3 Pandaset se-

quences with the presence of dynamic elements (e.g. cars,

pedestrians). When calibrating on dynamic scenes, the

moving elements are not handled by the NeRF model.

Therefore, a simple and efficient way of removing these el-

ements is to filter the dynamic classes with semantic seg-

mentation. This results in losing some useful information

for calibration (i.e. parked vehicles). Nevertheless, if the

rest of the scene provides sufficient overlap, proper cali-

bration can be obtained. We apply an analogous setup to

KITTI-360 and nuScenes, except for the removal of tem-

poral calibration and the initial time offset (cf. Sec. 4.3 on

Time-space compensation). We downscale the image by a

factor of 4 for SOAC and 2 for MOISST. We use seman-

tic segmentation computed by Mask2Former [4] to remove

all classes that can be considered dynamic for both methods

and test SOAC with and w/out semantic filtering. Results

are shown in Fig. 7. It can be observed that by applying

semantic filtering, calibration performance on SOAC can

be greatly improved on the LiDAR with a median error of

0.41° and 7.79 cm on rotation and translation, respectively,

in comparison to results w/out filtering (2.36° / 79.17 cm).

It can be also seen that SOAC performs much better than

MOISST on the overall calibration of all the sensors with a

mean error an of 0.42° / 11.18 cm vs. 2.18° / 44.73 cm for

MOISST.

Complete camera rig calibration. To evaluate SOAC

performances with a nearly complete 360° camera rig, we

Figure 8. LiDAR ray length distribution of the sequences used in

our calibration experiments.
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Figure 9. Qualitative LiDAR/front camera calibration results on

KITTI-360 [18] dataset.

add two additional side cameras on the nuScenes sequences.

We run both with and without the NeRFs delaying schedul-

ing as explained in Sec. 3.6. In Fig. 6 we can see the impact

of not delaying the NeRFs, as the accuracy and stability of

the calibration plummet.

Qualitative results. We show the reprojection of the Li-

DAR on the images using the calibration obtained from dif-

ferent methods. On KITTI-360 (cf. Fig. 9) we can see

that LCCNet does not provide a satisfying result and that

SOAC is able to provide a visually comparable alignment

to the ground truth calibration. On nuScenes (cf. Fig. 10),

the calibration from SOAC provides a better alignment than

MOISST, assessing the quantitative results of Fig. 5. More
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Figure 10. Qualitative LiDAR/Camera reprojection results on nuScenes [3] dataset.

Errors Cam Front Cam Left Cam Right LiDAR

Translation (cm)
Extrinsic 47.9 67.8 70.4 50.9

Poses 3.5 2.6 26.2 19.1

Rotation (°)
Extrinsic 0.13 0.18 0.23 0.58

Poses 1.63 1.12 1.35 0.60

Time offset (ms) 39.18 58.16 40.74 39.38

Table 3. SOAC space-time compensation on a sequence from

KITTI-360 [18]. Mean absolute poses of sensors are correct

whereas the spatio-temporal calibration computed by the method

is erroneous.

qualitative results are given in the supplementary, along

with ablation studies on visibility grids (cf. Sec. 3.5) and

correction bounding (cf. Sec. 3.6).

4.3. Limitations

Time-space compensation. When simultaneously calibrat-

ing spatially and temporally, there are cases where the dis-

entanglement is impossible. In a sequence where the ve-

hicle is driving in a straight line at a constant speed, there

is an infinite number of solutions that can provide the cor-

rect poses. In Tab. 3, we show the calibration results on a

straight line with constant speed from KITTI-360. We can

see the pose error is fairly low, but the extrinsic and tempo-

ral calibration is incorrect. This means that there is a need

to select scenes with speed variation in order to reduce to

a single possible solution. As most Pandaset sequences are

in a straight line at a constant speed, we decided to not do

temporal calibration on them.

Scene structure. When the scenes are more open and/or

larger, the projected rays will have to travel a longer dis-

tance before reaching the scene’s structures. Considering

LiDAR to camera calibration, the rotation error has a lin-

early increasing impact according to the ray distance when

reprojected to the camera frame, while the translation er-

ror’s impact is independent of the ray distance. Thus, we

tend to lose precision on the translation as the ray gets

longer. When analyzing the LiDAR rays length distribution

of the datasets in Fig. 8, we observe that the LiDAR rays on

Pandaset are longer, meaning that the scenes are larger and

open, and the structures are farther than on KITTI-360 and

nuScenes. This explains most likely the decrease in calibra-

tion performances for the LiDAR extrinsic translation pa-

rameters on Pandaset (median error of 18.1 cm) compared

to KITTI-360 (median error of 8.2 cm) or nuScenes (median

error of 5.1 cm).

Training time. As we train one NeRF per camera, and

register all the other sensors on each NeRF, the training

time increases exponentially with the number of cameras.

For instance, on nuScenes one epoch takes approximately 1

minute 45 seconds for 3 cameras and 8 minutes for 5 cam-

eras using the same GPU. This reduces the scalability of our

method, but this phenomenon is mitigated by the fact that

we use much smaller images than MOISST to reach better

performance. We refer to the supplementary for more in-

depth details on the efficiency of our method wrt. image

size compared to MOISST.

5. Conclusion

In this paper, we presented SOAC, a targetless and self-

supervised method for spatial and temporal calibration.

This approach is able to simultaneously calibrate multiple

sensors of different modalities, by leveraging the use of

multiple camera-specific implicit scene representations, and

taking into account the overlap between the sensors. Our

approach is fully automatic by relying on gradient descent

for the optimization process, and surpasses similar methods

previously introduced. The reliance on a reference sensor

with known trajectory, and the need of near structures for a

precise calibration, are restrictions that could open to future

research to alleviate them.
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